Краткие сообщения

01:09

Переходное фрактальное излучение

© В.Н. Болотов

Институт электромагнитных исследований, 310022 Харьков, Украина E-mail: renic@iemr.vl.net.ua

(Поступило в Редакцию 21 октября 1999 г.)

Явления, связанные с фрактальностью движения излучающих объектов, а также с фрактальностью электродинамических структур, представляют в настоящее время большой интерес. Рассмотрено излучение электромагнитных волн, сопровождающее переходные фрактальные процессы.

Введение

Большой интерес, который в последние годы вызывают фракталы, связан не только с их особой красотой, но и с большим кругом новых явлений фрактальной физики [1]. В настоящее время существование электродинамических фрактальных структур не вызывает сомнений, более того, стало ясно, что электрофизические свойства таких структур имеют особый нетривиальный характер. При этом рассматриваются как стохастические, так и регулярные фрактальные объекты.

В данной работе рассматриваются электродинамические задачи излучения с участием фрактальных структур. При этом используются регулярные фракталы, построенные на основе функции Кантора. Это никоим образом не снижает общность полученных результатов.

Переходные процессы приводят к изменению параметров системы со временем или в пространстве. В данной работе вводится в рассмотрение переходное фрактальное излучение (ПФИ), которое инициируется изменением этих параметров по фрактальному закону. Как известно [2], прямолинейно и равномерно движущийся сгусток заряженных частиц может излучать электромагнитные волны при его прохождении через границу двух и более сред с разной диэлектрической проницаемостью. ПФИ связано с тем, что граница является фракталом. Такая геометрия границы приводит к особенностям в спектрах излучений, к их широкополосности и самоподобию.

Излучение электромагнитных волн при изменении состояния излучающей системы по фрактальному закону

Если в течение промежутка времени T система электрических зарядов перестраивается (параметры системы изменяются), то можно утверждать, что в течение этой перестройки система излучает электромагнитные волны. Пусть в начальный момент система зарядов имела дипольный момент \mathbf{p}_1 , а через время перестройки T

он стал равным \mathbf{p}_2 . Пусть перестройка системы (т.е. переход из одного стационарного состояния системы в другое стационарное состояние) осуществляется по фрактальному закону. В качестве фрактальной функции возьмем одну из самых изученных — функцию Кантора $\alpha_{\xi}(t)$, связанную со множеством Кантора [1], у которого ξ — оставляемый интервал на каждой итерации (0 < ξ < 0.5). Функция Кантора постоянна на удаленных из отрезка [0, 1] интервалах и меняется скачком в точках канторова дисконтинуума (рис. 1).

В настоящем исследовании используется интервал $[0,2\pi]$. Фрактальная размерность множества Кантора равна: $D_f = \ln 2/|\ln \xi|$. Таким образом, в представляемой модели дипольный момент излучающей системы имеет вид

$$\mathbf{P}(\mathbf{r},t) = \left[\mathbf{P}_1 + \alpha_{\xi} \left(\frac{2\pi t}{T}\right) (\mathbf{P}_2 - \mathbf{P}_1)\right] \delta(\mathbf{r}). \tag{1}$$

При этом размеры системы выбираются малыми и в дальнейшем ими можно пренебречь. Математически

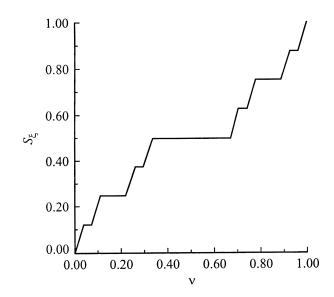


Рис. 1. Функция Кантора $\alpha_{\xi}(x)$ (чертова лестница).

