04:09:12

Порог кумулятивного резонансного стримерного СВЧ разряда в газах высокого давления

© В.С. Барашенков, 1 Л.П. Грачев, 2 И.И. Есаков, 2 Б.Ф. Костенко, 1 К.В. Ходатаев, 2 М.З. Юрьев

¹Объединенный институт ядерных исследований,

141980 Дубна, Московская область, Россия

²Московский радиотехнический институт РАН,

113519 Москва, Россия

E-mail: esakov@dataforce.net

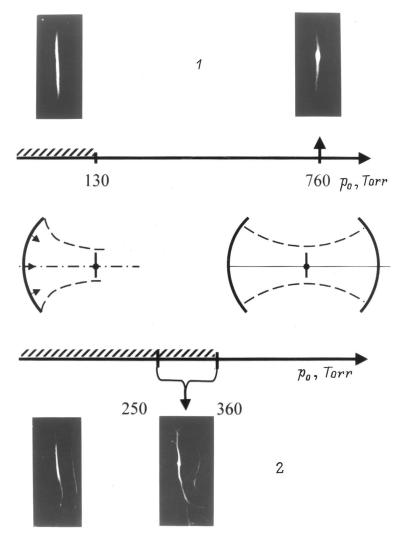
(Поступило в Редакцию 2 декабря 1999 г.)

Экспериментально исследовано изменение структуры СВЧ стримера (возникновение в стримерном канале ярко светящегося ядра) в зависимости от давления газа. Показано, что это явление имеет пороговый характер: при зажигании разряда в поле стоячей электромагнитной волны открытого двухзеркального резонатора в воздухе оно реализуется при давлении $p_0 \geqslant 540 \pm 50$ Torr, а в водороде — при $p_0 \geqslant 740 \pm 70$ Torr. Приведены оценки, показывающие, что изменение структуры стримера может быть обусловлено возникновением локального СВЧ пинч-эффекта.

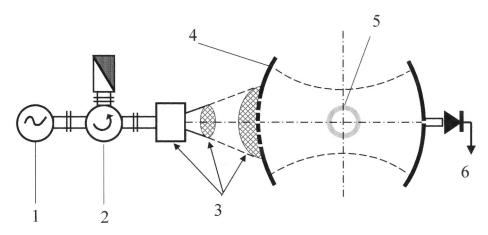
Введение

Безэлектродный разряд в газах высокого давления p_0 при естественном уровне начальной ионизации в линейно поляризованном электромагнитном (ЭМ) поле СВЧ диапазона с ТЕМ-структурой зарождается на единичном фоновом электроне и быстро развивается вдоль вектора электрической компоненты ЭМ поля E_0 в обе стороны от точки зарождения в виде тонкого плазменного канала-стримера. Когда его длина 2L приближается к резонансной длине, эффективная площадь поглощенная разрядным каналом ЭМ энергии начинает на порядки превосходить фиксируемую в оптическом диапазоне его площадь, перпендикулярную направлению распространения ЭМ волны, и электрический ток в канале стримера резко возрастает. При сравнительно низких давлениях газа это воспринимается как световая вспышка стримера практически по всей его длине, что говорит о примерно равномерном распределении по ней поглощенной стримером ЭМ энергии. С ростом же давления поведение стримера меняется: в его центральной области образуется ярко светящееся ядро, где и кумулируется большая часть поглощенной им ЭМ энергии [1,2].

На рис. 1 показаны диапазоны давлений, в которых наблюдаются эти формы резонансного стримерного СВЧ разряда при круговой частоте поля $\omega \cong 2 \cdot 10^{10} \, \mathrm{cm}^{-1}$ в воздухе и водороде [1,2]. На нем на шкалах давлений заштрихованы диапазоны реализации разряда в поле бегущей волны при неизменной амплитуде $E_0 = 6.5 \, \mathrm{kV/cm}$ [2]. Разряд в воздухе при $p_0 = 760 \, \mathrm{Torr}$ получен в поле стоячей волны открытого двухзеркального резонатора при $E_0 = 30 \, \mathrm{kV/cm}$ [1]. Стрелками отмечены значения давлений, при которых в опытах зафиксирован разряд с ядром, т. е. в кумулятивно форме.


