УДК 621.315.592

Парамагнитные дефекты в γ -облученных кристаллах карбида кремния

© И.В. Ильин[¶], Е.Н. Мохов, П.Г. Баранов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 20 марта 2001 г. Принята к печати 2 апреля 2001 г.)

Представлены результаты первых наблюдений парамагнитных дефектов в кристаллах SiC, подвергнутых γ -облучению. В кристаллах 4H-SiC : Al и 6H-SiC : Al p-типа методом электронного парамагнитного резонанса обнаружено три типа дефектов, обозначенные как γ 1, γ 2 и γ 3. Все центры имеют близкие параметры спинового гамильтониана с S=1/2 и характеризуются значительной анизотропией g-факторов. Центры γ 1 почти аксиальны относительно локальной оси z, ориентированной примерно вдоль одного из направлений связи Si–C, не совпадающей с осью c. Центры γ 2 и γ 3 имеют более низкую симметрию, хотя направление вдоль указанных связей достаточно сильно выражено. Величина максимального g-фактора g_z уменьшается в ряду от γ 1 до γ 3. Сигнал γ 1 может наблюдаться при температурах 3.5—15 K; сигналы γ 2 и γ 3 — при температурах 10—35 и 18—50 K соответственно. Для некоторых ориентаций кристалла обнаружено сверхтонкое взаимодействие неспаренного электрона центра γ 1 с ядрами изотопа 29 Si. Центры γ 1, γ 2 и γ 3 разрушаются при температуре 160° C, и сделан вывод, что сигналы ЭПР этих центров принадлежат дефектам, в подрешетке C. Предполагается, что центры γ 1, γ 2 и γ 3 имеют общую природу и принадлежат низкотемпературной (γ 1) и высокотемпературным (γ 2, γ 3) модификациям одного и того же центра. Обсуждаются модели дефекта в виде вакансии углерода или комплекса, включающего примесный атом A1 и атом C, занимающий кремниевую или межузельную позицию.

1. Введение

В последние годы значительно возрос интерес к карбиду кремния (SiC), что связано с необходимостью создания электронных и оптоэлектронных приборов, работающих при высоких температурах, высоких мощностях и повышенных уровнях радиации. Большая энергия связи Si-C делает SiC устойчивым к высоким температурам, агрессивным средам и воздействию ионизирующего облучения. Так как скорость диффузии большинства примесей в SiC мала, основным способом легирования этих материалов является ионная имплантация. В процессе ионной имплантации в решетке SiC орбразуются дефекты, причем в SiC в отличие от кремния дефекты стабильны при комнатной температуре, а некоторые вторичные дефекты сохраняются до температур более 2000°C. Все это стимулировало проведение многочисленных работ, посвященных исследованию радиационных дефектов в SiC.

Электронный парамагнитный резонанс (ЭПР) является наиболее информативным методом исследования структуры радиационных дефектов в полупроводниках, что было наиболее ярко продемонстрировано расшифровкой структуры основных радиационных дефектов в кремнии в классических работах, выполненных на протяжении последних 40 лет [1]. История исследований методом ЭПР радиационных дефектов в SiC значительно скромнее, тем не менее структура ряда собственных дефектов, таких как вакансия кремния или различные типы дивакансий, установлена довольно надежно [2–11]. Важно подчеркнуть, что все эти исследования выполнены в SiC, облученном быстрыми электронами, нейтронами

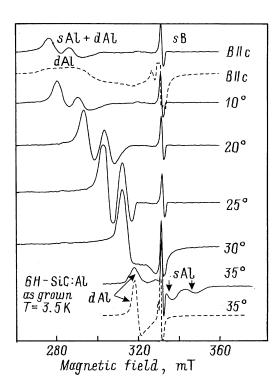
1

или протонами. Такое облучение моделирует процесс ионной имплантации при изготовлении электронных приборов. Проблема состоит в том, что в процессе ионной имплантации дефекты образуются в очень тонком слое у поверхности кристалла (менее 1 мкм) и чувствительности традиционного метода ЭПР, как правило, не достаточно для регистрации этих дефектов. Насколько нам известно, нет работ, где бы парамагнитные радиационные дефекты были обнаружены в кристаллах SiC, подвергнутых γ -излучению. В то же время γ -излучение, будучи наиболее проникающим, является основным источником радиации, воздействующей на различные электронные приборы в реальных условиях их применений. Известно также, что такое излучение легко создает многочисленные радиационные дефекты в кремнии, что является большой проблемой при разработке радиационно стойких электронных приборов. Следует подчеркнуть, что γ -излучение в отличие от других видов облучения создает дефекты в кристалле равномерно по объему, что значительно повышает надежность их исследования, так как исключается неравномерность распределения дефектов по объему кристалла.

