01;03

О связи эйлеровой и лагранжевой статистик броуновской частицы

© Е.З. Грибова, А.И. Саичев

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

E-mail: gribova@rf.unn.runnet.ru

(Поступило в Редакцию 11 мая 1999 г. В окончательной редакции 1 ноября 1999 г.)

Исследована статистика частиц (дымного аэрозоля в атмосфере), достигающих заданной области пространства. При этом учтено влияние как регулярных, так и случайных сил, действующих на частицу. Предложен способ определения вероятностных распределений (времени достижения указанной области, скорости частиц вблизи нее и т. д.), найдены его пределы применимости в зависимости от параметров задачи.

Усиливающееся антропогенное загрязнение атмосферы и водной среды делает актуальным исследование физических закономерностей оседания дымового аэрозоля в приземном слое. Так, в работе [1] проводилось измерение содержания в почве в окрестности промышленного узла ряда химических элементов. При этом рассматривалось гравитационное осаждение с учетом электрического взаимодействия аэрозоля с приземным электрическим полем. В то же время следует выделить и еще один фактор, влияющий на движение частиц примеси в воздушном потоке — диффузию. Диффузионное перемешивание приводит к тому, что траектории частиц становятся случайными, и имеет смысл говорить о статистике как области, в которую может попасть частица, так и времени достижения этой области. Целью данной работы является описание движения частиц аэрозоля с учетом как рассмотренных в [1] регулярных, так и случайных сил.

Постановка проблемы

При анализе диффузии и переноса пассивной примеси в атмосфере или океане часто бывает необходимо знать вероятностные характеристики частиц примеси в некоторой заранее заданной области пространства (например, среднее или наиболее вероятное время достижения заданного участка поверхности либо статистику скорости частиц примеси вблизи нее). С точки зрения гидродинамики изучение движения среды в фиксированных точках пространства соответствует эйлерову подходу. Поэтому в рассматриваемом случае естественно говорить об эйлеровой статистике частиц примеси. Заметим, что прямое вычисление эйлеровой статистики затруднительно, поскольку скорость частицы в заданной точке пространства является случайной функцией случайного аргумента — времени прихода в данную точку.

В то же время общепринятым является другой подход к изучению движения примеси — лагранжев. В его рамках определяют вероятностные свойства фиксированной частицы в текущий момент времени. Их естественно назвать лагранжевыми характеристиками. Как правило, лагранжево статистическое описание проще,

поскольку сводится к анализу статистических свойств хорошо изученных решений стохастических уравнений Ланжевена [2]. В частности, лагранжева статистика частиц пассивной примеси легко находится. Поэтому целью данной работы является построение эйлеровых вероятностных распределений с помощью известных лагранжевых.

Пусть частица примеси движется под действием двух сил: случайной $\boldsymbol{\xi}(t)$ (обусловленной, например, ударами частиц окружающей среды) и регулярной $\boldsymbol{\xi}_0(t)$. Здесь и далее под $\boldsymbol{\xi}(t)$ и $\boldsymbol{\xi}_0(t)$ будем понимать силы в расчете на единицу массы. В зависимости от постановки конкретной задачи природа силы $\boldsymbol{\xi}_0(t)$ может быть различной. Например, в [1] это — результирующая гравитационной силы при движении в поле тяжести, кулоновской силы, действующей на заряженную частицу со стороны электрического поля Земли, и ветровой снос среды. Если же исследовать статистику движения заряженного аэрозоля с учетом магнитного поля Земли, то в этом случае $\boldsymbol{\xi}_0(t)$ — электромагнитная сила. Известно [2], что движение частицы при этом описывается уравнениями Ланжевена

$$\frac{d\mathbf{R}}{dt} = \mathbf{V}, \qquad \frac{d\mathbf{V}}{dt} = \boldsymbol{\xi}_0(\mathbf{R}, \mathbf{V}, t) + \boldsymbol{\xi}(t) \tag{1}$$

с начальными условиями

$$\mathbf{R}(t=0) = \mathbf{R}_0, \qquad \mathbf{V}(t=0) = \mathbf{V}_0,$$

где $\mathbf{V}(t)$, $\mathbf{R}(t)$ — скорость и координата частицы в текущий момент времени t.

