07

Многофункциональный голографический оптический клиновидный элемент и его некоторые применения

© И.А. Новиков

ГНЦ "Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева", С.-Петербург

Поступило в Редакцию 9 ноября 1999 г.

Излагаются теория, устройство и некоторые применения голографического оптического клиновидного элемента (ГОКЭ), состоящего из оптического клина, внутри которого записана брэгговская решетка пропускающего или отражательного типа. Рассмотрено применение ГОКЭ для спектрального уплотнения информации в волоконно-оптических линиях передачи информации. Приведены результаты экспериментального исследования ГОКЭ с отражательной брэгговской решеткой.

Введение

В работе развиваются исследования по теории, устройству и возможным применениям голографического оптического клиновидного элемента (ГОКЭ), предложенного автором в [1,2] для спектрального мультидемультиплексирования (МДМ) в волоконно-оптических линиях передачи информации. Основа ГОКЭ и его принципа действия — это использование клиновидного образца с плоскими поверхностями, внутри которого записана фазовая объемная голографическая (брэгтовская) решетка пропускающего его или отражательного типа. В [1,2] для спектрального МДМ предложен простейший вариант ГОКЭ, использующий брэгтовскую пропускающую решетку с наклонными изофазными поверхностями и первыми порядками дифракции, выходящими практически под прямым углом к поверхности ГОКЭ. Многократное прохождение нулевого порядка дифракции внутри ГОКЭ обеспечивается выполнением условия полного внутреннего отражения на границах образца (рис. 1). Одним из недостатков этого варианта МДМ является двукратное прохождение

Рис. 1. Принцип действия спектрального мультидемультиплексора на основе голограммного оптического клиновидного элемента.

нулевого порядка дифракции через ГОКЭ для каждого спектрального канала разделения.

Клиновидность голограммного образца можно использовать для различных целей:

в устройствах спектрального уплотнения для волоконно-оптических систем передачи информации;

для сжатия ультракоротких импульсов, например линейных частотно-модулированных (ЛЧМ) импульсов;

для многодлинноволновой интерферометрии;

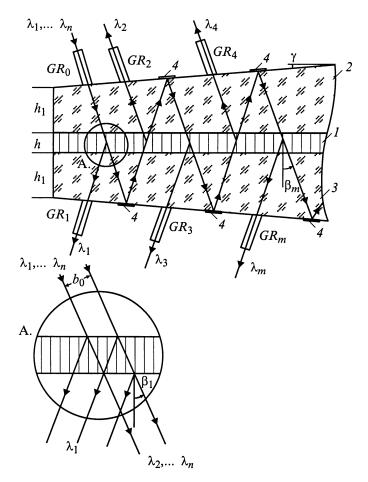
для создания волоконно-оптических сетей многоканальных датчиков с использованием FBG технологий;

для разделения оптического излучения одновременно по спектральному составу и поляризации;

для создания оптических аналогово-цифровых преобразователей и оптоакустических многоканальных переключателей;

для реализации оптическими методами одномерных и двумерных вейвлет-преобразований и систем обработки информации на их основе.

Естественно, что в зависимости от функций ГОКЭ его конструкция изменяется. Ниже мы рассматриваем более совершенный вариант


ГОКЭ для задачи спектрального уплотнения в волоконно-оптических системах передачи информации (теория, а также некоторые полученные экспериментальные результаты). При этом обсуждаются две конструкции ГОКЭ (с проходящей и отражательной симметричной голографической решеткой), а также рассчитываются соответствующие характеристики МДМ.

Практическая конструкция спектрального демультиплексора с голограммой проходящего типа

Клиновидность голограммного образца позволяет осуществить различные конструкции ГОКЭ и МДМ с соответствующими достоинствами и недостатками. Здесь мы предлагаем одну простую, технологически просто реализуемую конструкцию ГОКЭ и МЖМ на его основе.