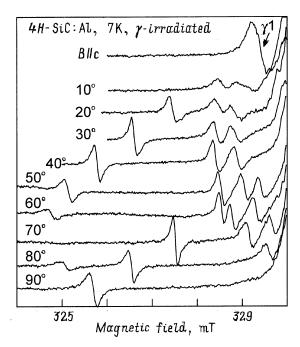
В настоящей работе впервые наблюдались спектры ЭПР радиационных дефектов в γ -облученных кристаллах SiC. Дефекты были обнаружены в кристаллах 4H- и 6H-SiC p-типа, активированных алюминием.

2. Методика эксперимента

Были исследованы кристаллы 4*H*-SiC и 6*H*-SiC *p*-типа, активированные алюминием. Использовались кристаллы, выращенные сублимационным сэндвич-методом при температуре 2150°C [12] со скоростью роста 0.8 мм/ч. Были


1409

[¶] E-mail: Ivan.Ilyin@pop.ioffe.rssi.ru


исследованы также коммерческие кристаллы 6H-SiC от корпорации Сгее. Во всех кристаллах концентрация алюминия составляла примерно $10^{17}\,\mathrm{cm^{-3}}$. Все кристаллы были подвергнуты двухнедельному облучению γ -лучами. Источником γ -лучей служил изотоп 60 Со, энергия $1.12\,\mathrm{MpB}$, поток $10^{13}\,\gamma$ / см². Кристаллы 4H-SiC и 6H-SiC в виде пластинок с плоскостью, перпендикулярной гексагональной оси c, были ориентированы для вращения в плоскостях $\{11\bar{2}0\}$ и $\{1100\}$. Эксперименты проводились на серийном спектрометре ЭПР Jeol на частоте $9.2\,\Gamma\Gamma$ ц с использованием проточного гелиевого криостата, изготовленного в лаборатории и позволяющего изменять температуру в области $4-300\,\mathrm{K}$. Все спектры ЭПР, представленные на рисунках, зарегистрированы без накопления в результате одного сканирования.

3. Экспериментальные результаты

До γ -облучения в исследуемых кристаллах 4*H*-SiC и 6*H*-SiC, активированных алюминием, наблюдались сигналы ЭПР от мелких и глубоких уровней акцепторов алюминия и мелких — акцепторов бора [13–17].

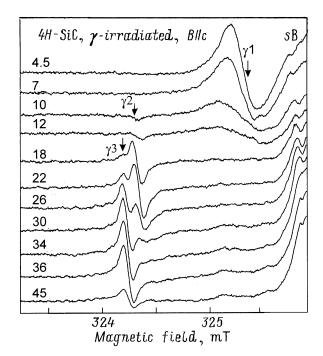
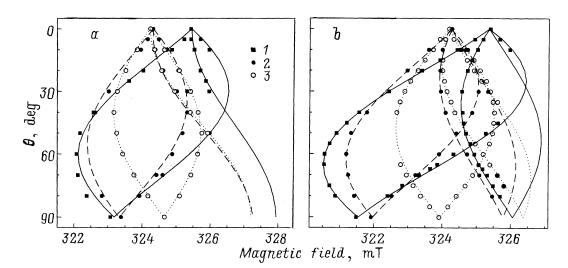


Рис. 1. Спектры электронного парамагнитного резонанса (ЭПР) в кристалле 6H-SiC: Al до γ -облучения, при 4 K, для нескольких ориентаций кристалла относительно магнитного поля B в плоскости $\{11\bar{2}0\}$ (указаны на рисунке). Обозначения sAl (shallow Al), dAl (deep Al) и sB (shallow B) введены для мелкого уровня Al, глубокого уровня Al и мелкого уровня B соответственно. Пунктиром показаны спектры ЭПР в кристалле 4H-SiC: Al, с повышенной концентрацией Al, в котором сигналы ЭПР от мелкого уровня Al практически не наблюдались. Вертикальными стрелками показана дополнительная сверхтонкая структура.

Рис. 2. Спектры ЭПР, наблюдавшиеся в γ -облученном кристалле 4*H*-SiC при температуре 7 K, зарегистрированные при разных ориентациях кристалла в магнитном поле *B*, указанных на рисунке. Вращение магнитного поля осуществлялось в плоскости $\{11\bar{2}0\}$.