Из приведенных на рис. 1 данных видно, что изменение структуры разряда в воздухе при $130 < p_0 < 760\,\mathrm{Torr}$ экспериментально не прослежено. Осталось неясным,

какой характер имеет его переход к кумулятивной форме — эволюционный или пороговый. Эволюционный характер такого перехода подразумевает, что ЭМ энергия, которая при низких давлениях относительно равномерно распределяется по длине стримера, по мере роста давления постепенно выделяется все в более ограниченном его участке, постепенно стягиваясь в "точку". При пороговом характере явления ядро в стримерном канале образуется лишь при определенном сочетании опытных условий и прежде всего амплитуды поля E_0 и давления газа p_0 . Как следует из рис. 1, именно так изменяет свою структуру разряд в водороде: в водородном стримере при фиксированной $E_0 = 6.5 \, \text{kV/cm}$ кумуляция ЭМ энергии в ядре происходит лишь при $p_0 \geq 250 \, \text{Torr.}$


В [2] высказано предположение, что характерное для кумулятивной формы разряда яркое ядро является следствием локального СВЧ пинч-эффекта, т.е. сжатия плазменного канала в области максимума СВЧ тока под действием магнитного поля этого же тока. Пинч-эффект в безэлектродном СВЧ разряде — это, безусловно, новое физическое явление, представляющее интерес для дальнейших исследований.

В настоящей работе представлены результаты экспериментов с СВЧ стримерным разрядом в воздухе и водороде в фокусе высокодобротного двухзеркального открытого резонатора при плавном изменении исходного давления p_0 эти газов.

Известно [3], что пинч-эффект реализуется при превышении магнитного давления p_m на поверхности токового канала, пропорционального квадрату отношения тока I_0 в канале к его диаметру 2a, над газокинетическим давлением p в канале. В экспериментах с открытым резонатором независимо от сорта газа при увеличении p_0 ток I_0 в центральной области стримера будет возрастать (он пропорционален величине исходного поля E_0 , которое не может быть меньше пробойного поля $E_{\rm br}$, растущего с увеличением p_0). Диаметр же стримера 2a с ростом p_0

Рис. 1. Диапазоны реализации различных форм стримерного безэлектродного СВЧ разряда в зависимости от давлений воздуха и водорода по данным работ [1,2]. I — воздух, 2 — водород.

Рис. 2. Схема экспериментальной установки по исследованию стримерного СВЧ разряда в открытом двухзеркальном резонаторе: 1 — СВЧ генератор, 2 — циркулятор, 3 — согласующее устройство, 4 — открытый двухзеркальный резонатор со сферическими зеркалами, 5 — кювета для исследуемых газов, 6 — к осциллографу.

может лишь уменьшаться. И наконец, газокинетическое давление p в канале стримера при быстром нарастании тока в нем к моменту образования "перетяжки" может лишь незначительно превысить исходное p_0 . Отсюда следует, что при реализации стримерного разряда в открытом резонаторе с увеличением p_0 условия для возникновения СВЧ пинч-эффекта становятся более благоприятными и, следовательно, возможно существование такого порогового давления $p_{0\text{bon}}$, выше которого стример должен иметь кумулятивную форму. Определение этих пороговых значений $p_{0\text{bon}}$ для воздуха и водорода и было целью описываемых ниже опытов.

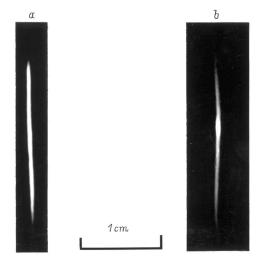
Экспериментальная установка

Принципиальная схема экспериментальной установки представлена на рис. 2. Установка включает в себя СВЧ генератор, обеспечивающий в одиночных импульсах выходную мощность в несколько мегаватт при циклической частоте ЭМ поля $\omega \cong 2 \cdot 10^{10} \, \mathrm{s}^{-1}$ и длительности импульса с прямоугольной огибающей $t_{\mathrm{pul}} = 40 \, \mu \mathrm{s}$. Энергия ЭМ поля с выхода генератора через соответствующие согласующие устройства запитывает высокодобротный двухзеркальный открытый резонатор, образованный двумя соосными сферическими вогнутыми зеркалами с радиусом кривизны 35 ст и диаметром 55 ст. Через одно из зеркал, укрепленное неподвижно, осуществляется связь резонатора с генератором с коэффициентом связи по мощности $\alpha_{\mathrm{con}} \cong 10^{-3}$.

