06;12

Функциональные материалы на основе комплексных соединений германия

© Я. Лепих, В.А. Смынтына

Одесский государственный университет ОАО "СКТБ «Элемент»", Одесса

Поступило в Редакцию 23 марта 1999 г. В окончательной редакции 5 октября 1999 г.

Разработан и исследован новый класс функциональных материалов на основе координационных соединений германия. Материалы способны к образованию прозрачных пленок из водных растворов при комнатной температуре и отличаются высокой технологичностью. Приводятся физико-химические и электрофизические характеристики некоторых из них.

Существенное повышение параметров устройств функциональной электроники и создание новых их классов может быть достигнуто путем создания новых функциональных материалов с заданными свойствами [1-3]. В этой связи все большее внимание привлекают соединения германия. Установлено, например [4], что тиогерманат кадмия Cd_4GeS_6 является достаточно эффективным фотопроводником и пьезоэлектриком. Наименее изучены в этом плане координационные соединения германия с органическими молекулами, хотя материалы на их основе в сравнении с неорганическими полупроводниками значительно более разнообразны по структуре и физико-химическим свойствам.

Нами исследованы физико-химические и электрофизические характеристики ряда моно- и разнолигандных координационных соединений германия с органическими многоосновными кислотами.

Комплексные соединения германия — комплексонаты германия (КГ), у которых проявляются внутримолекулярные водородные связи и изомеры (таутомеры), например комплекс германия с оксиэтилидендифосфоновой (ОЭДФ-Оеdph) кислотой либо диэтилентриаминпентауксусной (ДТПА-Dtpa) кислотой, при определенных условиях образуют прозрачные пленки с высокой пропускающей способностью. Установлено, что физико-химические и оптические свойства КГ могут быть модифицированы за счет образования различных солей с ионами других

металлов и органическими катионами, например винной кислотой, $NH_4F \cdot HF$, NaF, этиловым спиртом и др.

Исследования физико-химических характеристик пленок КГ показали, что их можно отнести к супрамолекулярным системам с определенными свойствами, когда молекулярные структуры определяют, в частности, оптические свойства. Это дает возможность путем подбора определенных структурных типов регулировать свойства пленок, в том числе и диапазон поглощения света.

Материалы отличаются высокой технологичностью. Они способны образовывать прозрачные пленки из водных растворов при комнатной температуре, что, по-видимому, объясняется особенностями строения их молекул (наличие комплексного германийсодержащего аниона, способного связываться как с протонами, так и с другими катионами), а также вступать в межмолекулярное взаимодействие и в реакции полимеризации. Установлены закономерности пленкообразования в зависимости от состава композиций, молярного соотношения компонентов и других факторов. Материалы отличаются устойчивостью на воздухе, достаточной механической прочностью и хорошей адгезией к поверхности подложек из различных материалов, применяемых в микроэлектронике.

Толщина полученных пленок КГ варьировалась в диапазоне $0.5-20\,\mu\mathrm{m}$. Пленки толщиной до $1\,\mu\mathrm{m}$ имеют мелкозернистую структуру, поверхность при этом получается оптически гладкой. С ростом толщины структура пленок меняется до образования кристаллических макрообразований, достигающих размеров в несколько десятков микрометров, и формирования упорядоченных областей, по форме подобных доменам. Наличие доменов позволяет сделать предположение о наличии пьезоэлектрических свойств КГ.

Спектры пропускания некоторых из ряда синтезированных пленок КГ, полученных на спектрофотометре типа СФ-16, приведены в табл. 1 и 2.

