04;07

Ускорение лазерной плазмы оптическим разрядом, движущимся в воздухе с гиперзвуковой скоростью

© В.Н. Тищенко, А.И. Гулидов

Институт лазерной физики СО РАН, Новосибирск Институт теоретической и прикладной механики СО РАН, Новосибирск

Поступило в Редакцию 12 мая 2000 г.

Движущийся в атмосфере оптический пульсирующий разряд создает плазменную струю, направленную в сторону, противоположную распространению разряда. Плазма ускоряется при истечении из области высокого давления в "вакуумированный" канал, создаваемый разрядом. Получены аналитические выражения для оценки скорости, плотности и радиуса струи в зависимости от параметров разряда. Метод исследования — компьютерное моделирование.

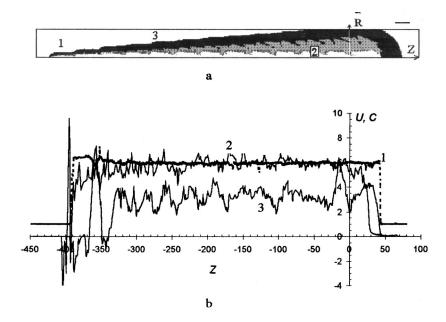

В аэрокосмических задачах [1–3] изучается возможность применения лазерного излучения для управления обтеканием тел. В сверхзвуковом потоке газа осуществлен оптический пульсирующий разряд (ОПР), создававший квазистационарную ударную волну (УВ) и канал с низкой плотностью газа [4]. В экспериментах [5,6] с одиночной лазерной искрой наблюдались слабые струи. В [7] выполнен расчет стационарного течения за фронтом светодетонационной волны (СДВ). Однако создание стационарной СДВ ограничено пробоем на аэрозолях [8]. В расчетах [9,10] по обтеканию тел с тепловым источником задача о струе не рассматривалась. В лазерном ракетном двигателе поток плазмы формируется в сопловом устройстве. В данной работе показано, что ОПР может создавать плазменную струю в свободном газовом пространстве. Энергия лазерных искр преобразуется в кинетическую с участием "мягких стенок" (контактный разрыв), создаваемых ОПР в газе. При математическом моделировании использовались нестационарные уравнения газовой динамики для случая осевой симметрии и лагранжев подход. В управлении состояния воздуха использовались данные [11]. Численное решение дифференциальных уравнений осуществлялось с помощью программного комплекса KRUG24 по явной конечноразностной схеме типа "крест" на треугольных ячейках с применением алгоритма локальной перестройки разностной сетки [12].

Схема формирования струи. Сфокусированное импульсно-периодическое лазерное излучение с аксиально симметричным подводом создает в неподвижном газе $(P_0, \rho_0$ — давление, плотность) искры цилиндрической формы [13]: длина L, радиус $R_0 \ll L$, $P \gg P_0$, поглощенная энергия $\varepsilon_{\nu}\gg\varepsilon_{0}$ (ε_{0} — энергия воздуха в объеме искры при t=0). При длительности импульсов $t_1 \ll R_0/C_0$ газ неподвижен, P — максимально $(C_0$ — скорость звука в газе). Фокальная область перемещается со скоростью V вдоль оси луча. При частоте повторения импульсов $F \approx V/L$ создается неразрывный канал: длина $L_C \gg L$, радиус $R > R_0$, $ho \ll
ho_0, P \sim P_0$. Каждая искра создает скачок давления в начале канала. Ее плазма ускоряется при истечении из области высокого давления в "вакуумный" канал. При $T_R/T_Z \approx 0.3 \div 1$ скорость струи относительно окружающего газа $U \approx C$, направление противоположно движению ОПР. Здесь T_R и $T_Z \approx L/C$ — времена выравнивания давления за счет радиального и продольного расширения искры (С — скорость звука в канале). В модели невязкого газа струя тормозится при взаимодействии с плотным газом в конце канала. При гиперзвуковой скорости ОПР V > C (фокусирующие системы с переменным фокусным расстоянием) зона торможения не влияет на ускорение плазмы. Охлаждение и вязкое трение ограничивают длину струи. Длину можно определить из оценки $L_C \approx 10 \cdot T_1 \cdot V$, где $T_1 \sim 0.0003 \,\mathrm{s}$ — характерное время охлаждения лазерной плазмы в ~ 2 раза [14].