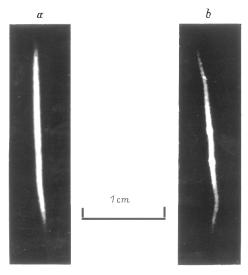
В резонаторе симметрично относительно его центра и перпендикулярно его оси расположена радиопрозрачная ковета — кварцевая труба длиной 50 сm, внутренним диаметром 8 сm и толщиной стенки 0.5 cm. По торцам она герметизирована плоскими стеклами толщиной 2 cm. Кювета предварительно откачивается до p < 1 Torr, а затем заполняется исследуемым газом до требуемого p_0 (в экспериментах давление в кювете варьировалось от 300 Torr, при котором разряды уже имеют ярко выраженный стримерный характер [1], до максимального давления, пробой которого еще может обеспечить установка). Остальной объем резонатора заполнен воздухом при атмосферном давлении.

Резонатор вместе с помещенной в него кюветой настраивается в резонанс плавным механическим осевым перемещением одного из его зеркал и кюветы. В центре подвижного зеркала имеется небольшое отверстие, через которое контрольный сигнал из резонатора через линейный амплитудный детектор поступает на вход осциллографа. Резонансная настройка производится по максимуму этого сигнала. Измерительный тракт откалиброван и величине контрольного сигнала на экране осциллографа может быть поставлено в соответствие определенное значение амплитуды поля E_0 в центре кюветы.

Сквозь торцевые стекла кюветы разряд может быть сфотографирован (со временем экспозиции, большим времени свечения разряда).


Результаты экспериментов

Изменение расстояния 2H между зеркалами вдоль оси резонатора от 45 до 61 ст показало, что при фокусировке поля в его центре (и, следовательно, в центре кюветы) наибольшая величина E_0 достигается с 2H=50.4 ст. При этом вдоль оси резонатора поле имеет вид стоячей линейно поляризованной TEM-волны с максимумом в его центре и расстоянием между узлами $\lambda_{\rm res}/2=4.7$ ст. Причем вектор E_0 перпендикулярен оси резонатора, а в направлениях, ей перпендикулярных, поле азимутальносимметрично и имеет примерно гауссово распределение с характерным размером спадания его в e раз F=6 ст.


С момента начала СВЧ импульса полная закачка ЭМ энергии $W_{\rm res}$ в резонатор происходит с характерным временем в несколько микросекунд. В течение этого времени поле в центре кюветы дорастает до максимального значения $E_{0\,{\rm max}}=30\,{\rm kV/cm}$. В экспериментах это поле обеспечивает пробой воздуха при максимальном давлении $p_{0\,{\rm max}}=1$ atm, а водорода — при $p_{0\,{\rm max}}=2.1$ atm.

Если кювета заполнена газом до $p_0 < p_{0 \, \text{max}}$, то E_0 не дорастает до своего максимального значения: при E_0 , превышающем пробойное поле $E_{\rm br}$, газ в кювете пробивается и начинается процесс формирования СВЧ стримера именно в этом поле. Когда стример начинает "заметно" энергетически взаимодействовать с ЭМ полем, согласование резонатора с СВЧ генератором нарушается и, как фиксирует осциллограмма контрольного сигнала, поступление энергии в резонатор прекращается.

Наблюдения разрядов при разных p_0 подтвердили, что они имеют вид плазменных каналов-стримеров, вытянутых вдоль вектора E_0 . Независимо от формы разряда видимый в оптическом диапазоне диаметр плазменного канала $2a\cong 0.07\,\mathrm{cm}$, а длина $2L=2.5\pm0.3\,\mathrm{cm}$. Эти значения примерно одинаковы для водорода и воздуха и слабо зависят от p_0 .

Рис. 3. Безэлектродный СВЧ разряд в воздухе. p_0 , Torr: a-480, b-760.