Процессы V(t), $\mathbf{R}(t)$ являются лагранжевыми характеристиками диффузии — они связаны с фиксированной движущейся частицей. Интересуясь статистикой, например, скоростей частиц, достигающих некоторой заданной поверхности (которую в дальнейшем будем называть детектором), мы устанавливаем связь лагранжевой и эйлеровой статистик. Чтобы нагляднее продемонстрировать основные закономерности такой связи, предельно упростим физическую постановку и геометрию задачи.

Пусть имеется точка в пространстве, которую назовем источником. В начальный момент времени частица с нулевой начальной скоростью ($\mathbf{V}_0=0$) покидает источник, который поместим в начало координат ($\mathbf{R}_0=0$).

1 1

Сделаем два предположения о характере взаимодействий частицы с внешней средой. Во-первых, будем считать, что регулярная сила постоянна: $\boldsymbol{\xi}_0(t) = \boldsymbol{\xi}_0$ (случай, когда $\boldsymbol{\xi}_0(t)$ является силой вязкого трения и имеет вид $\boldsymbol{\xi}_0(t) = k(\mathbf{U} - \mathbf{V})$, где k — эффективный коэффициент трения, \mathbf{U} — скорость ветра, подробно обсуждался в [3,4]). Во-вторых, пусть $\boldsymbol{\xi}_0(t)$ — случайный гауссов процесс с нулевым средним и корреляционным тензором

$$\langle \xi_t(t)\xi_j(t+t')\rangle = 2D\delta_{ij}\delta(t') \quad (i,j=1,2,3),$$
 (2)

где D — коэффициент диффузии.

Последнее предположение означает, что мы, следуя работе [5], обсуждаем молекулярную диффузию (броуновское движение).

Введем систему координат $\mathbf{r} = \{\mathbf{r}_{\perp}, z\}$, где z — продольная координата, направленная вдоль вектора $\boldsymbol{\xi}_0, \mathbf{r}_{\perp} = \{x, y\}$ — поперечные координаты. Фиксированную плоскость в пространстве, перпендикулярную оси z на расстоянии z = L от источника, назовем детектором. Нас будут интересовать плотности вероятностей момента t^* достижения плоскости детектора, а также координат и компонент скорости частицы, попадающей на детектор.

Упрощения, касающиеся характера сил ξ_0 и $\xi(t)$, совместно с выбранной геометрией (безграничный плоский детектор, перпендикулярный к направлению регулярной силы) позволят избежать введения большого числа параметров [3,4], не играющих принципиальной роли в установлении связи двух статистик.

Из (2) следует, что движения во всех направлениях статистически независимы, поэтому удобно совместную плотность вероятностей координат и скорости частицы представить в виде

$$f(\mathbf{r}, \mathbf{v}; t) = f_{\perp}(\mathbf{r}_{\perp}, \mathbf{v}_{\perp}; t) f_{z}(z, v_{z}; t). \tag{3}$$

Здесь функции f_{\perp} и f_{z} определяются равенствами

$$f_{\perp}(\mathbf{r}_{\perp}, \mathbf{v}_{\perp}; t) = \langle \delta[\mathbf{r}_{\perp} - \mathbf{R}_{\perp}(t)] \delta[\mathbf{v}_{\perp} - \mathbf{V}_{\perp}(t)] \rangle,$$

$$f_{z}(z, v_{z}; t) = \langle \delta[z - Z(t)] \delta[v_{z} - V_{z}(t)] \rangle$$
(4)