Мелкий уровень Al создается атомом Al в позиции кремния, находящемся в регулярном окружении [13,14], а глубокий уровень А1 связан, по нашему мнению, с комплексом Al в узле кремния с вакансией углерода в ближайшем узле вдоль оси c кристалла [14,16,17]. Бор является неконтролируемой примесью и обычно проявляется в спектрах ЭПР в кристаллах SiC *p*-типа в виде мелкого уровня В, но при больших концентрациях А1 порядка $10^{19}\,\mathrm{cm}^{-3}$ наблюдаются и сигналы ЭПР от глубокого уровня В [16]. На рис. 1 приведены спектры ЭПР, наблюдавшиеся в кристалле 6H-SiC: Al (Cree) до γ -облучения и зарегистрированные для нескольких ориентаций кристалла относительно магнитного поля. В спектрах видны сигналы от мелкого уровня АІ, обозначенного как sAl (shallow Al), глубокого уровня Al, обозначенного как dAl (deep Al), и мелкого уровня бора, обозначенного как sB (shallow B). Для ориентаций магнитного поля, близких к оси c ($\theta = 0^{\circ}$), при низкой температуре ($\approx 4\,\mathrm{K}$) оба сигнала перекрываются, тогда как в ориентации $\theta = 35^{\circ}$ из-за разных значений g-факторов эти сигналы наблюдаются в разных магнитных полях. В ориентации $\theta = 35^{\circ}$ в сигнале dAl может наблюдаться слабо разрешенная сверхтонкая (СТ) структура, возникающая из-за взаимодействия неспаренного электрона с ядром изотопа ²⁷Al [14]. В исследованных кристаллах сигналы ЭПР от мелкого уровня А1 сравнимы или интенсивнее сигналов от глубокого уровня АІ, поэтому на рис. 1 (в ориентациях $\theta = 0^{\circ}$ и $\theta = 35^{\circ}$ — пунктирной линией) также


Рис. 3. Спектры ЭПР, зарегистрированные при разных температурах (указанных цифрами около спектров в K) в γ -облученном образце 4H-SiC, в ориентации $B \parallel c$.

показан спектр ЭПР, зарегистрированный в кристалле 4*H*-SiC, сильно легированном Al (концентрация Al $\approx 5 \cdot 10^{19} \, \mathrm{cm}^{-3}$) [16]. В этом образце сигналы ЭПР от глубокого уровня Al более чем на 2 порядка интенсивнее сигналов от мелкого уровня Al и поэтому в ориентации $\theta=0^\circ$ виден только сигнал от глубокого уровня Al. В подобных кристаллах принадлежность сигналов ЭПР алюминию была одозначно установлена методом двойно-

го электронно-ядерного резонанса (ДЭЯР) [17], данные которого коррелируют с величиной СТ взаимодействия, наблюдавшегося в спектрах ЭПР.

На рис. 2 показаны спектры ЭПР, наблюдавшиеся в γ -облученном кристалле 4*H*-SiC при температуре 7 K, зарегистрированные при разных ориентациях кристалла в магнитном поле. Вращение магнитного поля осуществлялось в плоскости кристалла $\{11\bar{2}0\}$. сигналов от мелкого уровня бора (справа), на рис. 2 в ориентации $B \parallel c$ видна линия ЭПР, которая при вращении образца в плоскости {1120} расщепляется на четыре линии. Такое расщепление говорит о том, что парамагнитный дефект имеет несколько эквивалентных ориентаций в решетке SiC. Направление локальных осей симметрии центра может быть определено по экстремумам угловой зависимости сигналов ЭПР. На рис. 2 один из таких экстремумов наблюдается при угле магнитного поля относительно оси c кристалла, близком к $\theta = 70^{\circ}$. В SiC угол $\theta = 70^{\circ}$ соответствует углу между c-осью и направлением связей Si-C. Таким образом, этот центр имеет выделенную локальную ось, направленную примерно вдоль связей Si-C, не совпадающих с осью c кристалла. Обращает на себя внимание резкое уменьшение интенсивности сигнала ЭПР в минимальных магнитных полях при углах, близких к $\theta = 70^{\circ}$. В гексагональных кристаллах существует всего 6 таких магнитнонеэквивалентных направлений, в плоскости {1120} их остается 4, а в ориентации $B \parallel c$ все эти направления эквивалентны, и, следовательно, в спектре видна только одна линия ЭПР. Подобные сигналы наблюдались нами и в кристаллах 6*H*-SiC.

В кристаллах обоих политипов 4H- и 6H-SiC, подвергнутных γ -облучению, обнаружено по три сигнала ЭПР. На рис. 3 показана температурная зависимость

Рис. 4. Угловые зависимости сигналов ЭПР центров $\gamma 1, \gamma 2$ и $\gamma 3$ в кристаллах 6*H*-SiC (*a*) и 4*H*-SiC (*b*). Вращение кристаллов производилось в разных плоскостях: 4*H*-SiC — в плоскости {1120}, 6*H*-SiC — в плоскости {1100}. Экспериментальные угловые зависимости для сигналов: $I - \gamma 1$ (температура регистрации 7 K), $2 - \gamma 2$ (23 K) и $3 - \gamma 3$ (34 K). Сплошные, штриховые и пунктирные линии — расчет с использованием данных из таблицы.

Параметры сигналов ЭПР центров $\gamma 1, \gamma 2$ и $\gamma 3$ в γ -облученных	Ĺ
кристаллах 4 <i>H-</i> SiC и 6 <i>H-</i> SiC.	