этот факт отражен введением дельта-функции Дирака $\delta(\mathbf{r})$. Рассмотрим теперь излучение, возникающее на частоте ω при указанном выше законе изменения дипольного момента. Фурье-компонента вектор-потенциала определяется формулой [2]

$$\mathbf{A}_{\omega} = \int \mathbf{j}_{\omega}(\mathbf{r}) \frac{\exp(i\omega/c|\mathbf{r} - \mathbf{r}'|)}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'. \tag{2}$$

Здесь \mathbf{j}_{ω} — фурье-компонента тока \mathbf{j} , связанного с изменением дипольного момента,

$$\mathbf{j}(\mathbf{r},t) = \frac{\partial \mathbf{P}}{\partial t} = (\mathbf{P}_1 - \mathbf{P}_2)\delta(\mathbf{r})\frac{d}{dt}\alpha_{\xi}\left(\frac{2\pi t}{T}\right). \tag{3}$$

Испольуя это выражение, несложно найти фурьекомпоненту плотности тока, перейдя от преобразования Фурье для $\mathbf{j}(\mathbf{r},t)$,

$$\mathbf{j}_{\omega}(\mathbf{r}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{j}(\mathbf{r}, t) \exp(i\omega t), \tag{4}$$

к преобразованию Фурье-Стильтьеса для канторовой функции, используя соотношение

$$\frac{d}{dt}\alpha_{\xi}(t)dt = d\alpha_{\xi}(t). \tag{5}$$

Таким образом, следуя [3],

$$\mathbf{j}_{\nu}(\mathbf{r}) = \frac{(\mathbf{P}_{2} - \mathbf{P}_{1})}{2\pi} \delta(\mathbf{r}) \exp(-\pi i \nu)$$

$$\times \prod_{k=1}^{\infty} \cos(\pi \nu \xi^{k-1} (1 - \xi)), \tag{6}$$

где $\nu = \omega T/2\pi$.

Спектральная плотность излучения, приходящаяся на интервал частот $d\omega$ и на телесный угол $d\Omega$, равна

$$dW_{\mathbf{n},\omega} = c|\mathbf{H}_{\omega}|^2 \mathbf{r}^2 d\Omega d\omega. \tag{7}$$

На больших расстояниях r от начала координат магнитное поле \mathbf{H}_{ω} просто выражается через векторпотенциал \mathbf{A}_{ω}

$$\mathbf{H}_{\omega}(\mathbf{r}) = i \frac{\omega}{c} [\mathbf{n}, \mathbf{A}_{\omega}], \tag{8}$$

где **n** — единичный вектор в направлении излучения.

Таким образом, зная \mathbf{j}_{ω} , \mathbf{A}_{ω} и \mathbf{H}_{ω} , мы можем найти интенсивность излучения $I(\omega)$ в волновой зоне, проинтегрировав по телесному углу выражение (7),

$$I(\omega) = \frac{(\mathbf{P}_2 - \mathbf{P}_1)^2}{3\pi c^3} \omega^2 S_{\xi}(\omega), \tag{9}$$

$$S_{\xi}(\omega) = \prod_{k=1}^{\infty} \cos^2\left(\frac{\omega T}{2} \xi^{k-1} (1 - \xi)\right). \tag{10}$$

Приведенный выше результат отличается от получаемых ранее появлением в формуле для спектра структурного фактора $S_{\xi}(\omega)$, содержащего произведение квадратов косинусов. Такого типа особенность в излучении

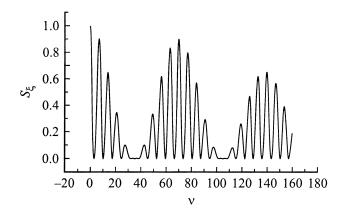


Рис. 2. $S_{\xi}(\nu)$ для $D_f = 0.3$.

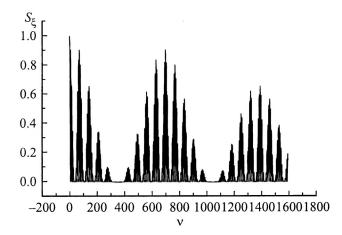


Рис. 3. $S_{\ell}(\nu)$ для $D_{f}=0.3$.