(усреднение ведется по реализациям случайной силы $\boldsymbol{\xi}(t)$) и удовлетворяют уравнениям Фоккера—Планка [2,6]

$$\frac{\partial f_{\perp}}{\partial t} + \mathbf{v}_{\perp} \frac{\partial f_{\perp}}{\partial \mathbf{r}_{\perp}} = D \frac{\partial^{2} f_{\perp}}{\partial \mathbf{v}_{\perp}^{2}},
\frac{\partial f_{z}}{\partial t} + v_{z} \frac{\partial f_{z}}{\partial z} + \xi_{0} \frac{\partial f_{z}}{\partial v_{z}} = D \frac{\partial^{2} f_{z}}{\partial v_{z}^{2}}$$
(5)

с начальными условиями

$$f(\mathbf{r}, \mathbf{v}; t = 0) = \delta(\mathbf{r} - \mathbf{R}_0)\delta(\mathbf{v} - \mathbf{V}_0).$$

Решение уравнений (5) при ${f R}_0=0$ и ${f V}_0=0$ имеет вид

$$f_{\perp}(x, y, v_x, v_y; t) = \frac{3}{(2\pi Dt^2)^2} \exp\left\{-\frac{3}{Dt} \left[\left(\frac{x^2}{t^2} - \frac{xv_x}{t} + \frac{v_x^2}{3}\right) + \left(\frac{y^2}{t^2} - \frac{yv_y}{t} + \frac{v_y^2}{3}\right) \right] \right\},$$

$$f_z(z, v_z; t) = \frac{\sqrt{3}}{2\pi Dt^2} \exp\left\{-\frac{3}{Dt} \left[\frac{(z - \xi_0 t^2 / 2)^2}{t^2} - \frac{(z - \xi_0 t^2 / 2)(v_z - \xi_0 t)}{t} + \frac{(v_z - \xi_0 t)^2}{3} \right] \right\}.$$

Заметим, что плотность вероятностей $f(\mathbf{r},\mathbf{v};t)$ определяет лагранжеву статистику координат и скоростей частицы в произвольный момент времени, в то время как нас интересует эйлерова статистика плотности вероятностей координат частицы $w_{\mathbf{r}_{\perp}}(\mathbf{r}_{\perp};L)$ и компонент скорости $w_{\mathbf{v}_{\perp}}(\mathbf{v}_{\perp};L)$, $w_{v_z}(v_z;L)$ не детекторе (очевидно, что время достижния детектора случайно). Цель данной работы — построение искомых эйлеровых плотностей вероятностей на основе известной лагранжевой статистики.

Установление связей между лагранжевой и эйлеровой статистикой броуновской частицы

Введем вспомогательную функцию $F(t, \mathbf{r}_{\perp}, \mathbf{v}; L)$, по определению равную

$$F(t, \mathbf{r}_{\perp}, \mathbf{v}; L) = |v_z| f(\mathbf{r}_{\perp}, L, \mathbf{v}; t). \tag{6}$$

Используя соотношения (3), (4) и представление дельта-функции в виде (см., например, [7])

$$\delta[L-Z(t)] = \sum_{i} \delta(t-t_i)/|\dot{Z}|$$

(где t_i — корень уравнения Z(t) = L, а суммирование ведется по всем корням), перепишем выражение (6)

$$F(t, \mathbf{r}_{\perp}, \mathbf{v}; L) = \left\langle \sum_{i} \delta(t - t_{i}) \delta[\mathbf{r}_{\perp} - \mathbf{R}_{\perp}(t)] \delta[\mathbf{v} - \mathbf{V}(t)] \right\rangle.$$
(7)

Обсудим подробно, какие эйлеровы вероятностные характеристики детектируемых частиц можно находить с помощью функции $F(t, \mathbf{r}_{\perp}, \mathbf{v}; L)$.