Толщина наносившихся на подложки из натриевого стекла пленок составляла 5 μ m. Видно, что в диапазоне длин волн 1100–1200 nm имеет место возрастание коэффициента пропускания на 1–6%. Причем для соединения Ba–Ge–Dtpa характерен относительно равномерный спектр в исследовавшемся диапазоне длин волн с максимумом на $\lambda=1200\,\mathrm{nm},\,$ а для Ge–Oedph–NH $_4\mathrm{F}\cdot\mathrm{HF},\,$ кроме того, имеет место максимум коэффициента пропускания на $\lambda=1030\,$ и $1040\,\mathrm{nm},\,$ что

Письма в ЖТФ, 2000, том 26, вып. 4

Таблица 1. Спектр пропускания пленки Ва-Ge-Dtpa

Длина волны, nm	Пропускание, %	Длина волны, nm	Пропускание, %
316	98.5	900	99.5
330	98.5	920	99.5
340	98.5	940	99.5
400	99.5	960	99.5
500	99.5	980	99.0
510	100.0	1000	99.0
520	100.0	1010	98.0
530	100.0	1020	98.0
540	100.0	1030	98.0
560	100.0	1040	99.0
580	99.5	1050	98.5
600	99.0	1060	97.5
620	99.0	1070	98.0
640	99.0	1080	98.0
660	99.5	1090	97.5
680	99.5	1100	100.0
700	100.0	1110	98.0
720	100.0	1120	99.0
740	100.0	1130	100.0
760	100.0	1140	101.0
780	100.0	1150	100.5
800	100.0	1160	102.5
820	100.0	1170	100.0
840	100.0	1180	101.0
860	100.0	1190	101.0
880	100.0	1200	102.0

подтверждает возможность управлять оптическими характеристиками К Γ путем введения при их синтезе различных добавок.

Электрическое сопротивление оптически прозрачных пленок КГ при наличии в растворе только Ge ОЭДФ превышало $10^{10}\Omega$. Введение в раствор таких соединений, как например NH₄F · HF, NaF, приводит к уменьшению сопротивления пленок КГ до значений $1.5 \cdot 10^8 \, \Omega$. Введение же в раствор неорганических веществ, таких, например, как BaCO₃, приводит к незначительному увеличению электрического сопротивле-

Письма в ЖТФ, 2000, том 26, вып. 4

Таблица 2. Спектр пропускания пленки Ge-Oedph-NH₄F·HF

Длина волны, nm	Пропускание, %	Длина волны, nm	Пропускание, %
316	98.5	900	99.0
330	98.5	920	99.5
340	98.5	940	99.5
400	100.0	960	99.5
500	100.0	980	99.0
510	100.0	1000	99.0
520	100.0	1010	98.0
530	100.0	1020	98.0
540	100.0	1030	107.0
560	100.0	1040	107.0
580	100.0	1050	98.0
600	99.5	1060	100.0
620	99.0	1070	98.0
640	99.0	1080	98.0
660	99.0	1090	97.5
680	99.5	1100	102.0
700	100.0	1110	98.0
720	100.0	1120	99.0
740	100.0	1130	100.0
760	100.0	1140	101.0
780	100.0	1150	102.0
800	99.5	1160	102.5
820	100.0	1170	103.0
840	100.0	1180	104.0
860	100.0	1190	104.5
880	100.0	1200	103.0

ния. Измерения диэлектрической проницаемости пленок показали, что ее значение для различных составов КГ лежит в пределах $\varepsilon=3-8$, что позволяет использовать материал в устройствах СВЧ диапазона.

Результаты исследований пленочных материалов КГ свидетельствуют о перспективности их применения в оптоэлектронике и акустооптике, что подтверждается экспериментальными образцами созданных акустооптических устройств.

Письма в ЖТФ, 2000, том 26, вып. 4

Список литературы

- [1] Nakagawa Y., Gomi Y., Okada T. // J. Appl. Phys. 1987. V. 61. N 11. P. 5012– 5017.
- [2] Голенищев-Кутузов В.А., Мигачев С.А., Миронов С.П. // Акустоэлектроника и физическая акустика. Казань, 1988. С. 20–29.
- [3] Илисавский Ю.В., Кулакова Л.А., Мелех Б.Т. и др. // Тез. докл. международной науч.-техн. конференции. С.-Петербург, 1993. С. 70–74.
- [4] Химия и технология редких и рассеянных элементов. М., 1976. Ч. 2. 360 с.