Отрицательная люминесценция в диодах на основе p-InAsSbP/n-InAs

© М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев[¶], М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 25 июля 2000 г. Принята к печати 26 июля 2000 г.)

В диодных гетероструктурах p-InAsSbP/n-InAs, смещенных в обратном направлении, исследовалась отрицательная люминесценция $\lambda_{\rm max}=3.8$ мкм в интервале температур $70\div180^{\circ}$ С. Мощность отрицательной люминесценции возрастала с повышением температуры и, начиная со 110° С, оказывалась больше мощности электролюминесценции в прямом направлении. Получены значения мощности отрицательной люминесценции $5\,{\rm MBT/cm^2}$, эффективности 60% и коэффициента преобразования $25\,{\rm MBT/A\cdot cm^2}$ при 160° С.

Введение

Светодиоды (СД) в средней инфракрасной (ИК) области спектра $(3 \div 5 \text{ мкм})$ используются в приборах газового анализа для детектирования углекислого газа CO_2 (4.3 мкм), метана CH_4 (3.3 мкм) и других углеводородов. Было показано, что СД на основе InGaAs $(\lambda = 3.3 \,\mathrm{MKM})$ и InAsSbP $(\lambda = 4.3 \,\mathrm{MKM})$, выращенные методом жидкофазной эпитаксии, имеют срок службы более 30 000 ч [1] и работают до температур $t = 180^{\circ} \text{C}$ [2]. При этом работа СД в интервале температур $t = 20 \div 180^{\circ}$ С хорошо описывается классическими представлениями об инжекционных источниках изучения и процессах рекомбинации носителей заряда. Температурные зависимости обратных токов в области насыщения соответствуют теории Шокли, т.е. возрастанию собственной концентрации носителей заряда. Спектры излучения описываются в предположении прямых переходов зона-зона, сферически симметричных зон и термализованных носителей заряда. Мощность излучения экспоненциально падает с температурой, что характерно для оже-процессов.

С другой стороны, если к p-n-переходу приложено обратное смещение, то можно ожидать экстракции носителей из примыкающих к p-n-переходу областей и уменьшения их концентрации ниже равновесной величины так, что $(n \times p) < (n_0 \times p_0) = n_i^2$, где n_0 , p_0 , n, p — равновесные и неравновесные концентрации электронов и дырок соответственно, а n_i — собственная концентрация. Следствием экстракции носителей является уменьшение интенсивности излучательной рекомбинации P, которая становится ниже теплового фона P_0 :

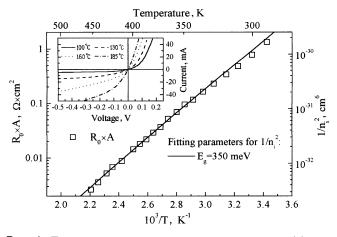
$$\Delta P = P - P_0 = P_0 \left(\frac{np}{n_i^2} - 1 \right) \leqslant 0,$$

т.е. люминесценция становится "отрицательной". Эффект отрицательной люминесценции (ОЛ) известен с 1965 г., когда В.И. Иванов-Омский с коллегами измерили ОЛ в InSb, помещенном во взаимно перпендикулярных электрическом и магнитном полях [3]. ОЛ исследовалась