Рассмотрим отдельно случай, когда уравнение Z(t)=L имеет единственный корень t^* . Тогда сумма под знаком среднего в (7) содержит лишь одно слагаемое, а само среднее по определению является совместной плотностью вероятностей

$$w(t, \mathbf{r}_{\perp}, \mathbf{v}; L)$$

$$= \left\langle \delta(t - t^{*}) \delta[\mathbf{r}_{\perp} - \mathbf{R}_{\perp}(t^{*})] \delta[\mathbf{v} - \mathbf{V}(t^{*})] \right\rangle$$
(8)

времени достижения детектора частицей, а также ее поперечной координаты и скорости в этот момент. Интегрируя совместную плотность вероятностей (8) по любой паре переменных, получаем интересующие нас

эйлеровы вероятностные распределения детектируемой частицы. В частности,

$$w_t(t;L) = \langle \delta[t - t^*(L)] \rangle$$

для момента пересечения плоскости детектора,

$$w_{\mathbf{r}_{\perp}}(\mathbf{r}_{\perp};L) = \langle \delta[\mathbf{r}_{\perp} - \mathbf{R}_{\perp}(t^*)] \rangle$$

для координат частицы на детекторе,

$$w_{\mathbf{v}_{\perp}}(\mathbf{v}_{\perp};L) = \langle \delta[\mathbf{v}_{\perp} - \mathbf{V}_{\perp}(t^*)] \rangle,$$

$$w_{v_z}(v_z;L) = \langle \delta[v_z - V_z(t^*)] \rangle$$

для компонент скорости.

Чтобы понять, когда сумма в равенстве (7) содержит практически лишь одно слагаемое, преобразуем его с учетом формулы полной вероятности

$$F(t, \mathbf{r}_{\perp}, \mathbf{v}; L) = \sum_{N=1}^{\infty} P(N; L) \sum_{i=1}^{N} g_i(t, \mathbf{r}_{\perp}, \mathbf{v}; L|N).$$
 (9)

Здесь $g_i(t, \mathbf{r}_\perp, \mathbf{v}; L|N)$ — условная совместная плотность вероятностей момента t_i i-го пересечения плоскости детектора, координат и скорости частицы на детекторе при условии, что к моменту t было N пересечений; P(N;L) — вероятность того, что число пересечений равно N. Очевидно, равенство (9) совпадает с распределением (8), когда вероятности P(N;L)=0 при N>1. В этом случае из (9) следует $w(t,\mathbf{r}_\perp,\mathbf{v};L)=g_1(t,\mathbf{r}_\perp,\mathbf{v};L|1)$, а упомянутые эйлеровы плотности вероятностей равны

$$w_t(t;L) = \int_{-\infty}^{\infty} d\mathbf{v} |v_z| \int_{-\infty}^{\infty} d\mathbf{r}_{\perp} f(\mathbf{r}_{\perp}, L, \mathbf{v}; t), \qquad (10)$$

$$w_{\mathbf{r}_{\perp}}(\mathbf{r}_{\perp};L) = \int_{0}^{\infty} dt \int_{-\infty}^{\infty} d\mathbf{v} |v_{z}| f(\mathbf{r}_{\perp}, L, \mathbf{v}; t), \qquad (11)$$

$$w_{\mathbf{v}_{\perp}}(\mathbf{v}_{\perp};L) = \int_{0}^{\infty} dt \int_{-\infty}^{\infty} d\mathbf{r}_{\perp} \int_{-\infty}^{\infty} dv_{z} |v_{z}| f(\mathbf{r}_{\perp}, L, \mathbf{v}; t), \quad (12)$$

$$w_{v_z}(v_z;L) = \int_0^\infty dt \int_{-\infty}^\infty d\mathbf{r}_\perp \int_{-\infty}^\infty d\mathbf{v}_\perp |v_z| f(\mathbf{r}_\perp, L, \mathbf{v}; t). \quad (13)$$

Ниже обсудим, когда указанное условие справедливости соотношений (10)–(13) выполняется с достаточной степенью точности.

Анализ зависимости решения от параметров задачи

При выводе соотношений (10)–(13) основным было предположение об однократном пересечении частицей плоскости детектора. Чтобы проверить, выполнено ли

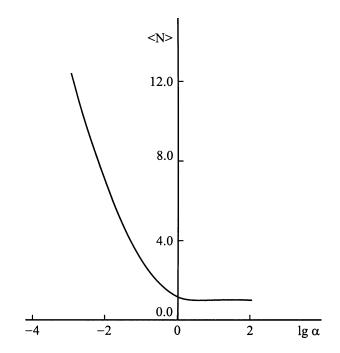


Рис. 1. Зависимость среднего числа пересечений детектора частицей от параметра α (соотношение между сносом и диффузией).

