Методика определения стехиометрического состава твердого раствора кадмий-ртуть-теллур из вольт-фарадных характеристик

© И.М. Иванкив, А.М. Яфясов[¶], В.Б. Божевольнов, А.Д. Перепелкин

Научно-исследовательский институт физики Санкт-Петербургского государственного университета, 198504 Санкт-Петербург, Россия

(Получена 26 июля 2000 г. Принята к печати 19 сентября 2000 г.)

Предложена методика определения стехиометрического состава собственного полупроводника $Hg_{1-x}Cd_s$ Те с использованием эффекта поля в электролите. Оригинальный сравнительный анализ вольт-фарадных характеристик, полученных экспериментально и рассчитанных в рамках квантового описания области пространственного заряда, позволяет найти значение x в приповерхностном слое полупроводника на глубине, соизмеримой с дебаевским радиусом экранирования. Представлены результаты определения стехиометрического состава четырех образцов $Hg_{1-x}Cd_x$ Те (x=0.205, 0.245, 0.290, 0330).

1. Введение

Электрофизические методы исследования полупроводников, основанные на измерении вольт-фарадных характеристик (ВФХ), широко используются для определения типа и концентрации легирующей примеси, спектра быстрых и медленных поверхностных состояний [1]. Дополнительные возможности исследования полупроводников открываются при использовании вместо традиционной системы металл-диэлектрик-полупроводник (МДП) системы электролит-диэлектрик-полупроводник (ЭДП). Главным преимуществом метода эффекта поля в системе ЭДП является возможность формирования практически безокисной поверхности, 1 в результате чего измеряемая емкость есть фактически емкость области пространственного заряда полупроводника (C_{sc}). Использование специально подобранных электролитов и режимов травления позволяет реализовать поверхность с низкой плотностью поверхностных состояний (ПС) для разных составов твердого раствора кадмий-ртутьтеллур (КРТ) в широком диапазоне поверхностных потенциалов.

При использовании метода эффекта поля в электролитах прямое сравнение теоретических и экспериментальных вольт-фарадных характеристик КРТ затруднено из-за неизбежно возникающей погрешности в определении площади и коэффициента шероховатости поверхности после химического и электрохимического травления образца, а также из-за наличия дополнительной емкости поверхностных состояний (C_{xx}).

В данной работе предлагается метод определения стехиометрического состава собственного КРТ, который свободен от вышеуказанных экспериментальных погрешностей. Его основная идея заключается в последовательном логарифмировании и дифференцировании экспериментальных ВФХ в широком диапазоне поверхностных потенциалов, в результате чего устраняется ошибка определения площади и коэффициента шероховатости и

возможно провести более точное сопоставление с теоретическим расчетом. Емкость поверхностных состояний может повлиять на результат только в случае невыполнения неравенства $C_{ss}(V_s) \ll C_{sc}(V_s)$, где V_s — величина поверхностного потенциала внешнего электрического поля.

2. Теоретическая модель области пространственного заряда

Для корректного описания области пространственного заряда (ОПЗ) узкощелевых кейновских полупроводников при комнатных температурах необходимо учитывать волновую природу электронов и дырок, находящихся как в связанных состояниях, так и в непрерывном спектре. В рамках одночастичного приближения Хартри распределение концентрации электронов ρ_e и тяжелых дырок ρ_{hh}^2 находится из самосогласованного решения уравнения Пуассона и уравнений Шредингера для электронов и дырок [3]:

$$\frac{d^2V(z)}{dz^2} = q \, \frac{\rho_e(z) - \rho_{hh}(z) + N_a - N_d}{\varepsilon_0 \varepsilon_{sc}},\tag{1}$$

$$-\frac{d^2\varphi_i(z,k_{\parallel})}{dz^2} = \left[k^2\left(E_i(k_{\parallel}),V(z)\right) - k_{\parallel}^2\right]\varphi_i(z,k_{\parallel}), \quad (2)$$

$$\left[-\frac{\hbar^2}{2m_{hh}} \frac{d^2}{dz^2} - qV(z) \right] \varphi_j(z) = (-E_j - E_g) \varphi_j(z), \quad (3)$$

где V(z) — ход электростатического потенциала в ОПЗ полупроводника; q — заряд электрона; ε_{sc} — диэлектрическая проницаемость полупроводника; ε_0 — электрическая постоянная; N_d , N_a — концентрации ионизированных донорных и акцепторных центров соответственно; m_{hh} — масса тяжелой дырки. Здесь $\mathbf{k}=(k_x,k_y,k_z)$ — волновой вектор, $k_{\parallel}^2=k_x^2+k_y^2$; за начало отсчета энергии выберем дно зоны проводимости в объеме полупроводника; $\varphi_i(z,k_{\parallel})$, $E_i(k_{\parallel})$ и $\varphi_j(z)$, E_j — огибающие волновых

[¶] E-mail: yafyasov@desse.phys.spbu.ru

 $^{^{1}}$ В системе полупроводник—электролит в качестве сверхтонкого диэлектрического слоя выступает слой Гельмгольца толщиной $2-4\,\mathrm{\mathring{A}}$ [2].

