05;12

## **Ударно-волновая активация порошков высокотемпературных сегнетоэлектриков**

© Е.М. Кузнецова, Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, А.Н. Клевцов

Научно-исследовательский институт физики Ростовского государственного университета E-mail: esmit@krinc.ru

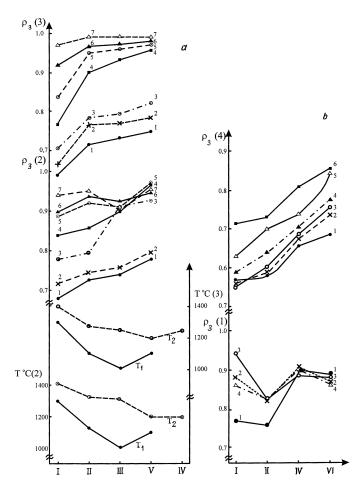
Поступило в Редакцию 30 марта 2000 г.

Установлена возможность ударно-волновым нагружением на различных технологических стадиях оказать существенное влияние на дефектное состояние порошков  $LiNbO_3$ ,  $LiTaO_3$ ,  $Sr_2Nb_2O_7$ ,  $Ca_2Nb_2O_7$ . Это, наряду с их измельчением, позволило резко снизить температуры синтеза и спекания при одновременном повышении относительной плотности и степени совершенства кристаллической структуры изготовленных керамик. Достигнутые эффекты могут упростить технологию получения рассматриваемых объектов.

Большой интерес для высокотемпературной пьезотехники представляют сегнетоэлектрики с экстремально высокими температурами Кюри  $(T_c)$  как самостоятельные основы материалов или компоненты более сложных композиций. Среди них: метаниобат лития LiNbO3 (I) с  $T_c \sim 1220^{\circ}\mathrm{C}$ , а также пирониобаты стронция  $\mathrm{Sr_2Nb_2O_7}$  (2) и кальция  $\mathrm{Ca_2Nb_2O_7}$  (3) с самыми высокими среди известных (и "доступных" 1) сегнетоэлектриков  $T_c$ , равными соответственно 1340 и 1830° С. В наибольшей степени перспективные возможности этих объектов были реализованы лишь в материалах на основе (I). Соединения (2, 3) до сих пор остаются малоизученными и в связи с этим не использованными в практике. Причина их невостребованности — в невозможности достижения высоких значений плотности в обычных условиях керамической технологии. Это связано с низкой реакционной активностью шихт и затрудненностью уплотнения пресс-порошков, обусловливающих чрез-

 $<sup>^1</sup>$  Такими же или несколько более высокими  $T_c$  обладают только три соединения, содержащие лантаниды: La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> ( $T_c=1530^\circ\mathrm{C}$ ), Pr<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> ( $T_c=1755^\circ\mathrm{C}$ ), Nd<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> ( $T_c=1850^\circ\mathrm{C}$ ).

вычайно высокие температуры синтеза  $(T_1 > 1300^{\circ}\mathrm{C})$  и спекания  $(T_2 > 1400^{\circ}\mathrm{C})$ .


Заметно повлиять на процесс получения (2,3) не удалось, используя многие технологические приемы, в том числе диспергирование основного сырьевого компонента  $Nb_2O_5$ . В настоящей работе препринята попытка высокоэнергетическим воздействием на порошки путем их ударно-волнового нагружения (УВН) на различных технологических стадиях существенно активизировать шихты и синтезированные продукты и, как результат, повысить плотность керамик при значительно сниженных  $T_1$  и  $T_2$ .