условие однократности пересечения в действительности, надо уметь вычислять вероятности P(N;L) для всех N.

К сожалению, точно вычислить вероятности P(N; L) в общем случае не удается. Предложенный в [3,4] способ приближенной оценки P(1;L) и P(2;L) основывается фактически на предположении, что всеми вероятностями при N > 2 заведомо можно пренебречь. Численное моделирование движения частицы, проведенное в [4], показывает, что это действительно так при достаточно сильном сносе в положительном направлении оси z, когда частица не может вернуться к детектору из полупространства $z \ge L$. При этом вероятности P(N;L)N-кратных пересечений поверхности детектора удовлетворяют неравенству $P(M;L) \ll P(1;L)$ и формулы (10)–(13) оказываются приближенно справедливы. Однако при произвольном соотношении между диффузией D и сносом ξ_0 вопрос остается открытым. Здесь мы сформулируем несколько иное (возможно, более удобное для анализа) условие, при котором справедливы полученные выше формулы.

Учтем, что в задаче есть характерное время $t_0 = \sqrt{2L/\xi_0}$, за которое частица долетает до детектора в отсутствие случайных воздействий, характерный масштаб скорости $v_0 = \xi_0 t_0 = \sqrt{2L\xi_0}$ и единственный безразмерный параметр $\alpha = \xi_0 v_0/D$. Этот параметр как раз и характеризует соотношение между регулярным и диффузионным движением, т.е. рассмотренному в [3] случаю преобладания сноса над диффузией отвечает неравенство $\alpha \gg 1$. Нам надо найти всю область значений α , при которых среднее число пересечений

поверхности детектора $\langle N \rangle$ практически равно единице. Условие $\langle N \rangle \approx 1$ (понимаемое в вероятностном смысле) как раз и означает, что частица лишь один раз попадает на детектор.

Чтобы вычислить $\langle N \rangle$, вернемся снова к равенству (9). Интегрируя его по всем переменным и учитывая, что условные плотности вероятностей нормированы на единицу, найдем среднее число $\langle N \rangle$ пересечений детектора частицей

$$\langle N \rangle = \int_{0}^{\infty} dt \int_{-\infty}^{\infty} d\mathbf{v} \int_{-\infty}^{\infty} d\mathbf{r}_{\perp} F(t, \mathbf{r}_{\perp}, \mathbf{v}; L)$$

$$= \int_{0}^{\infty} dt \int_{-\infty}^{\infty} d\mathbf{v} |v_{z}| \int_{-\infty}^{\infty} d\mathbf{r}_{\perp} f(\mathbf{r}_{\perp}, L, \mathbf{v}; t). \tag{14}$$

Попутно обратим внимание, что правая часть равенства (14) имеет смысл нормировки всех перечисленных плотностей вероятностей (10)–(13). В частности, если частица действительно лишь один раз пересекает поверхность детектора, то $\langle N \rangle = 1$. В этом случае (10)–(13) являются строгими равенствами, дающими обычные (нормированные на единицу) вероятностные распределения.

Зависимость $\langle N \rangle$ от логарифма α , полученная с помощью (14), приведена на рис. 1. Результат достаточно очевиден: при сильном сносе ($\alpha\gg 1$) частица пересекает плоскость детектора и под действием постоянной силы $\boldsymbol{\xi}_0$ "улетает" в область z>L. В другом предельном случае ($\alpha\ll 1$, диффузия преобладает над сносом) частица, добравшись до детектора, многократно пересекает его поверхность. Полученные результаты полностью согласуются с качественными представлениями о характере движения частицы (траектории ее движения, соответствующие различным значениям α , приведены в [4]). Таким образом, условие однократности пересечения поверхности детектора заведомо выполнено при $\alpha\geqslant 1$.