² Концентрацией легких дырок в первом приближении можно пренебречь.

функций и собственные значения энергии электронов и дырок соответственно.

Предполагаем, что закон дисперсии тяжелых дырок — параболический, а закон дисперсии электронов описывается формулой [4]

$$k^{2}[E, V(z)] = \frac{1}{P^{2}}$$

$$\times \frac{[E - qV(z)][E - qV(z) + E_g][E - qV(z) + E_g + \Delta]}{[E - qV(z) + E_g + (2/3)\Delta]}, (4)$$

где P — матричный элемент оператора импульса; E_g — величина запрещенной зоны полупроводника, Δ — величина спин-орбитального расщепления валентной зоны.

Концентрации электронов и дырок можно найти из выражений

$$\rho_e(z) = \frac{1}{\pi} \int_0^\infty dk_{\parallel} \sum_i \frac{k_{\parallel} \varphi_i(z, k_{\parallel})|^2}{1 + \exp\{[E_i(k_{\parallel}) - E_F]/k_0 T\}}, \quad (5)$$

$$\rho_{hh}(z) = \sum_{j=1}^{+\infty} \Gamma_j(E_j) |\varphi_j(z)|^2, \tag{6}$$

где

$$\Gamma_j(E_j) = \frac{m_{hh}k_0T}{\pi\hbar^2}\ln\Big\{1+\expigl[(E_j-E_F)/k_0Tigr]\Big\},$$

 E_F — уровень Ферми, k_0 — постоянная Больцмана, T — температура.

Дифференциальная емкость $C_{sc}(V_s)$ ОПЗ полупроводника находится как

$$C_{sc} = \frac{dQ_{sc}}{dV_{s}},\tag{7}$$

где $Q_{sc}(V_s)=q\int\limits_0^\infty [\rho_e(z)-\rho_{hh}(z)+N_a-N_d]dz$ (в нашем случае $N_d=N_a=0$). Для примера на рис. 1 приведены теоретические ВФХ для $Hg_{1-x}Cd_x$ Те, x=0.245. Для расчетов были взяты следующие параметры КРТ [5]:

$$\varepsilon_{sc} = 20.5 - 15.5x + 5.72x^2$$
, $m_{hh}/m_0 = 0.5$, $\Delta = 0.96 \, \text{9B}$,

$$P \left[\mathbf{9B} \cdot \mathbf{cM} \right] = \left[(18 - 3x) \hbar^2 / 2m_0 \right]^{1/2},$$

$$E_g \left[\mathbf{9B} \right] = -0.302 + 1.93x + 5.35 \cdot 10^{-4} (1 - 2x) T$$

$$-0.81x^2 + 0.832x^3.$$

 m_0 — масса свободного электрона.

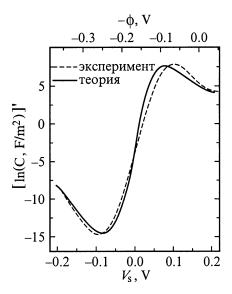
3. Методика эксперимента

Методика эксперимента основана на измерении импенданса границы раздела полупроводник—электролит при ее тестировании импульсным сигналом с длительностью 1 мкс. Одновременно измерялись вольтамперные характеристики системы. Поляризация полупроводникового электрода проводилась в потенциостатическом режиме при непрерывном циклическом

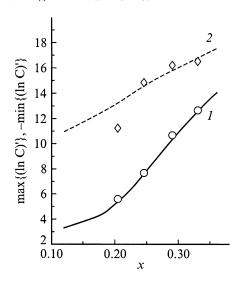
Рис. 1. Экспериментальная (штриховая линия) и теоретическая (сплошная) вольт-фарадные характеристики КРТ с x=0.245.

изменении электродного потенциала со скоростями $d\phi/dt=10-100\,\mathrm{mB/c}$ при температуре $T=295\,\mathrm{K}$. Электродный потенциал (ϕ) измерялся относительно нормального водородного электрода. При поляризации полупроводникового электрода выбирался такой диапазон изменений электродных потенциалов, когда токи через межфазную границу, обусловленные электрохимическими реакциями, практически отсутствуют и эффект поля носит равновесный характер.

Поверхность монокристаллов КРТ перед измерениями подвергалась химико-динамической полировке в бромметаноловом растворе. Непосредственно перед экспериментом поверхность образцов дополнительно травилась электрохимически. Такая подготовка образцов обеспечивает удаление окислов с поверхности и экстремально низкую плотность поверхностных состояний. В результате измеряемая емкость границы КРТ-электролит определяется фактически емкостью ОПЗ полупроводника, т. е. $C=C_{sc}$. При этом во всем диапазоне электродных потенциалов выполняется соотношение $V_s=-(\phi-\phi_{FB})$ и $-\Delta\phi=\Delta V_s$, где ϕ_{FB} — потенциал плоских зон.