	$\gamma 1$				$\gamma 2$				γ3			
	4 <i>H</i>		6.	Н	4 <i>H</i>		6 <i>H</i>		4 <i>H</i>		6 <i>H</i>	
g_x g_y g_z	2.006 2.000 2.044		2.0 2.0 2.0	000	2.015 2.002 2.040		2.015 2.000 2.042		2.014 2.002 2.036		2.013 2.002 2.031	
	α	β	α	β	α	β	α	β	α	β	α	β
1	0	115	0	116	0	115	-4	115	30	124	0	130
2	119	115	118	116	121	115	124	115	115	124	121	130
3	241	115	242	116	239	115	236	115	245	124	239	130
4	0	245	0	244	0	245	4	245	30	236	0	230
5	119	245	118	244	121	245	124	245	115	236	121	230
6	241	245	242	244	239	245	236	245	245	236	239	230

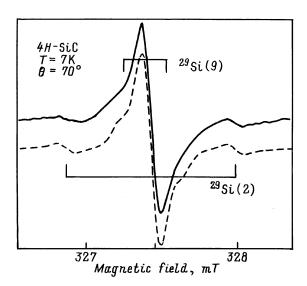
Примечание. Углы Эйлера α , β приведены для каждого из 6 магнитонеэквивалентных центров, углы γ равны нулю.

сигналов ЭПР, наблюдавшихся в кристалле 4H-SiC в ориентации $B \parallel c$. Видно, что сигнал, обозначенный как $\gamma 1$, наблюдается при температурах $4.5-15\,\mathrm{K}$, второй ($\gamma 2$) — при температурах $10-35\,\mathrm{K}$ и третий ($\gamma 3$) — при температурах $18-50\,\mathrm{K}$. Таким образом, сигналы $\gamma 1$ и $\gamma 2$ наблюдаются одновременно в сравнительно узком температурном диапазоне $10-15\,\mathrm{K}$, а сигналы $\gamma 2$ и $\gamma 3$ — в диапазоне $18-35\,\mathrm{K}$. При этом следует отметить, что ширина линий центров $\gamma 1$ и $\gamma 2$ перед их исчезновением существенно увеличивается (рис. 3), тогда как положение линий ЭПР практически не изменяется.

На рис. 4 показаны угловые зависимости сигналов ЭПР центров $\gamma 1$, $\gamma 2$ и $\gamma 3$ в кристаллах 6*H*-SiC (*a*) и 4*H*-SiC (*b*). Следует отметить, что вращение кристаллов производилось в разных плоскостях: 4*H*-SiC — в плоскости $\{11\bar{2}0\}$, а 6*H*-SiC в плоскости $\{1100\}$. Символы *1*, *2*, *3* показывают экспериментальные угловые зависимости для сигналов $\gamma 1$ (температура регистрации 7 K), $\gamma 2$ (23 K) и $\gamma 3$ (34 K). Эти зависимости могут быть описаны спиновым гамильтонианом со спином S=1/2

$$H = \mu_{\mathrm{B}}(g_x H_x S_x + g_y H_y S_y + g_z H_z S_z),$$

где $\mu_{\rm B}$ — магнетон Бора, g_x, g_y, g_z — g-факторы, соответствующие направлениям локальных осей симметрии центра x, y, z.


Теоретически рассчитанные угловые зависимости для сигналов $\gamma 1, \gamma 2$ и $\gamma 3$ показаны на рис. 4 сплошными, штриховыми и пунктирными линиями соответственно. Расчет произведен с помощью программы R-Spectr [18] с использованием g-факторов, приведенных в таблице; там же приведены величины углов Эйлера для 6 магнитно-эквивалентных ориентаций каждого центра.

При определении углов Эйлера лабораторная система координат ориентирована таким образом, что ее ось Z (мы будем обозначать оси лабораторной системы координат заглавными буквами) параллельна оси c кристалла, ось X перпендикулряна оси Z и лежит в плоскости

 $(11\bar{2}0)$, ось Y перпендикулярна плоскости $(11\bar{2}0)$. Использовано следующее определение углов Эйлера [18]: первый угол α представляет собой вращение вокруг оси Z, второй угол β — вращение вокруг новой оси Y и третий угол γ — вращение вокруг новой оси Z. Таким образом, направление оси Z лабораторной системы координат может быть представлено тремя углами Эйлера (0,0,0). Шесть магнитно-неэквивалентных направлений вдоль связей Si–C, не совпадающих с осью c кристалла, в идеальной решетке 6H-SiC задаются комбинациями следующих углов Эйлера (α,β,γ) в градусах: (0,110,0), (120,110,0), (240,110,0), (0,250,0), (120,250,0) и (240,250,0).