Заметим, что найденное соотношение отличается от полученного в [3], где вероятность двух пересечений была мала независимо от значения α . Дело в том, что здесь мы не ограничиваем время "ожидания" частицы детектором, в итоге (возможно, за бесконечно большое время) частица попадает на детектор даже при достаточно слабом сносе. В [3] время работы детектора считалось конечным, поэтому в случае сильной диффузии частица "не успевала" достичь детектора: при $\alpha \ll 1$ вероятность даже однократного пересечения была много меньше единицы, а вероятностью двух пересечений заведомо можно пренебречь (численное моделирование движения частицы дает в этом случае $P(2;L) \cong 10^{-1}P(1;L)$ для всех значений времени работы детектора, при которых справедливо приближенное условие нормировки $P(1;L) + P(2;L) \approx 1$).

Приведем оценки параметра α для осаждения частиц копоти (средняя плотность $1800\,\mathrm{kg/m^3}$) из дымовой трубы в реальных атмосферных условиях. Используя данные работ [1] (напряженность электрического поля Земли $E\approx 100\,\mathrm{V/m}$) и [8] (коэффициент диффузии $D\sim (0.3\dots30)\,\mathrm{m^2/s^3}$ при скорости ветра от 1 до $10\,\mathrm{m/s}$) и осаждении частиц радиуса $\sim 100\,\mu\mathrm{m}$ из трубы высотой $50\,\mathrm{m}$, получаем $\alpha\geqslant 10$, т.е. найденные здесь соотношения (10)–(13) действительно имеют место.

Некоторые примеры вычисления эйлеровых распределений

Приведем примеры использования полученных соотношений (10)–(13). Для этого удобно перейти к безразмерным переменным $\tau=t/t_0$, $\mathbf{u}=\mathbf{v}/v_0$, $\boldsymbol{\rho}=\mathbf{r}_\perp/L$ и рассматривать безразмерные плотности вероятностей

$$\omega_{\tau}(\tau;\alpha) = t_0 w_t(t;L), \quad \omega_{\rho}(\rho;\alpha) = L^2 w_{\mathbf{r}_{\perp}}(\mathbf{r}_{\perp};L),$$

$$\omega_{u_{\tau}}(u_z;\alpha) = v_0 w_{v_{\tau}}(v_z;L), \quad \omega_{u_{\tau}}(u_{\tau};\alpha) = v_0 w_{v_{\tau}}(v_x;L)$$

(очевидно, плотности вероятностей по обеим поперечным координатам $\chi = x/L$, $\zeta = y/L$ и по составляющим u_{χ} , u_{ζ} поперечной скорости одинаковы). После интегрирования по координатам в выражениях (10), (12), (13), а также по поперечным скоростям в (10), (11) и (13)

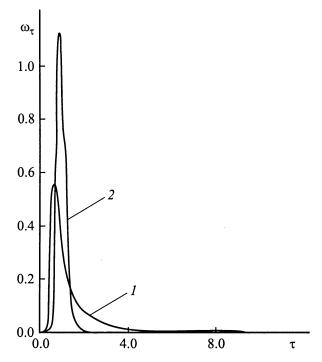


Рис. 2. Плотность вероятностей времени достижения детектора частицей: $\alpha = 1$ (1), 10 (2).

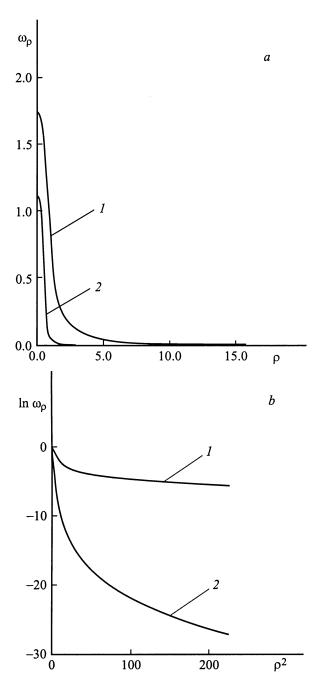


Рис. 3. Плотность вероятностей поперечной координаты частицы на детекторе (a) и логарифм вероятностей: $\alpha=1$ (1), 10 (2).

