Критическое поведение теплоемкости в области фазовых переходов кристалла $[NH_2(CH_3)_2]_5Cd_3Cl_{11}$

© Т.И. Декола, А.У. Шелег, Н.П. Теханович

Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

E-mail: sheleg@ifttp.bas-net.by

(Поступила в Редакцию 11 мая 2004 г. В окончательной редакции 29 июля 2004 г.)

Калометрическим методом в интервале температур $100-300\,\mathrm{K}$ проведены измерения теплоемкости кристалла $[\mathrm{NH}_2(\mathrm{CH}_3)_2]_5\mathrm{Cd}_3\mathrm{Cl}_{11}$. На кривой температурной зависимости $C_p(T)$ при понижении температуры наблюдается последовательность фазовых переходов при температурах $T_1=176.5\,\mathrm{u}$ $T_2=123.5\,\mathrm{K}$. Определены термодинамические характеристики данного кристалла. Показано, что переход при $T_2=123.5\,\mathrm{K}$ является фазовым переходом несоразмерная—соразмерная фаза, переход при $T_1=176.5\,\mathrm{K}$ — нормальная—несоразмерная фаза.

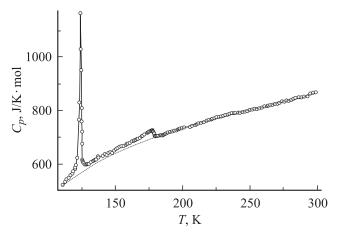
1. Введение

В семействе кристаллов, содержащих метиламмонийный катион, наблюдаются различные структурные фазовые переходы (ФП). Сравнительно новый кристалл $[NH_2(CH_3)_2]_5Cd_3Cl_{11}$ ((ДМА) $_5Cd_3Cl_{11}$), принадлежащий даннному семейству, по разным экспериментальным данным обнаруживает аномалии физических свойств при температурах 260, 180 и 127 К [1], 280 К [2], 127 и 178.5 К [3]. Природа этих переходов окончательно не выяснена. Известно, что ФП при 127 К является переходом первого рода и обусловлен упорядочением диметиламмонийного катиона, ФП при 178.5 К считается переходом второго рода [3]. Диэлектрические исследования показали, что кристалл (ДМА) $_5$ Cd $_3$ Cl $_{11}$ является потенциальным сегнетоэлектриком [1]. Автора [3,4] при исследовании оптических и упругих свойств (ДМА)₅Cd₃Cl₁₁ пришли к заключению о возможности существования несоразмерной фазы в этом кристалле в интервале температур 127-178.5 К. Представляло интерес провести прецизионные измерения теплоемкости $(ДМА)_5Cd_3Cl_{11}$ с целью уточнения температур $\Phi\Pi$ в этом кристалле, кроме того, насколько нам известно, исследования теплоемкости кристалла (ДМА)₅Cd₃Cl₁₁ ранее не проводились.

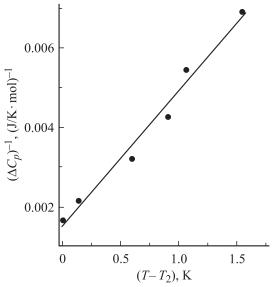
2. Методика и результаты исследования

Измерение теплоемкости проводилось в области температур $100-300\,\mathrm{K}$ с использованием вакуумного адиабатического калориметра при дискретной подаче тепла на образец ($m=7.32\,\mathrm{g}$). Скорость нагрева образца была $0.03-0.08\,\mathrm{K/min}$. Измерения теплоемкости проводились через $0.5-1.5\,\mathrm{K}$ с точностью 0.3%. Температура образца контролировалась платиновым термометром сопротивления.

На рис. 1 представлена температурная зависимость теплоемкости кристалла (ДМА) $_5$ Cd $_3$ Cl $_{11}$. Видно, что


на кривой $C_p(T)$ наблюдаются аномалии при температурах $\Phi\Pi$ $T_1=176.5$ и $T_2=123.5$ К. Штриховая линия соответствует решеточной части теплоемкости, определенной с помощью интерполяции полиномом вида $C=\sum\limits_{i=0}^3 A_i T^i$. Методом численного интегрирования определены изменения энтропии и энтальпии данных переходов, которые равны $9.6\,\mathrm{J/(K\cdot mol)}$ и $1185\,\mathrm{J/mol}$, $5.9\,\mathrm{J/(K\cdot mol)}$ и $931\,\mathrm{J/mol}$ соответственно. Сглаженные значения теплоемкости и рассчитанные по ним изменения термодинамических функций — энтропии S, энтальпии H и свободной энергии Гиббса Φ — приведены в таблице.