Из величин углов Эйлера, приведенных в таблице, видно, что ориентации центров $\gamma 1, \gamma 2$ и $\gamma 3$ различны и не совпадают точно с направлениями связей Si–C. Однако очевидно, что все отклонения от идеальных осей, а также различия между центрами $\gamma 1, \gamma 2$ и $\gamma 3$ сравнительно малы, и качественно можно говорить, что все эти центры имеют одинаковую природу. Центры $\gamma 1$ имеют симметрию, близкую к аксиальной относительно локальной оси z, ориентированной примерно вдоль одного из направлений связи Si–C, не совпадающей с осью c. Центры $\gamma 2$ и $\gamma 3$ имеют более низкую симметрию, хотя направление вдоль указанных связей также достаточно сильно выражено, при этом величина максимального g-фактора g_z уменьшается в ряду при переходе от $\gamma 1$ до $\gamma 3$.

В спектрах ЭПР сигнала $\gamma 1$ в кристалле 4*H*-SiC (где сигналы наиболее интенсивны) для некоторых ориентаций наблюдалась дополнительная структура. Она видна

Рис. 5. Линия ЭПР 327.5 мТл (см. рис. 2), зарегистрированная в γ -облученном кристалле 4*H*-SiC при температуре 7 К для $\theta=70^\circ$, представленная в увеличенном масштабе. Пунктиром показан симулированный спектр ЭПР, рассчитанный для взаимодействия неспаренного электрона с 2 эквивалентными атомами Si (величина сверхтонкого взаимодействия 1.23 мТл) и 9 эквивалентными атомами Si (0.32 мТл).

на рис. 2 для линии 327.5 м T л при $\theta=70^\circ$ и показана в увеличенном масштабе на рис. 5. Видна хорошо разрешенная внешняя пара компонент с расщеплением $\sim 1.2\,\mathrm{mT}$ л и более интенсивная слабо разрешенная пара сателлитов с меньшим расщеплением $\sim 0.3 \, \mathrm{MT}$ л. Наиболее вероятно, что дополнительная структура обусловлена СТ взаимодействием с ядрами кремния ²⁹Si (в природном кремнии имеется 4.7% изотопа ²⁹Si с ядерным спином I = 1/2, концентрация же изотопа 13 С, имеющего такой же ядерный спин I=1/2, в природном углероде значительно меньше и составляет только 1.1%). Из соотношения интенсивностей центральной линии и дополнительных компонент можно получить информацию о природе СТ структуры. Внешняя пара СТ компонент с большим расщеплением появляется, по-видимому, изза взаимодействия с одним или двумя эквивалентными атомами кремния. Можно предположить, что сателлиты с меньшим расщеплением возникают из-за взаимодействия неспаренного электрона дефекта с большим числом эквивалентных атомов кремния, находящихся в более удаленной координационной сфере. Мы провели симуляцию спектра ЭПР, полагая, что СТ структура с большим расщеплением обусловлена взаимодействием с одним и двумя эквивалентными атомами кремния, а СТ структура с меньшим расщеплением — последовательно с 6-12 эквивалентными атомами кремния. На рис. 5 пунктирной линией представлен результат симуляции сигнала ЭПР для взаимодействия с двумя эквивалентными атомами кремния с константой СТ структуры, равной 1.23 мТл, и девятью эквивалентными атомами кремния со СТ расщеплением, равным 0.32 мТл. Видно, что результат симуляции удовлетворительно объясняет наблюдаемый сигнал ЭПР, однако следует отметить, что соответствие между симуляцией и экспериментом можно улучшить, если рассматривать взаимодействия с несколькими удаленными неэквивалентными сферами кремния и углерода. Мы не приводим результаты таких расчетов, поскольку экспериментальных данных явно недостаточно для выбора правильной комбинации атомов кремния и углерода. Можно лишь предположить, что сравнительно большое взаимодействие с двумя эквивалентными атомами кремния (1.23 мТл) поддерживает точку зрения о том, что дефект находится в подрешетке углерода. Эти 2 атома кремния могут находиться на связях С-Si, расположенных вне плоскости {1120}, в которой осуществляется вращение магнитного поля и в которой лежит локальная ось z рассматриваемого центра. Таким образом, взаимодействие с атомом кремния, расположенным вдоль локальной оси z, может быть существенно больше, однако нам не удалось обнаружить эту структуру из-за низкой интенсивности сигнала ЭПР в ориентации $B \parallel z$.

Нами были проведены исследования изохронного отжига центров $\gamma 1$ и $\gamma 2$ в кристаллах 4H- и 6H-SiC. Кристалл быстро нагревался до определенной температуры выше комнатной, затем выдерживался при этой температуре в течение $10\,\mathrm{Muh}$. После этого кристалл

быстро охлаждался до низкой температуры, при которой наблюдалась максимальная интенсивность исследуемого сигнала ЭПР ($\gamma 1, \gamma 2$ или $\gamma 3$) и измерялся спектр ЭПР. Затем процесс повторялся для более высокой температуры отжига. Было обнаружено, что центры $\gamma 1, \gamma 2$ и $\gamma 3$ имеют одинаковое поведение при отжиге: интенсивность сигнала ЭПР резко уменьшается с ростом температуры и сигнал необратимо исчезает после отжига при температуре $\sim 160^{\circ}$ С. Эта температура соответствует отжигу радиационных дефектов в SiC, образующихся в углеродной подрешетке, типа одиночных вакансий углерода [2].