Развивая идеи, изложенные в работах [1,2], мы предлагаем использовать объемный ГОКЭ, состоящий из трех оптических элементов (двух стеклянных симметричных клиновидных элементов и плоской пластины с записанной в ней объемной симметричной фазовой решеткой проходящего типа, рис. 2). Все эти три элемента соединены на иммерсии, или на оптическом контакте. Показатель преломления оптических клиньев и средний показатель регистрирующей среды голограммы совпадают. Тонкопленочные отражательные покрытия (металлические или интерференционные) наносятся на внешние стороны ГОКЭ, как показано на рис. 2. Геометрические параметры системы (угол падения входного пучка β_1 , размеры и положения отражательных покрытий, толщины голограммы h и клиньев h_1) выбраны таким образом, что входной пучок (нулевой порядок дифракции) проходит многократно через ГОКЭ, последовательно отражаясь от нанесенных покрытий, а первые порядки дифракции свободно выходят из ГОКЭ. Первые порядки дифракции выходят через пропускающие интерференционные покрытия, или через градиентные линзы GR_m , как показано на рис. 2. Входной поток света вводится в ГОКЭ через GR_0 — градиентную

Клиновидность ГОКЭ вызывает увеличение угла между направлением распространения света и изофазными плоскостями голографической решетки. Это угловое увеличение пропорционально номеру отражения

Рис. 2. Оптическая схема спектрального МДМ на основе ГОКЭ с брэгтовской решеткой на прохождение: 1 — голограмма, 2,3 — оптические клинья, 4 — отражающие покрытия.

m, а дифракция света в различных областях ГОКЭ реализуется для различных длин волн λ_m (вследствие условия Брэгга).

Такой ГОКЭ можно применить для спектрального демультиплексора. Геометрия пучка показана на рис. 2, и очевидны геометрические соотно-

шения для ширины первоначального пучка света b_m на границах ГОКЭ и ширины h_m^* выходных дифракционных пучков (без учета дифракционной и угловой расходимостей):

$$b_m = b_0/\cos\beta_m$$
, $h_m^* = b_0/\cos\beta_m + h \operatorname{tg} \beta_m$, $\beta_m = \beta_1 + m\gamma$, (1)

где γ — это угол клиновидности. Условие пространственного разделения нулевых и первых порядков дифракции и дает ограничение для толщины стеклянных клиньев:

$$h_1 > b_0 \cos^2 \beta_m / 2 \sin \beta_m. \tag{2}$$

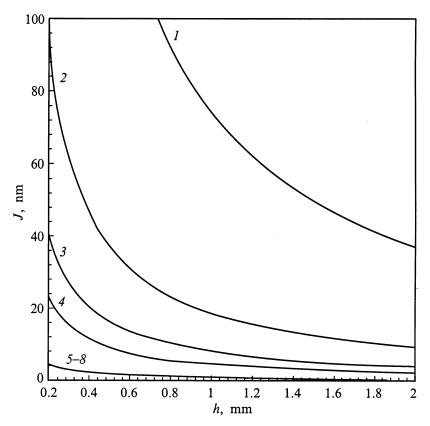
Необходимый световой диаметр D_m голограмы для МДМ с m рабочих спектральных каналов можно оценить по формуле:

$$D_m \cong m(2h_1 + h) \operatorname{tg} \beta_m + b_m. \tag{3}$$

Угловое $\delta\theta_m$ и спектральное $\delta\lambda_m$ разрешение m-го канала демультиплексора можно вычислить по формулам [1-3] с соответствующими изменениями:

$$\delta \lambda_m = \lambda_m \delta \theta_m; \quad \delta \theta_m = \lambda_m \operatorname{ctg} \beta_m / 2nh \sin \beta_m.$$
 (4)

Зависимость спектрального разрешения МДМ (для длины волны $\lambda = 1.5 \, \mu \mathrm{m}$) от толщины голограммы показана на рис. 3.


