10

Формирование импульсных сильноточных электронных пучков вне вакуумных условий

© Ю.Е. Коляда

Приазовский государственный технический университет, Мариуполь

Поступило в Редакцию 30 ноября 1999 г.

В окончательной редакции 10 марта 2000 г.

Эспериментально продемонстрирована возможность формирования микросекундных пучков электронов в канале сильноточного дугового разряда плазменного ускорителя в атмосферных условиях.

Для решения ряда прикладных задач с использованием электронных пучков, таких как радиационная обработка, полимеризация, модификация поверхностных свойств материалов, возникает необходимость их выпуска в атмосферу. Это достигается путем разделения вакуумной камеры ускорителя и внешней среды тонкой металлической фольгой, применения сложной системы дифференциальной вакуумной откачки. Однако более перспективными для этих целей могут оказаться методы получения электронных пучков непосредственно в атмосферных условиях.

В [1-4] экспериментально исследовано формирование быстрых электронов и зарегистрировано рентгеновское излучение в начальной стадии развития искрового разряда в воздухе. Длительность импульсов пучков составила ~ 10 пs при напряжениях kV. Возникновение пучков обусловлено эффектом убегания электронов [5,6]. Для нерелятивистского электрона это явление будет иметь место, если сила торможения меньше, чем сила электростатическая, вызванная действием внешнего ускоряющего поля. Сила торможения в этом случае обусловлена ионизационными потерями и описывается известной формулой Бете–Блоха:

$$F(\in) = -\frac{n_0 e^4 Z}{8\pi\varepsilon_0^2} \ln \frac{2\epsilon}{I},\tag{1}$$

где e — заряд электрона, ϵ — его кинетическая энергия, n_0 — концентрация молекул газа, Z — атомный номер, I — средняя энергия неупругих

потерь, ε_0 — электрическая постоянная. Величина критического поля E_c выше которого возникает ускорение (убегание электронов), определятся из выражения:

$$E_c = \frac{e^3 n_0 Z}{4\pi \varepsilon_0^2 \, 2.72 \cdot I}.\tag{2}$$

Как следует из [6], соотношение (2) преобразуется к удобной для практических оценок формуле:

$$\frac{E_c}{P} = 3.88 \cdot 10^3 \frac{Z}{I},\tag{3}$$

в которой величины E_c/P и I измеряются в V/cm · Torr и eV соответственно для воздуха I можно принять равным 15–80 eV.

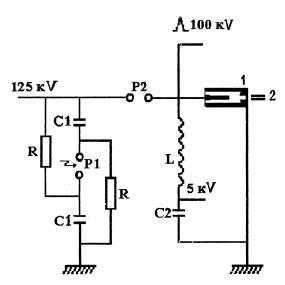

В отличие от ранее полученных наносекундных пучков, в данной работе представлены результаты экспериментов по формированию микросекундных электронных пучков в канале сильноточного дугового разряда торцевого плазменного ускорителя, работающего в атмосферных условиях при воздействии дополнительного высоковольтного импульса.

Схема эксперимента представлена на рис. 1. Плазменный ускоритель (ПУ) (правая часть рис. 1) выполнен из толстостенной (\sim 1 сm) диэлектрической трубы длиной 40 cm с внутренним диаметров 8 mm и двумя электродами — стержневым и кольцевым. Расстояние между ними \sim 10 cm. Источником питания служил емкостный накопитель энергии $C2=1.5\cdot 10^{-3}\,\mathrm{F}$ с рабочим напряжением 5 kV. Конструкция и работа аналогичного ускорителя подробно описана в [7]. Разряд между электродами инициировался высоковольтным (\sim 100 kV) импульсом напряжения с длительностью по основанию \sim 5 μ s. Индуктивность $L=0.3\,\mathrm{mH}$ препятствовала прохождению запускающего импульса в цепь накопителя. После пробоя межэлектродного промежутка происходил мощный разряд емкостного накопителя с длительностью импульса \sim 1.4 ms, при этом не менее 60% запасаемой энергии переходило в энергию плазменного сгустка.

Характерной особенностью работы такого ускорителя являтся то, что формирование мощного дугового разряда и инжекция плотного плазменного сгустка в окружающую среду обусловливают повышение давления в канале разряда до 100 аt, затем следует волна разряжения и давление в конце импульса понижается до величины значительно ниже атмосферного (может составлять величину 1–5 Torr). В этот момент

Письма в ЖТФ, 2000, том 26, вып. 16

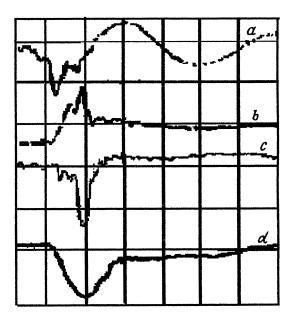

54 Ю.Е. Коляда

Рис. 1. Схема эксперимента: I — плазменный ускоритель, 2 — электронный пучок, емкостный накопитель, $5\,\mathrm{kV}$ — напряжение заряда накопителя, L — разделительная индуктивность, $\Lambda 100\,\mathrm{kV}$ — высоковольтный импульс, C_1 , R, P_1 , P_2 — элементы схемы генератора Маркса, $125\,\mathrm{kV}$ — напряжение заряда генератора.