Из рисунка видно, что на некотором расстоянии от начала канала осевая скорость U(Z) струи квазистационарна. Для стадии установившегося течения $(P \sim P_0)$ можно построить упрощенную аналитическую модель. Задача имеет 9 параметров: среда — P_0 , ρ_0 , показатель адиабаты γ_0 ; лазерное излучение — ε_{ν} , F, t_1 ; ОПР — V, L, R_0 . Независимы 6 безразмерных комбинаций параметров (π -теорема). При $t_1 \ll R_0/C_0$ влияние t_1 мало. Зависимость от ρ в уравнении состояния близка к линейной. Условие неразрывности канала связывает величины

$$F^{-1} \approx T_S = L/M_0,\tag{1}$$

 $M_0 = V/C_0$. Здесь и далее величины имеют безразмерный вид. Время, размеры, скорости, плотность и давление нормировались на R_0/C_0 , R_0 , C_0 , P_0 . Для воздуха ($\gamma_0 = 1.4$) остается три безразмерных

Расчет возмущений, создаваемых ОПР при движении в воздухе (справа налево) со скоростью 5100 m/s ($M_0=15$), $\varepsilon=208$. Первая искра находилась в области $0\leqslant Z\leqslant L$, $R_0=0.0025$ m, зависимости соответствуют моменту времени $t=26.7~(200~\mu\text{s})$, длина струи ~ 1 m. a — распределение по Z и R плотности среды при L=32~(0.08~m): I — "последняя" искра, 2 — плазменная струя, 3 — ударная волна. b — распределение при R=0 по Z: скорость звука (I) для L=32, скорости струи (2) при L=8 и (3) при L=32.

параметра — M_0 , L и

$$\varepsilon = \varepsilon_{\nu}/\varepsilon_{0} = \varepsilon_{\nu} \cdot (\gamma_{0} - 1)/[\pi \cdot R_{0}^{2} \cdot L \cdot P_{0})$$

$$= (\gamma_{0} - 1) \cdot Q/P_{0} = [W/(V \cdot P_{0})] \cdot [(\gamma_{0} - 1)/(\pi \cdot R_{0}^{2})]. \quad (2)$$

Здесь Q [J/m³], $W/(V\cdot P_0)$ [J/(m · Pa)], $W=\varepsilon_{\nu}\cdot F$ — поглощаемые в искре плотность и погонная плотность энергии, средняя мощность ОПР, F [Hz] — частота повторения (L [m], V [m/s]). Из расчетов следует, что радиус струи, ее плотность и удельная плотность внутренней энергии с хорошей точностью зависят лишь от ε . Найдем комплекс

 $au(M_0,L,arepsilon)$, описывающий осевую компоненту скорости струи (радиальная пренебрежимо мала). Существует два режима взаимодействия ОПР с газом: импульсный — время паузы между импульсами излучения велико $T_S\gg T_R$, длина зоны высокого давления равна длине искры L; квазистационарный — $T_S\ll T_R$, зона высокого давления состоит из плазмы многих лазерных искр, ее длина равна

$$L^* = M_0 \cdot T_R. \tag{3}$$

В качестве τ примем отношение T_R/T_Z :

$$\tau = T_R \cdot C/L \ (L \gg L^*), \ \tau = (C/M_0) \ (L \ll L^*),$$

$$\tau = (C/M_0)/(1 + b \cdot L/L^*) \ (L \sim L^*),$$
(4)

где $b\sim 1$, а T_R и C зависят от ε . Модель применима, если выполнены условия: цилиндрическая геометрия задачи — $L^*/2\gg 1$ при $L\ll L^*$, и $L/2\gg 1$ при $L\geqslant L^*$; мгновенный нагрев — $t_1\ll R_0/C_0$; энергия $\varepsilon\gg 1$ и поглощается в холодном газе.