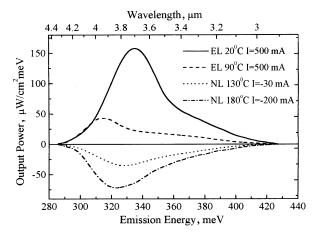
¶ Fax: +7(812) 2474324 E-mail: bmat@iropt3.ioffe.rssi.ru в объемных кристаллах InAs [4], диодах на основе InSb и CdHgTe [5,6] и, совсем недавно, в структурах на основе сверхрешеток [7,8]. Мощность ОЛ, или "тепловой контраст", зависит от интенсивности излучения окружающей среды и ограничена мощностью излучения абсолютно черного тела при данной температуре. Поэтому мощность ОЛ при комнатной температуре: 0.4 $(\lambda = 4.3 \text{ MKM})$ [7], 0.53 $(\lambda = 6 \text{ MKM})$, 4 $(\lambda = 8 \text{ MKM})$ [6], $0.2 \,\mathrm{MBT/cm^2}$ ($\lambda = 5.3 \,\mathrm{Mkm}$) [8] значительно меньше, чем у светодиодов при положительном смещении: 46 mBT/cm^2 , I = 0.4 A ($\lambda = 3.3 \text{ mkm}$) [9], 36 mBT/cm^2 , $I = 2 \text{ A} \ (\lambda = 4.2 \text{ MKM}) \ [10], \ 25 \text{ MBT/cm}^2, \ I = 1 \text{ A}$ $(\lambda = 5.5 \,\text{мкм})$ [11]. Однако с увеличением температуры и длины волны мощность ОЛ возрастает [4], отражая свойства черного тела, в противоположность мощности ЭЛ, которая из-за оже-рекомбинации уменьшается с ростом температуры и длины волны. Поэтому существует температура, при которой эффективность ОЛ превышает эффективность ЭЛ. Для сверхрешеток InAs/InAsSb $(\lambda = 4.3 \, \text{мкм})$ такая температура была определена как 310 К [7], однако, насколько нам известно, не было попыток исследовать ОЛ в p-n-переходах при температурах $T > 310 \,\mathrm{K}$. В данной работе мы исследуем ОЛ в диодных гетероструктурах p-InAsSbP/n-InAs ($\lambda = 3.8$ мкм, 80° C) в интервале температур $70 \div 180^{\circ}$ C.

Изучаемые объекты и методики исследования

Согласованные по параметру решетки диодные гетероструктуры p-InAsSb_{0.09}P_{0.18}/n-InAs выращивались методом жидкофазной эпитаксии на подложке n-InAs (111) при 630—680° С. Толщина подложки составляла 350 мкм, концентрация электронов $2 \cdot 10^{16}$ см⁻³, широкозонный слой p-InAsSbP ($E_g = 390$ мэВ, 300 К) толщиной $2 \div 4$ мкм легировался Zn до концентрации дырок $5 \div 7 \cdot 10^{16}$ см⁻³. Круглые меза-структуры диаметром 430 мкм и верхний p-контакт Au(Zn) диаметром 160 мкм создавались методом фотолитографии. Излучение выводилось через широкозонный слой InAsSbP.


Измерения ЭЛ и ОЛ проводились в импульсном режиме $\tau=30\,\mathrm{mkc},\,f=500\,\mathrm{Fg}$. Спектры излучения

регистрировались охлаждаемым (77 K) фотодиодом на основе InSb. Измерения абсолютной мощности были выполнены с помощью охлаждаемого (77 K) фотодиода на основе HgCdTe, с учетом диаграммы направленности СД и спектральной чувствительности фотоприемника.


Экспериментальные результаты и их обсуждение

В [12,13] было показано, что при температурах выше $200 \,\mathrm{K}$ в p-n-переходах в InAs и близких к нему по составу твердых растворах преобладает "диффузионный" механизм протекания тока, т.е. в соответствии с теорией Шокли рекомбинация в "п" и "р" областях p-n-перехода определяет вольт-амперные характеристики. На рис. 1 представлены вольт-амперные характеристики при t = 100, 130, 160, 185°C (см. вставку) и температурные зависимости произведения дифференциального сопротивления при нулевом смещении на площадь p-n-перехода $R_0 \times A$ и обратного квадрата собственной концентрации $1/n_i^2$. Отсутствие четкого насыщения обратного тока свидетельствует о том, что ток содержит не только диффузионную составляющую. С другой стороны, совпадение наклонов $R_0 \times A$ и $1/n_i^2$ (рис. 1) свидетельствует о том, что при малых токах диффузионный механизм протекания тока является доминирующим. Это позволяет ожидать экстракции носителей заряда от p-n-перехода при обратном смещении в этом диапазоне температур. Ход экспериментальной зависимости совпадает с кривой $1/n_i^2$ при $E_g = 350$ мэВ, что означает, что p-n-переход смещен от гетерограницы InAs/InAsSbP и расположен в подложке n-InAs.