характерна для фрактальных структур [4]. На дипольное излучение влияет фрактальная размерность функции, описывающей переходный процесс. Эта размерность и является управляющим параметром вида спектров. В случае мгновенной перестройки $\omega T \ll 1$ легко получить спектр, совпадающий со спектром, полученным в работе [5],

$$I_0(\omega) = \frac{(\mathbf{P}_2 - \mathbf{P}_1)^2}{3\pi c^3} \omega^2.$$
 (11)

Таким образом, становится понятным, что фрактальность при переходных процессах может себя проявить только при конечном времени перестройки. На рис. 2-5 приводятся структурные факторы S_{ξ} для спектров излучения при нескольких значениях фрактальной размерности.

Достаточно просто из уравнений (9) и (10) получить функциональное уравнение для интенсивности излучения

$$I(\omega) = \frac{\cos^2[\omega T(1-\xi)/2]}{\xi^2}I(\xi\omega). \tag{12}$$

Анализ этого уравнения показывает самоподобность спектров ПФИ. Этот факт непосредственно виден на рис. 2 и 3.

100 В.Н. Болотов

Переходное излучение на фрактальной границе между двумя средами

Исследованиями последних лет установлено, что шероховатые поверхности твердых тел могут обладать фрактальными свойствами (иметь друбную размерность Хаусдорфа—Безиковича). То же относится и к межфазной границе при фазовых превращениях.

Для решения задачи, сформулированной в названии данного раздела, примем следующую модель фрактальной границы двух сред. Положим, что пространство с z < 0 и z > L заполнено веществом с диэлектрической проницаемостью ε_1 , в переходном слое $(0 \le z \le L)$ диэлектрическая проницаемость меняется по закону, который соответствует закону (фрактальному) чередующихся диэлектрических слоев с ε_1 и ε_2 ,

$$\varepsilon(z) = \varepsilon_1 + (\varepsilon_2 - \varepsilon_1) L \frac{d}{dz} \alpha_{\xi}(z/L). \tag{13}$$

Теперь рассмотрим электромагнитное излучение заряда, движущегося равномерно со скоростью v через переходной слой. При этом возникает переходное излучение, причиной которого является изменение электро-

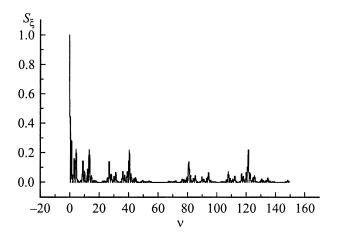


Рис. 4. $S_{\varepsilon}(\nu)$ для $D_f = 0.62$.

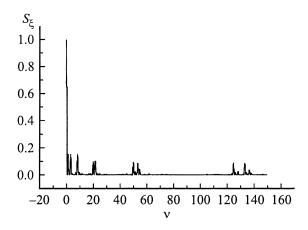


Рис. 5. $S_{\xi}(\nu)$ для $D_f = 0.75$.

динамических параметров среды (в данном случае — диэлектрической проницаемости) вдоль траектории заряда. Предположим, что

$$\frac{\Delta\varepsilon}{\varepsilon_1} = \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_1} \ll 1. \tag{14}$$

В работе [2] получена формула для спектральноугловой плотности энергии переходного излучения на размытой границе двхх прозрачных сред при выполнении последнего условия. Для излучения назад эта формула имеет вид

$$W_{2}(\omega, \theta_{2}) = \frac{q^{2}\omega^{2} \left[1 - \varepsilon\beta^{2} + \beta\sqrt{\varepsilon}\cos\theta_{2}\right]^{2}\sin^{2}\theta_{2}}{4\pi^{2}\varepsilon^{3/2}c^{3} \left[1 - \varepsilon\beta^{2}\cos^{2}\theta_{2}\right]^{2}} \times \left|\delta\varepsilon_{k}\right|^{2}\Big|_{k = -\omega/\nu[1 + \beta\sqrt{\varepsilon}\cos\theta_{2}]}, \tag{15}$$