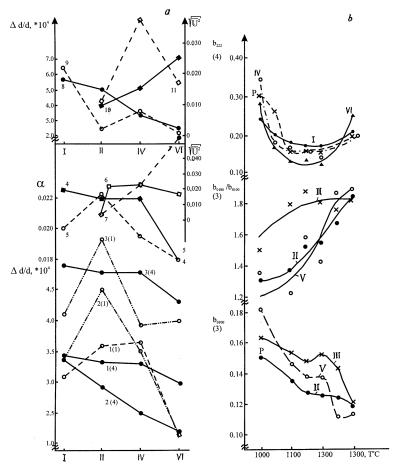
Взрывной обработке подвергались либо шихты (P), либо синтезированные порошки (С), либо продукты после второго промежуточного обжига ( $\Pi$ ), а также использовались комбинации P-C- и P- $\Pi$ -режимов<sup>2</sup>. Синтез (1), а также LiTaO<sub>3</sub> (4) осуществлялся при 770°C в течение 4 часов (2, 3) получали путем последовательных многократных обжигов при повышающихся температурах (800, 1000°С...) с измельчением промежуточных спеклов. Спекание осуществлялось при фиксированных температурах из интервалов  $1000 \div 1180$  (1),  $1000 \div 1400$  (2, 3),  $1000 \div 1300 (4)$ . Оценка качества производилась по результатам рентгенофазового анализа, определения параметров элементарных ячеек и степени совершенства (дефектности) кристаллической структуры (интегральной ширине дифракционных линий  $b_{hkl}$ , микродеформациям  $\Delta d/d$ , вероятности появления ошибки упаковки  $\alpha$ , среднеквадратичному занчению смещений атомов из регулярных положений  $\sqrt{\bar{U}^2}$ ), а также величинам измеренной  $\rho_1$ , рентгеновской  $\rho_2$  и относительной  $\rho_3(\rho_1/\rho_2)$ плотностей керамик.

На рис. 1, a представлены  $T_1$ , при которых кристаллизовались беспримесные (2,3), и  $T_2$  изготовленных из них керамик с  $\rho_3=0.95\pm0.02$  в зависимости от стадий УВН. Наибольшее снижение  $T_1$  характерно для воздействия на промежуточно обожженные образцы (П) ( $T=1000^{\circ}$ С). При спекании максимальный эффект достигался в порошках, прошедших двойную Р–П-обработку. В обоих случаях температура снизилась на 200 градусов. Самые высокие  $\rho_3$  также реализовались при использовании комбинированного режима. Некоторое снижение  $\rho_3$  при  $T>1150^{\circ}$ С в (2) с П-обработкой явилось следствием неоднородности состава за

Письма в ЖТФ, 2000, том 26, вып. 17

<sup>&</sup>lt;sup>2</sup> Эсперименты проведены Рогозиным В.Д. (г. Волгоград) на разработанной и сконструированной им установке [1].




3 Письма в ЖТФ, 2000, том 26, вып. 17

счет сосуществования двух ромбических фаз с близкими параметрами элементарных ячеек<sup>3</sup>. Для (4) также характерно существенное снижение  $T_1$  и  $T_2$  при одновременно высоких  $\rho_3$  (рис. 1, b)<sup>4</sup>. Лишь в (1) УВН не привело к ожидаемому снижению  $T_1$  и  $T_2$  и повышению  $\rho_3$  (рис. 1, b). Положительный эффект УВН в (2-4), безусловно, явился следствием развиваемого высокого уровня локальных механических напряжений и температур в частицах порошка, что, несмотря на кратковременность процесса, вызвало резкую интенсификацию межчастичных взаимодействий. Последнее, в свою очередь, привело не только к измельчению порошков и, как следствие, повышению их удельной поверхности, но и к накоплению различного рода дефектов (об этом свидетельствовало уширение дифракционных линий), увеличивающих свободную энергию, что также способствовало повышению термодинамической активности. Отсутствие эффекта в (1) связано с активацией после обработки порошков процессов вторичной прерывистой рекристаллизации, сопровождающихся бурным ростом (до гигантских размеров) идеоморфных зерен, разрыхляющих и разупрочняющих керамику за счет появления микротрещин.

Во всех объектах УВН стимулировало при спекании порошков образование более совершенных структур. Это иллюстрируется рис. 2, a, на котором показаны зависимости параметров  $\Delta d/d$ ,  $\alpha$ ,  $\sqrt{\bar{U}^2}$  керамик (I-4), полученных при оптимальных  $T_2$  от стадий УВН. Во всех случаях отмечалось их уменьшение после УВН, при этом минимальные значения характерны для комбинированных режимов. Некоторое увеличение  $\Delta d/d$  в (I) после Р–С-обработки, вероятно, связано с активацией рекристаллизационных процессов. На рис. 2, b представлены зависимости  $b_{hkl}$  от  $T_2$  необработанных и обработанных (3,4). Видно, что в (4) значительная степень дефектности (большая, чем при отсутствии обработки) сохранялась до  $T_2 \leqslant 1000$ °C (более высокие значения  $b_{220}$ ). В интервале  $1000 \div 1100$ °C структура резко идеализировалась  $(b_{220})$ 