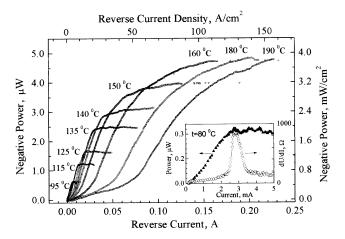
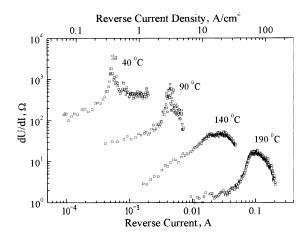

На рис. 2 представлены спектры ЭЛ ($I=500\,\mathrm{mA}$, $t=20,\,90^\circ\mathrm{C}$) и ОЛ ($I=-30,\,-200\,\mathrm{mA}$, $t=130,\,180^\circ\mathrm{C}$). С увеличением температуры максимума излучения смещаются в длинноволновую сторону в соответствии с

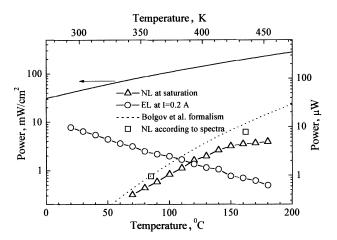
Рис. 1. Температурные зависимости произведения дифференциального сопротвления на площадь p-n-перехода $R_0 \times A$ при нулевом смещении и обратного квадрата собственной концентрации $1/n_i^2$. На вставке — вольт-амперные характеристики при $t=100,\,130,\,160,\,185^{\circ}\mathrm{C}$.

Рис. 2. Спектры ЭЛ ($I = 500 \,\text{MA}, t = 20,90^{\circ}\text{C}$) и ОЛ ($I = -30, -200 \,\text{MA}, t = 130,180^{\circ}\text{C}$).

Рис. 3. Зависимости мощности излучения ОЛ от тока в температурном интервале $t=95\div190^{\circ}\mathrm{C}$. На вставке — токовые зависимости мощности ОЛ и дифференциального сопротивления dU/dI при $t=80^{\circ}\mathrm{C}$.


температурным сужением запрещенной зоны, однако максимум ОЛ смещен в сторону коротких волн по сравнению со спектром ЭЛ.

На рис. 3 представлены зависимости мощности излучения ОЛ от тока в температурном интервале $t = 80 \div 190^{\circ}$ С. Линейное увеличение мощности от тока сменяется насыщением, которое свидетельствует об истощении активной области структуры и отсутствии разогрева диода. При этом мощность ОЛ приближается к мощности равновесного рекомбинационного излучения P_0 при данной температуре. Ярко выраженное насыщение мощности ОЛ наблюдается вплоть до $t = 135^{\circ}$ С; при более высоких температурах отсутствие четкого насыщения и нелинейное нарастание мощности при малых токах может быть связано с присутствием добавочного источника носителей, например неомичного контакта, который, добавляя носители в активную область, препятствует полной экстракции носителей заряда, либо с утечками. Токи, при которых происходит насыщение мощности ОЛ, коррелируют с точками насыщения обратных ветвей вольт-амперных характеристик, что хорошо видно на вставке к рис. 3 и рис. 4, где приводятся токовые зависимости дифференциального сопротивления dU/dI в интервале температур $40 \div 190$ °C. Аналогичные зависимости наблюдались на сверхрешетках InAs/InAsSb [7].