Рис. 4. Безэлектродный СВЧ разряд в водороде (a, b — то же, что и на рис. 3).

Эксперименты показали, что переход разрядов в кумулятивную форму имеет порог по давлению: в воздухе $p_{0\mathrm{bon}}=540\pm50\,\mathrm{Torr}$ при $E_0=22\,\mathrm{kV/cm}$, а в водороде $p_{0\mathrm{bon}}=740\pm70\,\mathrm{Torr}$ при $E_0=21\,\mathrm{kV/cm}$. Причем в воздушном стримере, как правило, наблюдается одно ядро в центральной его части, а в водородном — два (в водороде при p_0 , близких $p_{0\,\mathrm{max}}$, иногда, как и в воздухе, наблюдается одно центральное ядро).

В качестве примера на рис. З показан разряд в воздухе при $p_0=480\,\mathrm{Torr}< p_{0\mathrm{bon}}$ и $p_0=760\,\mathrm{Torr}> p_{0\mathrm{bon}}$, а на рис. 4 — в водороде при $p_0=480$ и 1000 Torr. На них видно, что при $p_0< p_{\mathrm{bon}}$ как в воздухе, так и водороде стримерный канал имеет сравнительно однородную яркость практически по всей своей длине, а при $p_0>p_{\mathrm{bon}}$ в его центральной части имеются яркие ядра.

Обсуждение

Геометрические параметры резонатора и характеристики поля в нем позволяют оценить к моменту пробоя поток энергии в единицу времени через центральное сечение резонатора $P_{\rm res}$ и накопленную в нем ЭМ энергию $W_{\rm res}$:

$$P_{\text{res}} = \frac{E_0^2}{2Z_0} \frac{\pi \cdot F^2}{2},\tag{1}$$

где $Z_0 = 120\pi\,\Omega$ — волновое сопротивление свободного пространства, и

$$W_{\rm res} = P_{\rm res} \cdot (2H/c), \tag{2}$$

где c — скорость света, 2H/c — минимальное время "снятия" энергии с резонатора.

Например, при $E_0 = E_{0\,\mathrm{max}}$, величина $P_{\mathrm{res}} \cong 7 \cdot 10^7\,\mathrm{W}$, что в несколько десятков раз превосходит мощность

питающего резонатор СВЧ генератора, $W_{\rm res}\cong 0.12\,{\rm J}$ и $2H/c\cong 1.7\,{\rm ns}.$

В пространственно однородном квазинепрерывном СВЧ поле при выполняющемся в опытах условии $\nu_c\gg\omega$, где частота столкновения плазменных электронов с молекулами воздуха $\nu_c=4\cdot 10^9 p$ [Torr], s⁻¹, амплитуду пробойного поля в нем можно оценить по формуле $E_{\rm br}=40p$ [Torr], V/cm [4]. Например, при $p_{0\,{\rm max}}=1$ Atm она дает $E_{\rm br}=30\,{\rm kV/cm}$, а при $p_{0\,{\rm bon}}\sim22\,{\rm kV/cm}$. Эти величины совпадают с экспериментально определенными их значениями. Таким образом, в опытных условиях пространственная неоднородность поля и его нестационарный характер не сказываются на процессе пробоя воздуха.

В этих же предположениях для водорода (для него $\nu_c=5\cdot 10^9 p$ [Torr], s^{-1}) расчетное значение $E_{\rm br}=14p$ [Torr], V/cm [4], следовательно, при $E_{0\,{\rm max}}$ он должен был бы пробиться при давлении в 3 Atm. В экспериментах же $p_{0\,{\rm max}}=2.1$ Atm, т. е. отношение $E_{\rm br}/p=19$ V/(cm · Torr), а при $p_{0{\rm bon}}$ это отношение вообще равно 30 V/(cm · Torr). Таким образом, в опытных условиях при пробое водорода необходимо учитывать неоднородность и нестационарность поля в пробойной области. Наблюдаемый в опытах рост отношения $E_{\rm br}/p$ с уменьшением p_0 указывает на возможное влияние на процесс пробоя именно диффузии электронов, так как аналогичная зависимость $E_{\rm br}/p$ от p_0 отмечена и в [5], где амплитуда поля с момента его включения практически неизменна.