4. Обсуждение результатов

Политипы 4H-SiC и 6H-SiC имеют общую гексагональную симметрию с осью симметрии c. атом Si окружен четырьмя атомами C и наоборот. При рассмотрении вторых координационных сфер узлов в 4*H*-SiC можно выделить 2 неэквивалентные позиции в решетке: квази-кубическую (k) и гексагональную (h). Для *k*-позиции двенадцать атомов во второй координационной сфере расположены как в кубической структуре цинковой обманки (zink blend). Для *h*-позиций они расположены как в гексагональной вюрцитной (wurzite) структуре. Эти положения равномерно распределены между углеродной и кремниевой подрешетками. В 6*H*-SiC таких неэквивалентных позиций три — две квазикубические $(k_1 \ u \ k_2)$ и гексагональная (h). трах ЭПР γ -облученных кристаллов как 4*H*-SiC, так и 6H - SiC были обнаружены по одному типу центров $\gamma 1, \gamma 2$ и $\gamma 3$. Как видно из таблицы, параметры спектров ЭПР этих центров практически совпадают в кристаллах 4H- и 6H-SiC. Наиболее важное различие этих центров заключается в том, что низкотемпературные центры $\gamma 1$ характеризуются практически аксиальной симметрией относительно локальной оси z, ориентированной примерно вдоль одного из направлений связи Si-C, не совпадающей с осью c, тогда как высокотемпературные центры $\gamma 2$ и $\gamma 3$ имеют более низкую симметрию, хотя направление вдоль указанных связей также достаточно сильно выражено. Очевидны большие отклонения величины g_z от величины g-фактора свободного электрона для обоих центров, при этом величина максимального g-фактора g_z уменьшается при переходе в ряду от $\gamma 1$ до $\gamma 3$.

В предположении, что параметры сигналов ЭПР должны отличаться для дефектов, образующихся в разных позициях решетки SiC, мы должны выбрать одно из двух возможных объяснений.

Первое естественное объяснение заключается в том, что центры $\gamma 1, \gamma 2$ и $\gamma 3$ соответствуют разным положениям дефекта в кристалле: имеются в виду позиции k и h в 4H-SiC и позиции k_1, k_2 и h в 6H-SiC. Поскольку в кристалле 4H-SiC, в котором имеются только 2 различные позиции в кристаллической решетке, наблюдаются спектры ЭПР трех типов, следует исключить предположение,

что центры $\gamma 1, \gamma 2$ и $\gamma 3$ соответствуют разным позициям в решетке.

Таким образом, можно предположить, что наблюдаются сигналы ЭПР только для одной позиции решетки, а центры $\gamma 1, \gamma 2$ и $\gamma 3$ соответствуют низкотемпературному и высокотемпературным состояниям одного и того же центра (например, с разными искажениями симметрии центра, вызванными эффектом Яна-Теллера). Повышение температуры приводит к некоторой перестройке структуры центра, при которой ориентации главных осей центра изменяются на несколько градусов и симметрия понижается, хотя общая анизотропия в виде разности максимального и минимального значений *g*-фактора уменьшается. Естественно предположить, что образование дефектов под действием у-облучения равновероятно для разных позиций в кристалле, поэтому наличие спектра ЭПР только одного центра может быть обусловлено относительным положением уровня этого дефекта (для парамагнитного состояния) относительно уровня Ферми. Следует подчеркнуть, что γ -облучение не привело к заметным изменениям в спектрах ЭПР уровней акцепторов Al и B (что существенно отличает γ облучение от разрушительных облучений других типов, при которых, как правило, уровень Ферми замыкается на радиационные дефекты), т.е., весьма вероятно, что положение уровня Ферми практически не изменилось после γ -облучения. Таким образом, уровень обнаруженного дефекта близок к уровню Ферми кристаллов 4Ни 6*H*-SiC *p*-типа, активированных алюминием.

На данной стадии исследований возможны только предварительные соображения о структуре центров $\gamma 1$, $\gamma 2$ и $\gamma 3$. Хорошо известно, что γ -облучение приводит к появлению вторичных быстрых электронов в кристалле и эти электроны создают дефекты в кристаллической решетке облученных образцов. В соответствии с энергией использованных в настоящей работе γ -лучей (1.12 МэВ), средняя энергия вторичных электронов невелика и составляет примерно 500 кэВ, т.е. порядка пороговой энергии образования дефектов в SiC.