Оптические потери в спектральном демультиплексоре описываются формулами, полученными в [1]. В предлагаемом варианте МДМ можно использовать для клиньев высококачественное стекло с малым коэффициентом поглощения и, кроме того, высокоэффективные диэлектрические интерференционные отражающие покрытия (с коэффициентом отражения до 99.99%) на границах ГОКЭ. Кроме того, ввод и вывод света может быть реализован с помощью граданов, посаженных на оптический контакт с ГОКЭ. Эти факторы приводят к тому, что основные потери МДМ P_m — это потери на поглощение внутри голограммы B_m , дифракционные потери η_m и потери при входе и выходе радиации в оптическое волокно D_0^* и D_m^* :

$$P_m = D_0^* + D_m^* + B_m + 10|\lg \eta_m|. (5)$$

Здесь

$$B_m = K_{\lambda} l_m; \quad l_m = l_{m-1} + h/\cos \beta_m; \quad l_1 = h/\cos \beta_1;$$
 (6)

46 И.А. Новиков

Рис. 3. Зависимость спектрального разрешения МДМ (nm) с ГОКЭ с голографической решеткой пропускающего типа (*1*–*4*) и отражательного типа (*5*–*8*) от толщины голограммы h (mm) для различных углов падающего пучка β_1 (rad): I, S — β = 0.1, Z, S — S = 0.2, S, S — S = 0.3, S — S = 0.4.

 K_{λ} — стандартный коэффициент поглощения регистрирующей среды; l_m — расстояние, пройденное пучком света через голограмму внутри ГОКЭ для m-го спектрального канала и приближенно равное $l_m \cong mh/cos\beta_1$.

Предложенный вариант МДМ имеет меньшие оптические потери по сравнению с [1,2] по двум основным причинам: число проходов

светового пучка внутри ГОКЭ уменьшено в два раза, используются градиентные линзы для вывода дифракционных пучков.

Существуют два пути для улучшения параметров спектрального демультиплексора. Первый путь — это использование нескольких различных наложенных голограмм вместо одной, что позволяет сочетать последовательный и параллельный дифракционный метод одновременно. Эта техника позволяет уменьшить потери на поглощение по сравнению с предыдущим методом, однако практическая реализация этого метода трудно реализуема для нескольких наложенных голограмм с заданными параметрами.

Второй путь улучшения параметров МДМ — это использование фазовой объемной отражательной голографической решетки вместо голограммы на прохождение. Эти голограммы имеют большую спектральную селективность (см. кривые 5-8 на рис. 3), что ведет к уменьшению оптических потерь и перекрестных помех МДМ.

Спектральный демультиплексор с объемным голографическим оптическим отражательным клиновидным элементом

Рис. 4 иллюстрирует устройство спектрального демультиплексора на основе ГОКЭ с отражательной голограммной решеткой. Все обозначения те же, что и на рис. 2. Основные геометрические параметры МДМ по-прежнему описываются формулами (1)–(3).

Использование условия Брэгга $\lambda_m=2dn\cos\beta_m$ для (m-1)- и m-го дифракционных пучков и малость значения угла клина $(\gamma<1,$ $\gamma<\beta_1)$ ведут к линейному соотношению между γ и разностью длин волн $\Delta\lambda_m=\lambda_m-\lambda_{m-1}$ для ближайших дифракционных пучков:

$$\Delta \lambda_m = \lambda_{m-1} \gamma \operatorname{tg} \beta_{m-1}. \tag{7}$$

Для МДМ угол клиновидности составляет обычно менее $1.0-1.5^{\circ}$.

Спектральное и угловое разрешение МДМ вычисляется по известным формулам [3]:

$$\delta \lambda_m = \xi_0 \lambda_m^2 / (2nh\pi \cos \beta_m), \quad \delta \theta_m = \xi_0 \lambda_m / (2nh\pi \sin \beta_m),$$
 (8)

где ξ_0 — это величина, соответствующая нулю дифракционной эффективности [3]. Для важного частного случая $\nu=\pi/2$ величина $\xi_0=3.5$ [3].