Из проведенных опытов однозначно следует, что изменение структуры СВЧ стримера происходит лишь при превышении исходного давления пробиваемого газа некоторого порогового значения. Покажем, что в резонансном стримере возможна реализация условий пинчэффекта, с которым и может быть связана эта трансформация формы стримера.

Как указывалось, пинч-эффект возникает, когда магнитное давление на поверхности токового канала превосходит газокинетическое давление: $p_m > p$. Оценим соотношение этих величин в области $p_0 \geqslant p_{0\text{bon}}$. При этом будем считать, что при максимальном экспериментально наблюдаемом размере 2L стример ведет себя подобно резонансному вибратору, т. е. его эквивалентное реактивное сопротивление равно нулю, а основной вклад в эквивалентное активное сопротивление вносит сопротивление излучения R_{Σ} .

Рассмотрим разряд в воздухе при $p_0 = p_{0\text{bon}}$. Для тока в центральной по длине области стримера имеем

$$I_0 = E_0 L / R_{\Sigma} \cong 1.4 \cdot 10^3 \,\text{A},$$
 (3)

где $R_{\Sigma} \cong 20\,\Omega$ для фиксируемого размера 2L [6]. Для магнитного же давления получим

$$p_m = \frac{\mu_0 I_0^2}{(2\pi a)^2} = 5 \cdot 10^5 \,\text{N/m}^2 = 5 \,\text{Atm},$$
 (4)

где $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}.$

Как видим, p_m в 7 раз превосходит p_0 и пинч-эффект в воздушном СВЧ стримере вполне возможен. Полученное превышение p_m над p_0 на пороге возникновения кумулятивной формы разряда, очевидно, может быть обусловлено неучетом в оценках активного сопротивления плазменного канала, которое может снизить реальную величину тока I_0 , и повышением давления в плазменном канале за счет интенсивного энерговыделения в нем.

В работе [2] время роста воздушного стримера до резонансной длины оценено величиной в десятки наносекунд. При наблюдаемой максимальной длине стримера $2L\cong 2.5\,\mathrm{cm}$ это дает среднюю скорость его роста $10^7\,\mathrm{cm/s}$, а среднюю скорость нарастания СВЧ тока $\partial I_0/\partial t>10^{10}\,\mathrm{A/s}$. Последняя величина характерна для традиционных динамических пинчей [3].

Аналогичная оценка для водородного стримера при его $p_{0\text{bon}}$ дает $I_0=1.3\cdot 10^3$ А и $p_m=4.5\cdot 10^5$ N/m²= = 4.5 Atm. Магнитное давление в этом случае также больше исходного газокинетического давления, однако, по сравнению с воздухом их отношение $p_m/p_{0\text{bon}}=4.5$ оказывается несколько меньшим.

В заключение обратим внимание на требующий специального анализа факт существенного различия значений $p_{0\mathrm{bon}}$ для водородного стримера при рассмотренных условиях в поле стоячей волны и в поле бегущей волны [1] (рис. 1).

Заключение

Таким образом, эксперимент показал, что кумулятивный вид резонансного стримерного безэлектродного СВЧ разряда как в водороде, так и воздухе имеет порог по давлению. Возможность его объяснения на основе локального СВЧ пинч-эффекта заслуживает дальнейшего экспериментального и теоретического изучения.

Авторы выражают благодарность К.В. Александрову за помощь в проведении экспериментов.

Список литературы

- [1] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1996. Т. 66. Вып. 7. С. 32–45.
- [2] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1994. Т. 64. Вып. 2. С. 26–37.
- [3] *Синельников К.Д., Руткевич Б.Н.* Лекции по физике плазмы. Харьков: Изд-во ХГУ, 1964. 241 с.
- [4] Мак-Дональд А. Сверхвысокочастотный пробой в газах М.: Мир, 1969. 205 с.
- [5] Грачев Л.П., Есаков И.И., Ходатаев К.В. // ЖТФ. 1998.Т. 68. Вып. 4. С. 33–36.
- [6] Марков Г.Т., Сазонов Д.М. Антенны. М.: Энергия, 1975.