 T_R и C определялись из численного решения задачи о тепловом взрыве цилиндрической области в воздухе. Из анализа результатов следует, что можно выделить две стадии расширения искры. Быстрая $t_1 < t < T_R$ — давление в искре понижается от максимального при $t = t_1$ до $P \approx 2$ при $t = T_R$, скорость контактного разрыва уменьшается от сверхзвуковой до значения ~ 0.3 . Медленная стадия $T_R < t < T_P$ — давление уменьшается до $P \approx 1$, при $t = T_P$ граница плазмы останавливается. При $t > T_R$ скорость звука и удельная плотность внутренней энергии ε_P в каверне слабо зависит от r и t. Расчетные значения T_R , T_P и соответствующие им параметры C, ρ , R и ε_P аппроксимировались степенными функциями в двух диапазонах ε . Погрешность δ указана, если $\delta > 0.05$.

При $t = T_R$ величины T_R и C равны соответственно:

$$T_R=0.7\cdot arepsilon^{0.2}~(\delta<0.1)$$
 и $C=1.26\cdot arepsilon^{0.3}$ для $arepsilon=5\div 200,$ $T_R=0.08\cdot arepsilon^{0.6}$ и $C=0.713\cdot arepsilon^{0.4}$ для $arepsilon=200\div 1000.$ (5)

При $t = T_P$ параметры среды равны:

$$C = 1.15 \cdot \varepsilon^{0.3}$$
 и $C = 0.68 \cdot \varepsilon^{0.4}$, $\varepsilon_P = 0.53 \cdot \varepsilon$ и $\varepsilon_P = 1.38 \cdot \varepsilon^{0.84}$, $T_P = 0.5 \cdot \varepsilon^{0.5}$, $\rho = 1.6/\varepsilon^{0.8}$, $R = 0.8 \cdot \varepsilon^{0.4}$ ($\delta < 0.1$). (6)

Выражения (6) применимы для оценки параметров струи на стадии установившегося течения. Подставляя (5) в (3), (4), получим выражения для L^* , τ :

$$\varepsilon = 5 \div 200 \qquad \qquad \varepsilon = 200 \div 1000$$

$$L^* = 0.7 \cdot M_0 \cdot \varepsilon^{0.2} \qquad \qquad L^* = 0.08 \cdot M_0 \cdot \varepsilon^{0.6} \qquad (7)$$

$$(L \gg L^*)$$
 $\tau = 0.88 \cdot \varepsilon^{0.5}/L$ $\tau = 0.057 \cdot \varepsilon/L$ (8)

$$(L \ll L^*)$$
 $\tau = 1.26 \cdot M_0^{-1} \cdot \varepsilon^{0.3}$ $\tau = 0.713 \cdot M_0^{-1} \cdot \varepsilon^{0.4}$ (9)

$$L^* \sim L$$
 $\tau = 1.26 \cdot M_0^{-1} \times \qquad \tau = 0.713 \cdot M_0^{-1} \times \times \varepsilon^{0.3} / (1 + L/L^*) \qquad \times \varepsilon^{0.4} / (1 + L/L^*)$ (10)

На рисунке представлены результаты расчетов для квазистационарного $(L \ll L^*)$ и близкого к импульсному $(L \sim L^*)$ режимов ускорения струи. Скорость звука в струе в обоих случаях $C \sim 6$. При $L \ll L^*$ и $\tau = C/M_0 = 0.4 - U \approx C$, а во втором случае U существенно ниже, что связано с малостью au. В области установившегося течения радиальная компонента скорости струи $U_R \ll U$, $\rho \ll \rho_0$, $P \sim 1$. При взаимодействии струи с плотным газом в конце канала струя тормозится, формируется вихрь, контактная поверхность движется со скоростью $\sim 0.5 \cdot C_0$ в направлении распространения струи. Ударная волна в окружающем газе создается из многих УВ от отдельных искр. Продольная компонента импульса УВ компенсирует импульс струи. Мощность струи ~ 50% от поглощаемой в ОПР, остальная часть содержится в УВ. Распределение скорости не монотонно вдоль оси канала. Однако если в качестве параметров выбирать средние значения U и C вдоль струи, то при разных исходных данных задачи и одном и том же значении au величина эффективного числа Маха для этих осредненных параметров хорошо аппроксимируется выражением