В настоящей работе методика определения состава КРТ была опробована на четырех тестовых монокристаллических образцах со случайной кристаллографической ориентацией ($x=0.205,\ 245,\ 290,\ 330$). В качестве примера на рис. 1 приведены экспериментальная и теоретическая ВФХ для состава с x=0.245. Из рисунка видно, что экспериментальная кривая оказалась несколько выше теоретической. Наилучшее согласие теоретической и экспериментальной кривых получается при введении поправки к величине площади образца на 10%. При

³ Исходно образцы КРТ паспортизовались по составу с использованием независимых холловских и оптических измерений.


этом плотность ПС в диапазоне $-0.1 < V_s < 0.1\,\mathrm{B}$ оценивается величиной не более $3\cdot 10^{11}\,\mathrm{cm}^{-2}$ эВ $^{-1}$. Тем не менее, несмотря на ошибку в площади, предлагаемый метод позволяет определить стехиометрический состав кристалла с достаточно хорошей точностью.

4. Результаты и их обсуждение

На рис. 2 представлены кривые, которые получаются после логарифмирования и последующего дифференцирования теоретической и экспериментальной ВФХ (x=0.245). Из рисунка видно, что теоретическая зависимость $d[\ln(C=C_{sc})]/dV_s$ от V_s (как и экспериментальная зависимость) имеет минимум на дырочной

Рис. 2. Производная логарифма экспериментальной (штриховая линия) и теоретической (сплошная) емкости в зависимости от напряжения для КРТ с x = 0.245.

Рис. 3. Теоретические зависимости (линии) максимумов (1) и минимумов (2) $d(\ln C)/dV_s$ от состава КРТ (от x) и значения экстремумов, полученные в эксперименте (точки).

Разультаты определения состава (x) твердых растворов $Hg_{1-x}Cd_sTe$

Способ определения	x			
Паспортные данные	0.205	0.245	0.290	0.330
Электронная ветвь	0.209	0.245	0.295	0.330
Дырочная ветвь	0.150	0.255	0.305	0.320

ветви $(V_s < 0)$ и максимум на электронной ветви $(V_s > 0)$. Если значения производной в этих экстремумах отложить как функцию состава (x), то получаются зависимости, приведенные на рис. 3. Видно хорошее совпадение теории и эксперимента на электронной ветви и несколько худшее на дырочной, что связано, по-видимому, с неконтролируемым ростом окисла при анодной поляризации.

Таким образом, теоретические кривые рис. 3 можно использовать как номограммы для определения состава образцов собственного КРТ. Для этого экспериментальную ВФХ границы КТР—электролит необходимо прологарифмировать, затем продифференцировать и отложить полученные значения минимума и максимума на оси ординат; пересечение горизонтальных прямых, проведенных из этих точек, с соответствующей расчетной кривой даст искомое значение состава *х*. Состав тестовых образцов, определенных по этому алгоритму, представлен в таблице.

Заключение

Предлагаемый метод определения стехиометрического состава КРТ путем измерения ВФХ в системе электролит–полупроводник показал хорошие результаты. Его отличительной чертой является локальность определения состава (на глубине ОПЗ). Метод также может быть обобщен на случай легированного КРТ и ему подобных полупроводников ($Hg_{1-x}Zn_xTe$, $Hg_{1-x}Mn_xTe$ и т.д.) при соответствующем выборе рабочих растворов электролитов и режимов поляризации в эффекте поля в электролитах.

Данная работа была поддержана в рамках программы "Университеты России" (грант № 99-27-32).

Список литературы

- [1] P. Blood. Semicond. Sci. Technol., 1, 7 (1986).
- [2] В.А. Мямлин, Ю.В. Плесков. Электрохимия полупроводников (М., Наука, 1965).
- [3] A.M. Yafyasov, I.M. Ivankiv, V.B. Bogevolnov. Appl. Surf. Sci., 142, 629 (1999).
- [4] O.E. Kane. J. Phys. Chem. Sol., 1, 249 (1957).
- [5] И.М. Несмелова. Оптические свойства узкощелевых полупроводников (Новосибирск, Наука, 1992).

Редактор Л.В. Шаронова

A method for determination of mercury-cadmium telluride stoichiometric composition from capacitance-voltage characteristics

I.M. Ivankiv, A.M. Yafyasov, V.B. Bogevolnov, A.D. Perepelkin

Institute of Physics, St.Petersburg State University, 198504 St.Petersburg, Russia

Abstract A method for determination of the mercury–cadmium telluride $Hg_{1-x}Cd_xTe$ stoichiometric composition using the electrolyte field effect has been suggested. An original comparative analysis of experimentally and theoretically obtained capacitance–voltage characteristics allows to determine the value x at a subsurface depth that is commensurate with the Debye sereening length. Presented are results of finding stoichiometric composition of four samples $Hg_{1-x}Cd_xTe$ (x=0.205, 0.245, 0.290, 0.330).