Исследование гетероструктур $SiC/(SiC)_{1-x}(AIN)_x$ методом вольт-фарадных характеристик

© М.К. Курбанов, Б.А. Билалов, Ш.А. Нурмагомедов, Г.К. Сафаралиев

Дагестанский государственный университет, 327025 Махачкала, Россия

(Получена 31 июля 2000 г. Принята к печати 2 августа 2000 г.)

Методом измерения и анализа вольт-фарадных характеристик установлено, что в гетероструктурах n-6H-SiC/p-(SiC) $_{1-x}$ (AlN) $_x$, полученных сублимационной эпитаксией слоев (SiC) $_{1-x}$ (AlN) $_x$ на подложках 6H-SiC, образуются резкие гетеропереходы толщиной $\sim 10^{-4}$ см. Из вольт-фарадных характеристик определены основные свойства гетероструктур в зависимости от состава эпитаксиального слоя и температуры.

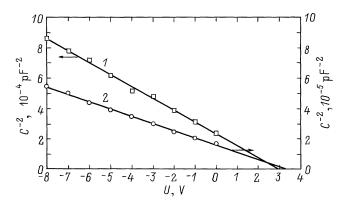
Введение

Среди твердых растворов на основе карбида кремния наиболее изученной системой является твердый раствор $(SiC)_{1-x}(AlN)_x$, который образует непрерывный ряд с плавным изменением ширины запрещенной зоны от 3.35 до $6.2 \, \mathrm{эB}$ и постоянной решетки от $a = 3.076 \, \mathrm{Å}$, $c = 5.048 \,\text{Å}$ при x = 0 до $a = 3.114 \,\text{Å}$ $c = 4.986 \,\text{Å}$ при x = 1. Переход от непрямозонной к прямозонной структуре происходит при x > 0.6 [1]. В настоящее время также решена проблема управления составом и типом электропроводности этих твердых растворов при их сублимационной эпитаксии [2]. Благодаря высокой теплопроводности, механической, химической и радиационной стойкости они перспективны для приборных структур. Близость параметров решеток и коэффициентов температурного расширения SiC и $(SiC)_{1-x}(AlN)_x$, а также идентичность технологии синтеза позволяют получать гетероструктуры (ГС) $SiC/(SiC)_{1-x}(AlN)_x$ с малым числом дефектов на гетерогранице.

В известной литературе отсутствуют сведения об электростатических параметрах p-n-структур на основе $(SiC)_{1-x}(AlN)_x$. В настоящей работе представлены результаты исследований свойств ГС n-SiC/p-(SiC) $_{1-x}(AlN)_x$, определенные методом вольтфарадных характеристик (ВФХ).

Образцы и методика эксперимента

Монокристаллические эпитаксиальные слои (ЭС) твердых растворов (SiC) $_{1-x}$ (AlN) $_x$ p-типа выращивались на подложках SiC политипа 6H методом сублимационной эпитаксии при температурах $2300-2550\,\mathrm{K}$ и давлении смеси газов азота и аргона от $2\cdot10^4$ до $8\cdot10^4$ Па из источников, представляющих горячо-прессованные таблетки SiC-AlN [3]. Подложки имели n-тип проводимости с $N_d-N_a=6\cdot10^{17}-3\cdot10^{18}\,\mathrm{cm}^{-3}$. Толщина ЭС $10-30\,\mathrm{mkm}$, толщина подложек — $400\,\mathrm{mkm}$.


Вольт-фарадные характеристики (ВФХ) гетероструктур $n\text{-SiC}/p\text{-}(\text{SiC})_{x-1}(\text{AlN})_x$ измерялись на установке, изготовленной на базе автоматического цифрового измерителя Е7-8. В основе измерений лежит мостовой метод с фазочувствительными детекторами уравновешивания.

Питание моста осуществлялось от внешнего широкодиапазонного генератора ГЗ-49а. Амплитуда синусоидального сигнала не превышала 300 мВ. Измерения проводились по параллельной схеме замещения. Погрешность измерения емкости не превышала 1%. ВФХ измерялись на меза-структурах, изготовленных ионно-плазменным травлением через АІ-маску, напыленную в глубоком вакууме методом термического распыления с вольфрамовой проволоки. Этот слой после термообработки использовался в качестве омического контакта к ЭС $(SiC)_{1-x}(AIN)_x$. На базовый слой (подложку 6*H*-SiC) омический контакт наносили путем вплавления In после электроискровой обработки поверхности. Проведенные измерения на "омичность" металлических контактов дали удовлетворительные результаты. Исследуемые меза-структуры помещались в 2-зондовую ячейку.