$$M = U/C = (1 + 1.33 \cdot 10^{-4} \cdot \tau^{-5})^{-1}. \tag{11}$$

M и τ зависят от M_0 , L, ε . Однако (11) упрощается: при $\tau > 0.3$ — $M \approx 1$; при $\tau < 0.15$ — $M \approx 7500 \cdot \tau^5$. При $L \geqslant L^*$ и при малых τ модуляция U близка к 100%. Выражения (1), (2), (6)–(11) позволяют определить скорость, радиус, плотность и энергию струи для заданных параметров среды и ОПР. Возможно решение

обратной задачи: определение параметров ОПР, при которых создается струя с необходимыми свойствами. Давление торможения на оси струи находится из (11) и (6): $P=\gamma_0\cdot\rho\cdot C^2\cdot M^2+1$. С учетом (6) получим: $P=1.48\cdot M^2/\varepsilon^{0.2}+1$ ($\varepsilon<200$); $P=0.518\cdot M^2+1$ ($\varepsilon=200\div1000$). При $\tau>0.3-P\approx1.5\div2$, а при $\tau<0.1-P\approx1$. Предполагая, что вся плазма ускоряется до скорости звука, в канале получим оценку отношения кинетической мощности струи к мощности ОПР — $\eta=\gamma_0\cdot(\gamma_0-1)\cdot\varepsilon^{-1}\cdot C^2/2\sim0.1\div0.15$. Эти значения η достижимы при специальной организации ввода энергии в плазму.

Таким образом, при определенных условиях лазерное излучение может создавать движущиеся в газе плазменные и газодинамические неоднородности в виде ударной и плазменной струи.

Авторы выражают благодарность А.Г. Пономаренко за полезные обсуждения и поддержку данной работы.

Исследование выполнено при поддержке РФФИ, проект № 00–02–17482.

Список литературы

- [1] Myrabo L.N., Raizer Yu.P. // AIAA Paper, 1994, N 94-2451, C. 1-13.
- [2] Nemchinov I.V., Artem'ev V.I., Bergelson V.I. et al. // Shock Waves. 1994. N 4. P. 35–40.
- [3] *Борзов В.Ю., В.М. Михайлов, И.В. Рыбка* и др. // ИФЖ. 1994. Т. 66. № 5. С. 515–520.
- [4] Третьяков П.К., Грачев Г.Н., Иванченко А.И. и др. // ДАН. 1994. Т. 336. № 4. С. 466–467.
- [5] Буфетов И.А., Прохоров А.М., Федоров В.Б. и др. // ДАН СССР. 1981.
 Т. 261. № 3. С. 586–588.
- [6] Кондрашов В.Н., Родионов Н.Б., Ситников С.Ф. и др. // ЖТФ. 1986. Т. 56. В. 1. С. 89–97.
- [7] Thomas P.D. // AIAA Journal. 1977. V. 15. P. 1405-1419.
- [8] Зуев В.Е. // Оптический разряд в аэрозолях. Новосибирск: Наука, 1990. С. 155.
- [9] *Левин В.А., Афонина Н.Е., Георгиевский П.Ю.* и др. // Влияние источника энерговыделения на сверхзвуковое обтекание тел. Препринт № 36–98, Москва: Институт механики МГУ, 1988. С. 48.
- [10] Гувернюк С.В., Самойлов А.Б. // Письма в ЖТФ. 1997. Т. 23. В. 9. С. 1–8.

- [11] Кузнецов Н.М. Термодинамические функции и ударные адиабаты воздуха при высоких температурах. М.: Машиностроение, 1965. С. 462.
- [12] Фомин В.М., Гулидов А.И., Сапожников Г.А. Высокоскоростное взаимо-действие тел. Новосибирск, СО РАН, 1999. С. 600.
- [13] Коробкин В.В., Полонский Л.Я., Пятницкий Л.Н. // Труды ИОФАН. 1993. Т. 41. С. 23–46.
- [14] Тищенко В.Н. // Оптика атмосферы и океана. 1998. Т. 11. В. 2. С. 228–233.