Величина равновесного рекомбинационного излучения P_0 , к которой приближается мощность ОЛ при полном истощении активной области, для невырожденного полупроводника с шириной запрещенной зоны E_g и прямых межзонных переходов была рассчитана в [14]

$$P_0 = \frac{E_g^3 h^3 F(q) n_i^2}{4\pi^2 c^2 (m_n m_p)^{3/2} (kT)^2},\tag{1}$$

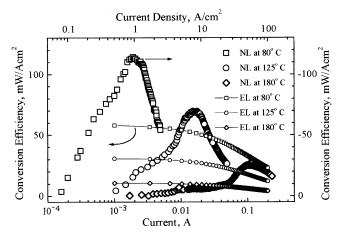

где h — постоянная Планка, $F(q) \approx 0.1$ — функция показателя преломления полупроводника, c — скорость

Рис. 4. Токовые зависимости дифференциального сопротивления в интервале температур $t = 40 \div 190$ °C.

Рис. 5. Температурные зависимости мощности излучения ЧТ (сплошная линия), расчетной мощности равновесного рекомбинационного излучения P_0 в InAs, расчетной мощности равновесного рекомбинационного излучения с учетом экспериментальных спектров ОЛ, мощности ЭЛ при $I=0.2\,\mathrm{A}$ и мощности ОЛ при $I=I_{\mathrm{SAT}}$.

Рис. 6. Зависимости коэффициента преобразования от тока для случаев прямого и обратного смещения при $t=80,125,180^{\circ}\mathrm{C}$.

света, m_n и m_p — эффективные массы электрона и тяжелой дырки. На рис. 5 представлены температурные зависимости мощности излучения абсолютно черного тела (ЧТ), расчетной мощности равновесного рекомбинационного излучения P_0 в InAs, расчетной мощности равновесного рекомбинационного излучения с учетом экспериментальных спектров ОЛ, мощности ЭЛ при токе $I = 0.2 \,\mathrm{A}$ и мощности ОЛ при токе насыщения $I = I_{\text{SAT}}$. Видно хорошее совпадение зависимости $P_0(t)$, рассчитанной в соответствии с (1), и расчетной мощности равновесного рекомбинационного излучения с учетом экспериментальных спектров ОЛ. Мощность ОЛ резко возрастает с ростом температуры и при $t = 110^{\circ}$ С превышает мощность ЭЛ. Температурная зависимость мощности ОЛ отражает температурную зависимость излучения ЧТ, при этом пик спектральной характеристики ОЛ, соответствующий ширине запрещенной зоны InAs, сдвигается к максимуму излучения ЧТ. Эффективность ОЛ η определяется как отношение мощности ОЛ и мощности ЧТ, приходящейся на спектр ОЛ (т.е. к P_0). Полученная величина $\eta = 0.63~(160^{\circ}\text{C})$ близка к лучшим значениям, известным из литературы: $\eta = 0.5$ (CdHgTe, $\lambda = 9.5 \,\text{MKM}, 300 \,\text{K}) \,[6].$

На рис. 6 приведены токовые зависимости коэффициента преобразования (отношение мощности люминесценции с единичной площадью к рабочему току) для случаев прямого и обратного смещения в интервале $80 \div 180^{\circ}$ С. Как видно, коэффициент преобразования ЭЛ падает с увеличением тока и температуры, что наблюдалось также в диодах на основе InAs [15] и InAsSbP [16]. При комнатной температуре коэффициент преобразования ЭЛ падает от $210 \, \mathrm{mBt/Acm^2}$ при $5 \, \mathrm{mA}$ до $75 \, \mathrm{mBt/Acm^2}$ при $200 \, \mathrm{mA}$ за счет джоулева разогрева, оже-рекомбинации и поглощения на свободных носителях. Отношение эффективностей преобразования ОЛ и ЭЛ увеличивается с ростом температуры и демонстрирует преимущества использования обратно смещенных p-n-переходов в области повышенных температур.