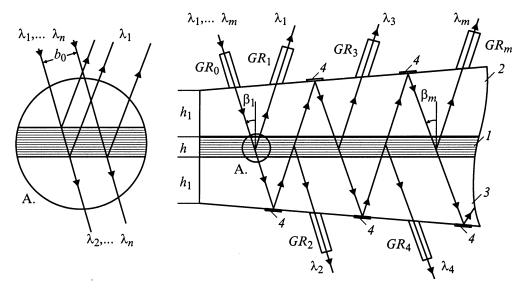


Рис. 4. Оптическая схема МДМ на основе ГОКЭ с отражательной решеткой. Обозначения те же, что и на рис. 2.

Спектральное разрешение голограммы из фотополимера толщиной $h=1\,\mathrm{mm}$ составляет порядка $1\,\mathrm{nm}$ для $\lambda=1.5\,\mu\mathrm{m}$. Практически спектральное разрешение для очень толстых голограмм (до $h=1\,\mathrm{cm}$) может достигать $0.2\,\mathrm{Å}$.

Чтобы обеспечить высокое спектральное разрешение (8), малые потери и высокие перекрестные помехи в МДМ, мы должны обеспечить малую угловую расходимость падающего светового пуча. Ниже мы оценим эту необходимую угловую расходимость $\delta\theta_0$.

Дифракционная эффективность для отражательной решетки [3] для m-го кнала МДМ имеет вид:

$$\eta_m = [1 + (1 - (\xi/\nu)^2) \operatorname{sh}^{-2} (\nu^2 - \xi^2)^{1/2}]^{-1}.$$
 (9)

Можно показать, что параметры ξ и ν с учетом угловой и спектральной расходимости имеют следующий вид для малых углов падения ($\beta_m < 1$):

$$\xi = 2nh\pi \left[(\delta\theta)^2 / 2 - \delta\lambda / \lambda_m \right] / \lambda_m; \quad \nu = \pi n_1 h / \lambda_m. \tag{10}$$

Угловую расходимость падающего светового пучка можно представить фунцией Гаусса:

$$f(\theta) = \exp[-(2\theta/\delta\theta_0)^2],\tag{11}$$

где $\delta\theta_0$ — это угловая расходимость пучка по уровню e^{-1} .

Полное отражение R дифрагирующего пучка с учетом радиальной симметрии и угловой расходимости падающего пучка света определяется соотношением

$$R = \int \eta(\theta) f(\theta) d\theta / \int f(\theta) d\theta. \tag{12}$$

Здесь интегрирование проводится по всей области углов падающего светового потока.

Для типового случая $\nu=\pi/2$ мы можем использовать подходящую аппроксимацию для дифракцинной эффективности (9) (пренебрегая боковыми максимумами):

$$\eta = \exp[-(\xi/\pi)^2],\tag{13}$$

где величина ξ вычисляется по (10). Интегрирование (12) приводит к

$$R = \pi^{1/2} p \exp(p^2 - 2p\xi_1/\pi) \operatorname{erfc}(p - \xi_1/\pi),$$

$$\xi_1 = 2nh\pi \delta \lambda_m/\lambda_m^2; \quad p = 2\lambda_m/(nh(\delta\theta_0)^2).$$
(14)

50 И.А. Новиков

Здесь ${\rm erfc}(x)$ — это функция ошибок [4]. Увеличение угловой расходимости входного пучка (уменьшение параметра p) ведет к уменьшению спектральной эффективности. Вычисления показывают, что (14) переходит в (13) (с заменой ξ на ξ_1) при p>5, и точность этой аппроксимации составляет менее 0.01. Отсюда мы получаем необходимое неравенство для угловой расходимости падающего пучка

$$\delta\theta_0 < 0/632(\lambda_1/nh)^{1/2}.$$
 (15)