Для изучения ВФХ были отобраны p-n-структуры, у которых измеряемая емкость не зависела от частоты до 50 кГц, а построенные в координатах $C^{-2}-U$ вольтфарадные характеристики были линейны в интервале напряжений от $-10\,\mathrm{B}$ до 0. Кроме того, в отобранных структурах в этом диапазоне напряжений ток утечки не превышал $10^{-5}\,\mathrm{A}$.

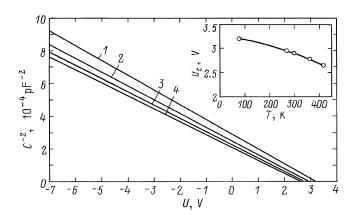
Результаты и обсуждение

На рис. 1 приведены результаты измерений ВФХ двух гетероструктур с различным содержанием AlN в ЭС, измеренные при комнатной температуре (293 К). Наблюдаемое отклонение отдельных экспериментальных точек от прямой, видимо, связано с незначительной неоднородностью легирования ЭС $(SiC)_{1-r}(AIN)_r$. Для ГС $n-6H-SiC/p-(SiC)_{0.87}(AlN)_{0.13}$ прямая, экстраполированная до $C^{-2} = 0$, отсекает отрезок, равный 2.95 B, а для ГС n-6H-SiC/p-(SiC)_{0.44}(AlN)_{0.56} — отрезок равный 3.5 В, которые соответствуют диффузионным контактным разностям потенциалов U_d в них. Для сравнения скажем, что в p-n-гомопереходах на базе SiC величина U_d , определенная из ВФХ и вольт-амперных характеристик, составляет примерно 2.7 В [4,5]. Наблюдаемый рост U_d с увеличением концентрации AlN в ЭС (SiC)_{1-x}(AlN)_x, вероятно, связан с ростом ширины запрещенной зоны ЭС.

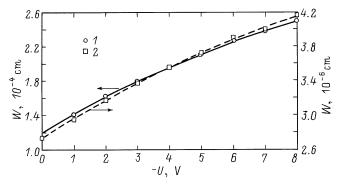
Рис. 1. Вольт-фарадные характеристики двух гетероструктур n-6H-SiC/p-(SiC) $_{1-x}$ (AlN) $_x$ с содержанием AlN x: I — 0.13, 2 — 0.56, измеренные при комнатной температуре.

Используя значения U_d , полученные по ВФХ, из выражения

$$\Phi_2 = qU_d + \Phi_1$$


может быть определена работа выхода Φ_2 для слоя p- $(SiC)_{1-x}(AlN)_x$ с различным содержанием AlN. Работа выхода Φ_1 из грани (0001) для 6H-SiC при 300 K составляет 4.5 эВ [6]. Значение Φ_2 с ростом концентрации AlN в ЭС увеличивается. Так, например, для p- $(SiC)_{0.87}(AlN)_{0.13}$ $\Phi_2=7.45$ эВ, а для p- $(SiC)_{0.44}(AlN)_{0.56}$ — 7.85 эВ.

По наклону ВФХ в координатах $C^{-2}-U$, используя известную формулу [7]


$$\frac{\partial C^{-2}}{\partial U} = \frac{2(\varepsilon_1 N_{d_1} + \varepsilon_2 N_{d_2})}{S^2 q N_{d_1} N_{a_2} \varepsilon_1 \varepsilon_2},$$