получаем

$$\omega_{\tau}(\tau;\alpha) = \int_{-\infty}^{\infty} du_{z} |u_{z}| \varphi_{z}(u_{z};\tau;\alpha), \tag{15}$$

$$\omega_{\rho}(\rho;\alpha) = \frac{3\alpha}{8\pi} \int_{0}^{\infty} \frac{d\tau}{\tau^{3}} \exp\left(-\frac{3\alpha\rho^{2}}{8\tau^{3}}\right)$$

$$\times \int_{0}^{\infty} du_{z} |u_{z}| \varphi_{z}(u_{z};\tau;\alpha), \tag{16}$$

$$\omega_{u_{\chi}}(u_{\chi};\alpha) = \sqrt{\frac{\alpha}{2\pi}} \int_{0}^{\infty} d\tau \exp\left(-\frac{\alpha u_{\chi}^{2}}{2\tau}\right)$$

$$\times \int_{-\infty}^{\infty} du_{z}|u_{z}|\varphi_{z}(u_{z};\tau;\alpha), \qquad (17)$$

$$\omega_{u_z}(u_z;\alpha) = |u_z| \int_0^\infty d\tau \varphi_z(u_z;\tau;\alpha), \qquad (18)$$

где

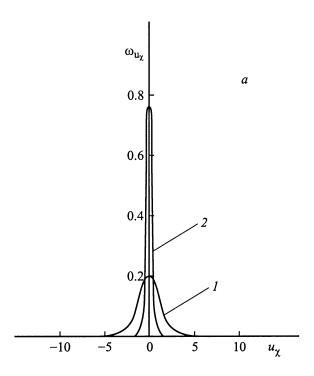
$$\varphi_{z}(u_{z};\tau;\alpha) = v_{0}f_{z}(L, v_{z};t) = \frac{\sqrt{3\alpha}}{2\pi\tau^{2}} \exp\left\{-\frac{3\alpha}{8\tau}\right\} \times \left[\frac{(1-\tau^{2})^{2}}{2\tau^{2}} - \frac{(1-\tau^{2})(u_{z}-\tau)}{\tau} + \frac{2(u_{z}-\tau)^{2}}{3}\right].$$

Результаты вычислений по формулам (15)—(18) при двух значениях параметра α показаны на рис. 2—4 (всюду кривая I соответствует $\alpha=1$, кривая $2-\alpha=10$). Из рисунков видно, что с увеличением α (с уменьшением коэффициента диффузии D) дисперсия поперечной координаты и компонент скорости на детекторе (рис. 3,a и 4) уменьшается, как и следовало ожидать для броуновской частицы. Росту дисперсии скорости соответствует и появление длинного "хвоста" в вероятностном распределении времени пересечения детектора (рис. 2) при $\alpha=1$: при больших α частицы имеют меньший разброс скоростей и достигают детектора "одновременно". Кроме того, рис. 3,b показывает негауссовость распределения поперечной координаты, которая увеличивается с ростом α .

Заключение

Итак, мы нашли решение важной для приложений задачи: получили вероятностные распределения броуновской частицы, достигающей детектора. При этом было использовано хорошо известное решение классической задачи — совместная плотность вероятностей координат и скорости частицы в произвольный момент времени. На рассмотренном простейшем примере легко удается сформулировать условие, при котором справедливы найденные здесь связи указанных плотностей вероятностей. Результаты численных расчетов полностью согласуются с качественными представлениями о движении броуновской частицы.