Следует отметить, что резкая форма аномалии теплоемкости при $T_2 = 123.5 \,\mathrm{K}$, а также увеличение времени установления теплового равновесия в области этого ФП при проведении эксперимента указывают на то, что аномалия соответствует ФП первого рода. Кроме того, аномалия при T_2 имеет явно несимметричный вид (рис. 1). Видно, что со стороны высоких температур теплоемкость спадает медленнее. Согласно [5], за


Сглаженные значения теплоемкости и изменения термодинамических

T, K	$C_p(T)$	S(T)- $S(100 K)$	$\Phi(T)$ $-\Phi(100 \mathrm{K})$	H(T)-H(100 K),
	$J/(K \cdot mol)$			J/mol
100	475.6	0.000	0.000	0.0
120	560.5	94.26	17.55	10360
140	614.1	184.8	44.18	22106
160	654.9	269.6	75.53	34796
180	699.1	349.4	109.3	48337
200	734.2	425.0	144.3	62670
220	762.7	496.3	179.8	77638
240	787.2	563.8	215.2	93138
260	810.3	627.8	250.3	109112
280	834.4	688.7	284.9	125559
300	862.1	747.3	318.9	142524

11* 1123

Рис. 1. Температурная зависимость теплоемкости кристалла (ДМА) $_5$ Cd $_3$ Cl $_1$ 1.

Рис. 2. Зависимость $(\Delta C_p)^{-1}$ от $T-T_2$ кристалла $(\text{ДМA})_5\text{Cd}_3\text{Cl}_{11}$ в окрестности ФП при $T_2=123.5$ К.

счет солитонной структуры теплоемкость в несоразмерной фазе вблизи ФП должна увеличиваться по закону $\Delta C_p \sim \{(T-T_c)\cdot [\ln(T-T_c)]^{-2}\}^{-1}.$

На рис. 2 приведена зависимость $(\Delta C_p)^{-1}$ от $T-T_2$ для $(\Pi MA)_5 \mathrm{Cd}_3 \mathrm{Cl}_{11}$ в окрестности $\Phi \Pi$ при $T_2=123.5$ К. Как видно из рисунка, данная зависимость линейная в области температур $T\sim T_2+1.5$ К, что согласуется с предсказанием теории. Следовательно, можно предположить, что фаза, существующая при температурах $T>T_2$ в кристалле $(\Pi MA)_5 \mathrm{Cd}_3 \mathrm{Cl}_{11}$ является несоразмерной, а переход при $T_2=123.5$ К — $\Phi \Pi$ из несоразмерной в соразмерную фазу.

Известно, что значение энтропии перехода несоразмерная—соразмерная фаза всегда намного меньше энтропии переходов типа смещения, которые составляют порядка $0.1 \, \mathrm{R}$. Малая величина ΔS lock-in переходов

связана с тем фактом, что в большинстве кристаллов близко к температуре перехода в несоразмерной фазе образуется солитонная структура. Такого порядка величины $\Delta S \approx 0.1\,\mathrm{R}$ перехода несоразмерная—соразмерная фаза наблюдаются для семейства кристаллов с несоразмерными фазами типа A_2BX_4 как с атомарным, так и с органическим катионом, кроме медьсодержащих кристаллов. Значительное изменение энтропии перехода при T_2 для кристалла (ДМА) $_5\mathrm{Cd}_3\mathrm{Cl}_{11}$, видимо, связано с существенными изменениями в структуре при переориентации молекулярных катионов ДМА.

Таким образом, согласно нашим исследованиям, в $(ДМA)_5Cd_3Cl_{11}$ наблюдается классическая последовательность $\Phi\Pi$ для кристаллов с несоразмерной фазой. $\Phi\Pi$ второго рода при $T_1=176.5$ К является переходом из нормальной фазы в несоразмерную, а $\Phi\Pi$ первого рода при $T_2=123.5$ К — $\Phi\Pi$ из несоразмерной фазы в соразмерную.

Список литературы

- Z. Czapla, S. Dacko, U. Krzewska, A. Waskowska. Solid State Commun. 71, 2, 139 (1989).
- [2] K. Gesi, Z. Czapla. Ferroelectrics 159, 37 (1994).
- [3] Z. Czapla, J. Przeslawski, H. Schlemmbach. Solid State Commun. 91, 12, 981 (1994).
- [4] J. Furtak, Z. Czapla, A.V. Kityk. Ferroelectric Lett. 22, 5-6, 147 (1997).
- [5] В.А. Головко. ЖЭТФ 87, 3 (9), 1092 (1984).