Для описанного выше случая (фотополимер, $h=1\,\mathrm{mm},~\lambda=1.5\,\mu\mathrm{m})$ допустимая угловая расходимость падающего пучка не должна превышать $2^\circ.$

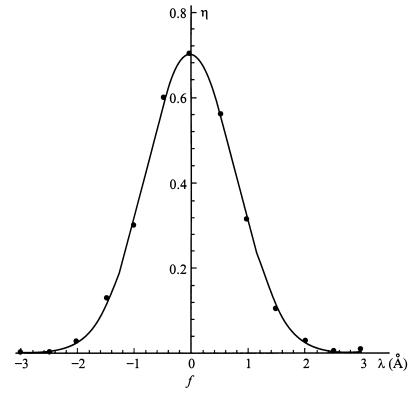

Оптические потери МДМ описываются, как и раньше, формулами (5), (6), где η_m может достигать реально 0.8–0.9. Перекрестные помехи в МДМ описываются по-прежнему формулами работы [1].

Рис. 5. Голограммный оптический клиновидный элемент.

Экспериментальные результаты и выводы

Практически был реализован ГОКЭ с отражательной фазовой голограммной решеткой и металлизированными (Al) отражающими зеркалами на границах ГОКЭ. Оптические клинья и голограмма были посажены на иммерсию. Фотография ГОКЭ приведена на рис. 5. Голограмма (толщиной $h=0.4\,\mathrm{mm},~\lambda=511\,\mu\mathrm{m})$ была записана на фотополимере РММА PQ. График дифракционной зависимости голограммы приведен на рис. 6 (он снят с помощью перестраиваемого лазера на красителях).

Рис. 6. Спектральная селективность отражательной голограммы, использованной в оптическом клиновидном элементе.

52 И.А. Новиков

Спектральное разрешение голограммы по основанию составило 5 Å, а максимум дифракционной эффективности равен 0.7 (соответствующий $\lambda = 511$ nm). Коэффициент отражения для Al зеркал составил 90%.

Эксперименты, проведенные с ксеноновой лампой (источник света, коллиматор, ГОКЭ, двойной монохроматор, ФЭУ с регистрацией на персональном компьютере), показали, что спектральное разрешение между соседними каналами ГОКЭ составляет $\Delta\lambda=2.7-3.0\,\mathrm{Å}$ (расчетное значение составляло $\Delta\lambda=4\,\mathrm{Å}$). Экспериментально наблюдались шесть спектральных каналов разделения, причем наблюдалось сильное ослабление интенсивности последующих спектральных каналов (отношение интенсивностей последующего к предыдущему дифрагирующему пучку составило 0.5–0.6). Этот факт объясняется эффектом взаимного спектрального наложения дифракционных эффективностей для соседних каналов ГОКЭ. Если в вычислениях учесть фактор спектрального наложения, отношение интенсивностей соседних спектральных каналов увеличивается до величины 0.6–0.7.

Таким образом, проведенные предварительные эксперименты находятся в хорошем соответствии с теорией и показывают возможность реализации спектрального демультиплексора с высоким спектральным разрешением (до единиц и долей ангстрема) и большим числом каналов разделения (более 10).

Предложенные типы ГОКЭ (с некоторыми видоизменениями) могут быть использованы также для многодлинноволновой интерферометрии, волоконно-оптических датчиков (с использованием FBG технологии), сжатия ЛЧМ импульсов и оптической реализации одномерных вэйвлетпреобразований. Некоторые из этих применений будут описаны в дальнейшем.

Список литературы

- [1] Новиков И.А. Письма в ЖТФ. 1998. Т. 24. В. 18. С. 76-82.
- [2] Novikov I.A. // Program and Abstracts. CLEO/QELS'95. May 21–26, 1995. Baltimora, USA. P. 86.
- [3] *Кольер Р., Беркхарт К., Лин Л.* // Оптическая голография. М.: Мир, 1973. 685 с.
- [4] Корн С. // Справочник по математике. М.: Наука, 1986. 586 с.