В отличие от Si, где процесс образования дефектов при облучении хорошо изучен [1], в SiC этот процесс значительно сложнее из-за наличия двух подрешеток — Si и C. Соответственно значительно больше и количество возможных собственных дефектов. Первичными дефектами, образующимися под действием облучения, являются френкелевские пары в подрешетках Si и C, т.е. \langle вакансия кремния $(V_{\rm Si})\rangle$ $-\langle$ межузельный атом кремния (Si_i) и $\langle Bакансия углерода <math>(V_C) \rangle - \langle Mежузельный$ атом углерода (C_i) . Естественно считать, что порог образования френкелевских пар в подрешетке Si выше по сравнению с подрешеткой С из-за различия в массах этих атомов. Энергия образования близких френкелевских пар в подрешетке С находится в пределах 100-150 кэВ для подрешетки С и 220-300 кэВ для подрешетки Si [10]. При более высоких энергиях облучения должны создаваться пространственно разделенные вакансии и межузельные атомы. В отличие от Si, где первичные дефекты нестабильны при комнатной температуре [1] и стабильными являются только комплексы, образующиеся при захвате первичных дефектов примесями или другими дефектами, в SiC вакансии Si и C, по-видимому, стабильны при комнатной температуре и образование комплексов из вакансий проходит при более высоких температурах. Тем не менее нам не известны какие-либо свидетельства того, что межузельные атомы кремния Si_i и углерода C_i не могут двигаться при комнатной температуре, при которой проводилось γ -облучение.

Насколько нам известно, имеется только несколько работ, в которых кристаллы SiC облучались быстрыми электронами с энергиями вблизи порога смещения атомов основной решетки. В работе [19], в которой исследовались кристаллы 6H-SiC, подвергнутные облучению электронами с энергией 400 кэВ, наблюдались две новые безфононные линии люминесценции G_1 и G_2 с энергиями 2.547 и 2.528 эВ соответственно. На одной из них (G_1) было обнаружено зеемановское расщепление в магнитном поле.

В очень элегантных исследованиях, выполненных в работе [10], обнаружены спектры ЭПР нескольких типов дефектов, в том числе френкелевских пар в подрешетке Si в кристаллах 6H-SiC p-типа, подвергнутых облучению электронами с энергиями 300–350 кэВ.

Нам не удалось зарегистрировать какие-либо известные сигналы ЭПР радиационных дефектов в γ -облученных кристаллах. Однако из этого нельзя сделать однозначный вывод, что они не образуются под действием γ -облучения, поскольку интенсивность этих спектров ЭПР может быть слишком мала, или парамагнитные состояния известных дефектов не видны из-за определенного положения уровня Ферми.

Разрушение центров $\gamma 1, \gamma 2$ и $\gamma 3$ при температуре $\sim 160^{\circ}$ С свидетельствует о том, что эти дефекты скорее всего образуются в подрешетке углерода, что соответствует низким энергиям облучения, при которых более вероятно образование удаленных пар: вакансия углерода $V_{\rm C}$ и межузельный атом углерода ${\rm C}_i$. Поскольку атомы Сі, вероятно, подвижны при комнатной температуре, они могут захватываться примесями. Таким образом, в результате могут образоваться $V_{\rm C}$ в какомлибо зарядовом состоянии и комплексы с примесями. Основной примесью, присутствующей в кристаллах, является АІ. Процесс образования комплексов с АІ под воздействием ионизирующего излучения хорошо изучен в Si [20], где межузельный атом Si выбивает атом Al из узла решетки с образовнием парамагнитного центра, представляющего собой межузельный атом А1 (подобные атомы наблюдались и для других элементов III группы). Возможно также, при определенных условиях, образование в Si парамагнитного комплекса из вакансии и элемента III группы [21]. Поскольку атом Al в SiC занимает позицию Si при подобном процессе может образовываться сложный комплекс, включающий атом углерода на месте кремния С_{Si} или дефект перестановки (antisite) и межузельный Al.

Сначала обсудим возможную связь спектров ЭПР, обнаруженных в настоящей работе, с вакансиями углерода. Сравним вакансию в кремнии $V_{\rm Si}$ с вакансией углерода $V_{\rm C}$ в SiC, поскольку в обоих случаях электроны находятся на орбиталях кремния. В кремнии наблюдалось 2 парамагнитных состояния вакансии V_{Si}^+ и V_{Si}^- , в обоих случаях S = 1/2, g-фактор сильно анизотропны и имеют следующие величины для V_{Si}^+ : $g_z = 2.0151$, $g_x = 2.0028$, $g_y = 2.0038$; для V_{Si}^- : $g_z = 2.0087$, $g_x = g_y = 1.9989$ [1]. В SiC имеется информация только об одном зарядовом состоянии углеродной вакансии $V_{\rm C}^+$ [2,6], где также наблюдалась анизотропия д-факторов с наибольшей величиной вдоль оси (111). Теоретические расчеты предсказывают значительный эффект Яна-Теллера для вакансий углерода, который усиливается с увеличением отрицательного заряда на вакансии [22]. Подобный эффект прослеживается и для вакансий в кремнии, что приводит к значительному увеличению анизотропии д-фактора, при этом, согласно расчетам, в SiC эффект Яна-Теллера существенно больше, чем в кремнии [22]. предположить, что усиление эффекта Яна-Теллера приводит к усилению анизотропии д-фактора для отрицательно заряженного состояния $V_{\rm C}^-$, и, следовательно, наблюдавшиеся в настоящей работе сигналы могут быть связаны с V_{C}^{-} . Важная информация может быть получена на основании исследования СТ взаимодействия, однако из-за сравнительно низкой интенсивности сигналов ЭПР удалось наблюдать СТ структуру только в узком диапазоне ориентаций, величина которых частично поддерживает предположение, что спектры ЭПР новых центров связаны с вакансией углерода. Тем не менее на основании имеющихся данных трудно объяснить столь значительные увеличения g_z по сравнению с чисто спиновым g-фактором ($\Delta g \sim 0.04$, см. таблицу) без участия примеси.