 $<sup>^3</sup>$  Причиной этого явилось нарушение стехиометрии по Sr при высоких температурах изза сублимации из реакционной смеси части SrO, появляющейся при  $T>900^{\circ}\mathrm{C}$  в результате диссоциации не прореагировавшего SrCo3. Процесс облегчался в механических смесях, "недосинтезированных" порошках с непрочными химическими связями и дополнительно активизировался внешними воздействиями. В (3) подобный эффект не наблюдался из-за значительно более низкой летучести CaO.

<sup>&</sup>lt;sup>4</sup> Получить целостные образцы (4) с  $\rho_3 \geqslant 0.88$  не удалось из-за их сильного растрескивания, связанного с большой скоростью усадки заготовок при спекании.



**Рис. 2.** a — зависимости от стадий УВН  $\Delta d/d$  для LiNbO $_3$  (I), LiTaO $_3$  (4) (I — в направлении 104; 2 — в направлении 110, 3 — в направлении 006), 8 — для  $Ca_2Nb_2O_7$  (3), 9 — для  $Sr_2Nb_2O_7$  (2) — в направлении 041;  $\alpha$  (4 — для LiTaO $_3$ , 5 — для LiNbO $_3$ ),  $\sqrt{\overline{U}^2}$  (6 — для LiTaO $_3$ , 7 — для LiNbO $_3$ , 10 — для  $Ca_2Nb_2O_7$ , 11 — для  $Sr_2Nb_2O_7$ ). b — зависимости  $b_{hkl}$  (ang. deg.) от  $T_2$  необработанных и обработанных LiTaO $_3$  (4),  $Ca_2Nb_2O_7$  (3).

3\* Письма в ЖТФ, 2000, том 26, вып. 17

уменьшались), с большей скоростью после P–С-обработки, что при высоких  $T_2$  ( $1100-1200^{\circ}$  С) привело к формированию наиболее совершеной системы ( $b_{220}$  — минимальны) (рис. 2, b). Такое же благоприятное действие оказал и комбинированный P–П-режим, примененный к (3) (резкое уменьшение  $b_{0.10.0}$ ) при  $T_2 > 1250^{\circ}$  С). Здесь же приведены зависимости от  $T_2$  величины отношения  $b_{0.18.0}/b_{0.10.0}$ , характеризующие динамику изменения дефектного состояния (3). При использовании Р-и Р–П-режимов увеличение этого параметра от значений, близких к 1, до значений, близких к 2, свидетельствовало о переходе от преимущественного вклада в дефектность блочности структуры к возрастающей по мере повышения  $T_2$  роли остаточных упругих деформаций. Последние лишь в случае Р-режима оставались преобладающими при всех  $T_2$ .

Таким образом, показано, что ударно-взрывной обработкой оказалось реальным заметно изменить дефектное состояние порошков, что, наряду с их измельчением, способствовало снижению  $T_1$  и  $T_2$ , а также повышению  $\rho_3$  и структурного совершенства изготовленных керамик. Первое дало возможность существенно сократить энергозатраты, обеспечить надежность работы термического оборудования за счет отступления от предельных технологических регламентов ( $T \geqslant 1400^{\circ}\mathrm{C}$ ) в сторону более "мягких", легко реализуемых режимов, использовать обычные для серийной технологии, а не специальные, силитовые печи и тем самым значительно удешевить процесс создания рассматриваемых объектов. Второе — облегчило поляризацию образцов и изготовление высококачественных активных элементов пьезопреобразователей. Все это позволило рекомендовать ударно-волновую активацию в практику получения высокотемпературных сегнетоэлектриков.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (РФФИ) (грант № 99–02–17575).

## Список литературы

- [1] *Резниченко Л.А., Кузнецова Е.М., Разумовская О.Н.* и др. // Сб. трудов Междунар. конф. "Пьезотехника-99". Ростов-на-Дону, 1999. Т. 1. С. 262–267.
- [2] Бондаренко Е.И., Комаров В.Д., Резниченко Л.А., Чернышков В.А. // ЖТФ. 1988. Т. 58. № 9. С. 1771–1774.

Письма в ЖТФ, 2000, том 26, вып. 17