определены концентрации примесей ЭС $(SiC)_{1-x}(AlN)_x$. Для представленных на рис. 1 гетероструктур концентрация примесей подложке 6H-SiC, определенная предварительно по величине $N_d - N_a$, полученной из ВФХ барьеров Шоттки, составляла $\sim 9 \cdot 10^{17} \, \text{cm}^{-3}$. Низкочастотная относительная диэлектрическая проницаемость ε_1 для 6H-SiC при ориентации $E \parallel c$ и $T = 300 \, \mathrm{K}$ равна 10.03 [6]. Значения относительной диэлектрической проницаемости ε_2 твердых растворов $(SiC)_{1-x}(AlN)_x$ определены из фотоэлектрических измерений на контакте металл- \langle полупроводник (твердый раствор $(SiC)_{1-x}(AlN)_x)\rangle$ и при 0.1 < x < 0.6 лежат в пределах $\varepsilon_2 \simeq 9.4 - 9.8$. При расчетах нами использовалось усредненное значение $\varepsilon_2 = 9.6$. составляла $2 \cdot 10^{-2} \, \text{cm}^2$. Площадь p-n-переходов SОпределенная из наклона ВФХ концентрация N_a , в ЭС (SiC)_{0.87}(AlN)_{0.13} равна $9.02 \cdot 10^{17} \, \text{cm}^{-3}$, а в $(SiC)_{0.44} (AlN)_{0.56} - 7.98 \cdot 10^{16} \, \text{cm}^{-3}$. Эти и другие результаты показывают, что с ростом х в слоях $(SiC)_{1-x}(AlN)_x$ концентрация примесей N_a в них уменьшается. Этот вывод подтверждает и тот факт, что при больших концентрацих AlN в ЭС зависимость емкости от напряжения становится более слабой (рис. 1), что свидетельствует о том, что выращенный ЭС является высокоомным и обедненная область расположена главным образом в нем.

На рис. 2 представлены температурные зависимости ВФХ n-6H-SiC/p-(SiC)_{0.85}(AlN)_{0.15}, измеренные в интервале 77—418 К. Емкостное напряжение отсечки U_C , найденное экстраполяцией прямых до пересечения с осью напряжений, при 77 К (прямая 1) составляет 3.2 В и с ростом температуры сначала нелинейно, а затем практически линейно уменьшается до 2.65 В при 418 К (прямая 4). Для линейного участка $U_C(T) = U_{C0} - \alpha_C T$ (рис. 2, вставка), где U_{C0} — напряжение, получаемое экстраполяцией $U_C(T)$ к T=0 K; для данной структуры $U_{C0} = 3.46 \,\mathrm{B}, \,\alpha_C$ — температурный коэффициент напряжения емкостной отсечки равен $2.1 \cdot 10^{-3}$ В/град. К сожалению, в литературе отсутствуют данные о температурной зависимости ширины запрещенной зоны E_{g} твердых растворов $(SiC)_{1-x}(AlN)_x$. Поэтому трудно однозначно утверждать, с чем связана наблюдаемая температурная зависимость U_C , а следовательно, и величины U_d . Тем не менее, зная, что зависимость $U_d(T)$ намного сильнее

Рис. 2. Вольт-фарадные характеристики гетероструктур n-6H-SiC/p-(SiC) $_{0.85}$ (AlN) $_{0.15}$, измеренные при T, K: I-77, 2-273, 3-361, 4-418. На вставке — температурная зависимость емкостного напряжения отсечки U_C для данной гетероструктуры.

Рис. 3. Зависимости толщины области пространственного заряда W в гетероструктурах n-6H-SiC/p- $(SiC)_{0.87}(AlN)_{0.13}$ от напряжения на структуре: I — экспериментальная, 2 — расчетная.

 $E_g(T)$ для структур на основе 6*H*-SiC [8], можно предположить, что зависимость $U_C(T)$ главным образом определяется температурным ходом химического потенциала в n- и p-области. Определенный вклад вносит также температурная зависимость ширины запрещенной зоны компонентов гетеропары SiC и $(SiC)_{1-x}(AlN)_x$.

Исследование ВФХ ГС дает возможность определить толщину переходной области W. На рис. 3 представлена зависимость W=f(U), для ГС n-6H-SiC/p-(SiC) $_{0.87}$ (AlN) $_{0.13}$. Толщина p-n-перехода, определенная из значения емкости при нулевом смещении, составляет $1.2 \cdot 10^{-4}$ см. Сравнение значений толщин, полученных расчетным путем и из ВФХ (рис. 3), показывает, что экспериментально определяемые значения толщины больше, чем расчетные. Это, видимо, связано с влиянием подвижных носителей заряда в p-n-переходе и заряженных состояний на границе раздела на экспериментальные значения емкости.