Заключение

Таким образом, в диодных гетероструктурах p-InAsSbP/n-InAs при приложении отрицательного смещения наблюдалась интенсивная отрицательная люминесценция $\lambda=3.8\,\mathrm{mkm}$, мощность которой возрастала с ростом тока и температуры. Спектральные и мощностные характеристики ОЛ в интервале температур $70 \div 180^{\circ}\mathrm{C}$ можно объяснить истощением активной области носителями заряда, что приводит к уровню излучательной рекомбинации ниже равновесного значения.

Мощность ОЛ (5 мкВт) и коэффициент преобразования (25 мВт/Асм²) при 160° С превосходит соответствующие величины электролюминесценции, показывая тем самым перспективность использования обратно смещенных p-n-переходов в оптоэлектронной аппаратуре при повышенных температурах.

Работа выполнена при административной поддержке Американского Фонда гражданских исследований и развития США для стран СНГ (CRDF).

Список литературы

- [1] B. Matveev, M. Aidaraliev, G. Gavrilov et al. Sensors & Actuators, **51** (1–3), 233 (1998).
- [2] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 34 (1), 102 (2000).
- [3] В.И. Иванов-Омский, Б.Т. Коломиец, В.А. Смирнов. ДАН СССР, 161 (6), 1308 (1965).
- [4] С.С. Болгов, В.К. Малютенко, А.П. Савченко. ФТП, 31 (5), 526 (1997).
- [5] T. Ashley, C.T. Elliot, N.T. Gordon, S.H. Hall, A.D. Johnson, G.R. Price. J. Cryst. Growth, 159, 1100 (1996).
- [6] T. Ashley, C.T. Elliot, N.T. Gordon, S.H. Hall, A.D. Johnson, G.R. Price. Infr. Phys. Technol., 36, 1037 (1995).
- [7] M.J. Pullin, H.R. Hardaway, J.D. Heber, C.C. Phillips. Appl. Phys. Lett., 75 (22), 3427 (1999).
- [8] L.J. Olafsen, I. Vurgaftman, W.W. Bewley, C.L. Felix, E.H. Aifer, J.R. Meyer, J.R. Waterman, W. Mason. Appl. Phys. Lett., 74 (18), 2681 (1999).
- [9] M.K. Parry, A. Krier. Electron. Lett., **30** (23), 1968 (1994).
- [10] M.J. Pullin, H.R. Hardaway, J.D. Heber et al. Appl. Phys. Lett., **74** (16), 2384 (1999).
- [11] B. Matveev, N. Zotova, S. Karandashov, M. Remennyi, N. Il'inskaya, N. Stus', V. Shustov, G. Talalakin. J. Malinen IEE Proc. Optoelectronics, 145 (5), 254 (1998).
- [12] Н.П. Есина, Н.В. Зотова, Д.Н. Наследов. ФТП, **3** (5), 1370 (1969).
- [13] A. Krier, Y. Mao. Infr. Phys. Technol., 38, 397 (1997).
- [14] С.С. Болгов, В.К. Малютенко, В.И. Пипа. Письма ЖТФ, 5 (23), 1444 (1979).
- [15] M.J. Kane, G. Braithwaite, M.T. Ereny, D. Lee, T. Martin, D.R. Wright. Appl. Phys. Lett., 76 (8), 943 (2000).
- [16] M.K. Parry, A. Krier. Semicond. Sci. Technol., 8, 1764 (1993).

Редактор В.В. Чалдышев

Negative luminescence from p-InAsSbP/n-InAs diodes

M. Aydaraliev, N.V. Zotova, S.A. Karandashov, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin

Ioffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract We report negative luminescence in *p*-InAsSbP/*n*-InAs heterostructure diodes grown by the LPE method within $70-180^{\circ}$ C. The reverse bias device produced output power up to $5\,\mu\text{W}$ at 180° C ($\lambda=3.8\,\mu\text{m}$, FWHM= $0.7\,\mu\text{m}$) and showed superiority to LED conversion efficiency indicating potentialities of such sources for low power consumption instruments.