а для излучения вперед

$$W_{1}(\omega, \theta_{1}) = \frac{q^{2}\omega^{2} \left[1 - \varepsilon\beta^{2} + \beta\sqrt{\varepsilon}\cos\theta_{1}\right]^{2}\sin^{2}\theta_{1}}{4\pi^{2}\varepsilon^{3/2}c^{3}\left[1 - \varepsilon\beta^{2}\cos^{2}\theta_{1}\right]^{2}} \times \left|\delta\varepsilon_{k}\right|^{2}\Big|_{k=-\omega/\nu[1-\beta\sqrt{\varepsilon}\cos\theta_{2}]}, \tag{16}$$

где $\beta = v/c$, q — заряд частицы, $\varepsilon = (\varepsilon_1 + \varepsilon_2)/2$, $\cos \theta_2 = \mathbf{k} \mathbf{v}/k v$, $\cos \theta_1 = -\cos \theta_2$, \mathbf{k} — волновой вектор в направлении излучения,

$$\delta \varepsilon_k = \int dz \exp(-ikz) \delta \varepsilon(z). \tag{17}$$

Используя дальше формулу для преобразования Фурье-Стильтьеса функции Кантора (6), несложно получить спектр переходного излучения при прохождении зарядов через фрактальную границу. Для этого мы должны в выражении для излучения вставить соотношение для $|\delta \varepsilon_k|^2$

$$|\delta\varepsilon_k|^2 = \Delta\varepsilon^2 S_{\varepsilon}(kL). \tag{18}$$

В случае $\beta \ll 1$ и $W_1 = W_2 = W$ видно, что

$$W(k,\theta) = \frac{q^2 \beta^2 \Delta \varepsilon^2 \sin^2 \theta}{4\pi^2 \varepsilon^{3/2} c} S_{\xi}(kL) k^2.$$
 (19)

Таким образом, можно сделать вывод, что фрактальность среды или переходных процессов вносит особенность в переходное излучение через структурный фактор $S_{\mathcal{E}}$.

Следует отметить, что канторов дисконтинуум является простейшим совершенным нигде не плотным множеством [3]. Поэтому фрактальные среды, построенные на основе множества Кантора, являются частным случаем совершенных нигде не плотных сред.

Заключение

В данной работе рассчитаны спектры излучения, возникающие при участии фрактальных структур. Основу расчетов этих спектров составляли функции Кантора и преобразование Фурье-Стильтьеса.

Обычное переходное излучение возникает при прохождении заряженных частиц через границу двух сред с разной диэлектрической проницаемостью. Данная работа дала возможность увидеть влияние фрактальности переходного слоя на спектры переходного фрактального излучения. Структура спектров становится широкополосной и самоподобной. Как было показано, в спектрах появляется структурный фактор, который несет информацию о фрактальности границы между средами. Такой структурный фактор появляется и в других типах излучений при наличии соответствующих электродинамических структур (например, при дипольном излучении, сопровождающем переходной фрактальный процесс, при рассеянии на фрактальных решетках, при фрактальном обобщении излучения Смита-Парселла и при изменении диэлектрической проницаемости среды со времени по фрактальному закону).

Список литературы

- [1] Федер Е. Фракталы. М.: Мир, 1991. 260 с.
- [2] Гинзбург В.Л., Цытович В.Н. Переходное излучение и переходное рассеяние. М.: Наука, 1984. 360 с.
- [3] Зигмунд А. Тригонометрические ряды. М.: Мир, 1965. Т. 1. 615 с.
- [4] Аллен К., Клуатр М. Оптическое преобразование Фурье фракталов // Фракталы в физике, М.: Мир, 1988. С. 91–97.
- [5] Болотовский Б.М., Давыдов В.А., Рок В.Е. // УФН. 1979. Т. 126. № 2. С. 311–321.