Для выяснения механизма электрического пробоя ГС наблюдаемого при обратных напряжениях 25 В, по ВФХ рассчитаны значения максимального электрического поля $E_{\rm M}(U)$ по методике, предложенной в работе [9]. Величина $E_{\rm M}(U)$ в ГС n-6H-SiC/p-(SiC)_{0.44}(AlN)_{0.56} при предпробойных напряжениях составляет порядка 5 · 10⁴ В/см. Такие напряженности недостаточны для ионизации примесей в результате туннелирования, поэтому можно предположить, что в исследованных структурах электрический пробой осуществляется по механизму ударной ионизации.

Заключение

Методом вольт-фарадных характеристик установлено, что в гетероструктурах, полученных методом сублимационной эпитаксии слоев твердых растворов p-(SiC) $_{1-x}(AlN)_x$ на подложках n-6H-SiC, образуются резкие гетеропереходы. Толщина области объемного заряда составляет $0.5-2\cdot 10^{-4}$ см. Значение напряжения емкостной отсечки U_C больше $2.9\,\mathrm{B}$ и растет с увеличением содержания AlN в эпитаксиальных слоях. Величина U_C имеет температурный коэффициент α_C , который равен $(1-3)\cdot 10^{-3}\,\mathrm{B/град}$.

Емкостные измерения показывают, что с увеличением содержания AlN в эпитаксиальных слоях $(SiC)_{1-x}(AlN)_x$ концентрация нескомпенсированных примесей N_a в них уменьшается. Из вольт-фарадных характеристик рассчитаны значения максимального электрического поля E_M в гетероструктурах $n\text{-}SiC/p\text{-}(SiC)_{1-x}(AlN)_x$ в предпробойной области. Полученные значения $E_M(U)\simeq 10^4$ B/см указывают на механизм ударной ионизации в области объемного заряда при электрическом пробое гетероструктур.

Список литературы

- [1] А.П. Дмитриев, Н.В. Евлахов, А.С. Фурман. ФТП, **30** (1), 106 (1996).
- [2] Г.К. Сафаралиев, М.К. Курбанов, Н.В. Офицерова, Ю.М. Таиров. Изв. РАН. Неорг. матер., № 6 (1995).
- [3] Ш.А. Нурмагомедов, А.Н. Пихтин, В.Н. Резбегаев, Г.К. Сафаралиев, Ю.М. Таиров, В.Ф. Цветков. Письма ЖТФ, **12** (17), 1043 (1986).
- [4] А.А. Лебедев, Д.В. Давыдов, К.И. Игнатьев. ФТП, 30 (10), 1865 (1996).
- [5] М.М. Аникин, А.А. Лебедев, И.В. Попов, В.П. Растегаев, А.Л. Сыркин, Б.В. Царенков, В.Е. Челноков. ФТП, 22 (1), 133 (1987).
- [6] Справочник по электротехническим материалам, под ред. Ю.В. Корицкого, В.В. Пасынкова, Б.М. Тареева (Л., Энергоатомиздат, 1988) т. 3.
- [7] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник (М., Мир, 1975).
- [8] А.Н. Пихтин, Д.А. Яськов. ФТП, 12 (6), 1597 (1986).
- [9] Л.С. Берман. Емкостные методы исследования полупроводников (Л., 1972).

Редактор Т.А. Полянская

Investigation of SiC/(SiC)_{1-x}(AIN)_x heterostructures by capacity-voltage method

M.K. Kurbanov, B.A. Bilalov, Sh.A. Nurmagomedov, G.K. Safaraliev

Dagestan state university 367025 Makhachkala, Russia

Abstract It has been established using the capacity-voltage method that in n-6H-SiC/p-(SiC) $_{1-x}$ (AlN) $_x$ heterostructures, which were obtained by sublimation epitaxy of (SiC) $_{1-x}$ (AlN) $_x$ on 6H-SiC substrates, occurrence of sharp heterojunctions having the thickness of $\sim 1 \cdot 10^{-4}$ sm took place. By the capacity-voltage characteristics method, the basic properties of heterostructures were found as functions of the epitaxial layer composition and temperature.