времени к межэлектродному промежутку прикладывался отрицательный импульс высокого напряжения, формируемый двухступенчатым генератором Маркса (левая часть рис. 1). Параметры элементов схемы: $C1=0.64\,\mu\text{F},~R=48\,\text{k}\Omega,~P1$ — запускающий разрядник, P2 — разделительный. Заряд ступеней генератора осуществлялся напряжением 125 kV, а на нагрузке (межэлектродном промежутке ПУ) формировался импульс напряжения $\leq 250\,\text{kV}$. Индуктивность L при этом также препятствовала прохождению короткого импульса высокого напряжения в цепь накопителя C2. Действие высоковольтного импульса на разрядный промежуток плазменного ускорителя, находящегося в этот момент времени при пониженном давлении, приводило к формированию электронного пучка. На осциллограммах рис. 2 приведены: a — ток в цепи разряда генератора Маркса (ток измерялся поясом Роговского); b — напряжение, приложенное к ускоряющему

Письма в ЖТФ, 2000, том 26, вып. 16

Рис. 2. Результаты измерений: a — ток в цепи генератора Маркса; b — напряжение, приложенное к ускоряющему промежутку плазменного ускорителя; c — рентгеновское излучение; d — СВЧ излучение в диапазоне длин волн $10{\text -}3$ сm. Чувствительность лучей осциллографа: тока — $1\,\mathrm{kA/div}$, напряжения — $125\,\mathrm{kV/div}$, скорость развертки — $5\,\mu\mathrm{s/div}$.

промежутку; c — рентгеновское излучение, регистрируемое кристаллом с фотоэлектронным умножителем; d — и продетектированный СВЧ сигнал, регистрируемый запредельной рупорной антенной в диапазоне длин волн 10–3 сm. Скорость развертки осциллографов — $5\,\mu$ s/div. Чувствительность лучей: тока — $1\,\mathrm{kA/div}$, напряжения — $125\,\mathrm{kV/div}$. Из анализа представленных осциллограмм вытекает факт формирования микросекундного электронного пучка с параметрами: током $\sim 1\,\mathrm{kA}$, энергией $\sim 200\,\mathrm{keV}$. Следует отметить, что формированию электронного пучка предшествует мощный дуговой разряд в канале ускорителя, разогревающий эмиттер — стержневой электрод до температуры плавления. Это обусловливает, по всей вероятности, возбуждение термоавтоэлектронной эмиссии.

Письма в ЖТФ, 2000, том 26, вып. 16

56 Ю.Е. Коляда

Оценка величины отношения E_c/P по формуле (3) позволяет сделать вывод о возможности проявления эффекта убегания электронов в условиях опыта. Так как в результате работы плазменного ускорителя давление в канале разряда понижается до величины $\sim 1-5$ Torr, усредненная величина напряженности электрического поля ~ 20 V/cm, то в условиях эксперимента $E/p \sim (0.4-2) \cdot 10^4$ V/cm · Torr. Значения E_c/P для воздуха, рассчитанные по формуле (3), оказываются равными $(0.8-3.5) \cdot 10^3$ V/cm · Torr, что значительно ниже значений, реализуемых в эксперименте.

Таким образом, в результате проведенных исследований продемонстрирована возможность формирования мощных микросекундных электронных пучков в канале сильноточного дугового разряда вне вакуумных условий.

В заключение считаю своим долгом выразить признательность Я.Б. Файнбергу за полезные и конструктивные обсуждения постановки и результатов эксперимента.

Список литературы

- [1] Станкевич Ю.Л., Калинин Н.С. // ДАН СССР. 1967. Т. 177. № 1. С. 72–73.
- [2] Noggle R.C., Kriger E.P., Way Land I.R. // J. Appl. Phys. 1968. V. 39. N 10. P. 4746–4748.
- [3] Тарасова Л.В., Худякова Л.Н., Лойко Т.В., Цукерман В.А. // ЖТФ. 1974. Т. 44. В. 2. С. 564–568.
- [4] Бохан П.А., Колбычев Г.В. // ЖТФ. 1981. Т. 51. В. 9. С. 1823–1831.
- [5] Гуревич А.В. // ЖЭТФ. 1960. Т. 39. В. 5 (11). С. 1296-1301.
- [6] Королев Ю.Д., Месяц Г.А. Физика импульсного пробоя газов. М.: Наука, 1991. 224 с.
- [7] *Глебов И.А., Рутберг Ф.Г.* Мощные генераторы плазмы. М.: Энергоатомиздат, 1985. 264 с.