Заметим, что формулы связи эйлеровой и лагранжевой статистик броуновской частицы нетрудно установить и для многомоментных плотностей вероятностей. Например, если известно совместное распределение координат



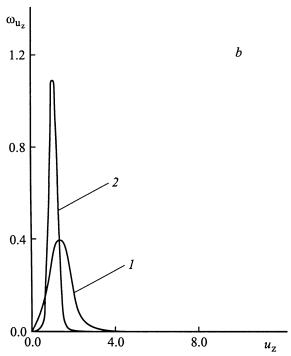


Рис. 4. Плотность вероятностей: a — поперечной составляющей скорости детектируемой частицы, b — продольной составляющей скорости; l, l — то же, что и на рис. 3.

и скоростей частицы в два момента времени

$$f_{2}(L, \mathbf{r}'_{\perp}, \mathbf{r}''_{\perp}, \mathbf{v}', \mathbf{v}'', t', t'') = \left\langle \delta[L - Z(t')] \delta[L - Z(t'')] \right\rangle$$

$$\times \delta[\mathbf{r}'_{\perp} - \mathbf{R}_{\perp}(t')] \delta[\mathbf{r}''_{\perp} - \mathbf{R}_{\perp}(t'')]$$

$$\times \delta[\mathbf{v}' - \mathbf{V}(t')] \delta[\mathbf{v}'' - \mathbf{V}(t'')] \right\rangle,$$

то с его помощью и с учетом свойств дельта-функции находятся плотности вероятностей, подобные (10)–(13). Кроме того, если частица пересекает поверхность детектора многократно, то через функцию f_2 легко выразить полезную для практических приложений величину — средний квадрат числа пересечений детектора частицей

$$\langle N^2 \rangle = \int_0^\infty \int_0^\infty dt' dt'' \int_{-\infty}^\infty \int_{-\infty}^\infty d\mathbf{v}' d\mathbf{v}'' | v_z' \cdot v_z'' |$$

$$\times \int_{-\infty}^\infty \int_{-\infty}^\infty d\mathbf{r}_\perp' d\mathbf{r}_\perp'' f_2(L, \mathbf{r}_\perp', \mathbf{r}_\perp'', \mathbf{v}', \mathbf{v}'', t', t'').$$

Очевидно, что изменение характера взаимодействия частицы с внешней средой (например, можно ввести время корреляции случайного процесса $\boldsymbol{\xi}(t)$ или время установления скорости частицы, если $\boldsymbol{\xi}_0(t)$ является силой вязкого трения) или геометрии задачи (конечные размеры или радиус кривизны детектора) приведет к появлению ряда дополнительных параметров. Однако поскольку установленная выше связь двух статистик основана только на общих свойствах дельта-функции, то естественно ожидать, что при некотором усложнении условий, которым должны удовлетворять эти параметры, полученные соотношения останутся справедливы.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 97-02-16521, 95-IN-RU-723), гранта № 3878 Министерства образования РФ, а также гранта № 99-2-09 Международного центра фундаментальных и прикладных исследований в Нижнем Новгороде.

Список литературы

- [1] Григорьев А.И., Сидорова Т.И. // ЖТФ. 1998. Т. 68. Вып. 3. С. 20–24.
- [2] *Чандрасекар С.* Стохастические проблемы в физике и астрономии. М.: ИЛ, 1947. 168 с.
- [3] Грибова Е.З., Саичев А.И. // Изв. РАН. Физика атмосферы и океана. 1997. Т. 33. № 5. С. 654–661.
- [4] Грибова Е.З., Саичев А.И. // Изв. вузов. Радиофизика. 1998.Т. 41. № 10. С. 1301–1313.
- [5] Craichnan R.H. // J. Fluid Mech. 1974. Vol. 64. P. 737–747.
- [6] Кляцкин В.И. Стохастические уравнения и волны в случайно-неоднородных средах. М.: Наука, 1980. 366 с.
- [7] Saichev A.I., Woyczyński W.A. Distributions in the Physical and Engineering Sciences. Boston: Birkhänser, 1997. 336 p.
- [8] Csanady G.T. Turbulentd Diffusion in the Environment. D. Reidel Publ. Comp., 1980. 250 p.