Таким образом, весьма разумно также предположить, что центры $\gamma 1, \gamma 2$ и $\gamma 3$ образуются в результате захвата первичных дефектов (C_i) в процессе их диффузии примесными атомами Al, концентрация которого в исследованных кристаллах весьма велика. Наличие А1 в составе комплекса может объяснить большой сдвиг д-фактора по отношению к д-фактору сободного электрона. Однако в спектре ЭПР не наблюдалась СТ структура от Al, имеющего 100% изотопа с ядерным спином I = 5/2(если подобное взаимодействие имеет место, то оно дает вклад только в ширину линии, т.е. его величина меньше 0.05 мТл), что делает весьма сомнительным наличие Al в составе комплекса. Известны сигналы ЭПР центров А1 и В с глубокими уровнями в запрещенной зоне, представлющие, согласно предложенной модели, нейтральный комплекс примеси в узле кремния с вакансией углерода, расположенной в соседнем узле вдоль оси с [14]. В этих центрах СТ взаимодействие с А1 (В) слабое, так как на примеси нет прямой спиновой плотности, однако существенно больше (порядка 1 мТл для А1), чем верхний предел для взаимодействия с примесью, полученный из ширины линий ЭПР центров $\gamma 1, \gamma 2$ и $\gamma 3$. Таким образом, в этих центрах примесь может играть только косвенную роль, подобно той, что играет бор в комплексе бор—вакансия в Si [21], где CT взаимодействия с примесью не наблюдалось. Исследованные спектры ЭПР не исключают возможное вхождение в комплекс межузельного углерода или дефекта перестановки $C_{\rm Si}$, поскольку CT взаимодействие с одиночным атомом C при наблюдаемых интенсивностях сигналов ЭПР зарегистрировать не представляется возможным из-за малой концентрации изотопа 13 C.

5. Заключение

В кристаллах SiC впервые наблюдались парамагнитные дефекты, образовавшиеся под действием γ -облучения. В γ -облученных кристаллах 4H-SiC и 6H-SiC р-типа, активированных алюминием, методом ЭПР обнаружено 3 типа дефектов, которые обозначены в настоящей работе как $\gamma 1, \gamma 2$ и $\gamma 3$. Эти центры имеют близкие параметры спинового гамильтониана с электронным спином S = 1/2 и характеризуются значительной анизотропией д-факторов; отклонение д-факторов от д-фактора свободного электрона достигает величины ~ 0.04 . Центры $\gamma 1$ имеют симметрию, близкую к аксиальной относительно локальной оси z, ориентированной примерно вдоль одного из направлений связи Si-C, не совпадающей с осью c. Центры $\gamma 2$ и $\gamma 3$ имеют более низкую симметрию, хотя направление вдоль указанных связей также достаточно сильно выражено, при этом величина максимального g-фактора g_z уменьшается в ряду от $\gamma 1$ до $\gamma 3$. Интенсивности сигналов ЭПР центров $\gamma 1, \gamma 2$ и $\gamma 3$ зависят от температуры, сигнал $\gamma 1$ был виден при низких температурах 3.5-15 К, тогда как сигналы $\gamma 2$ и $\gamma 3$ наблюдались при более высоких температурах 10-35 и 18-50 К соответственно. Таким образом, имеются сравнительно узкие диапазоны температур, в которых пары спектров могут наблюдаться одновременно, при этом сигналы ЭПР этих центров перед исчезновением при повышении температуры существенно уширяются. Для некоторых ориентаций кристалла обнаружено сверхтонкое взаимодействие неспаренного электрона центра $\gamma 1$ с ядрами изотопа ²⁹Si. Центры $\gamma 1, \gamma 2$ и $\gamma 3$ разрушаются при одной и той же температуре 160°C, и сделан вывод, что сигналы ЭПР этих центров принадлежат дефектам, образующимся в подрешетке С под действием γ -облучения. Предполагается, что центры $\gamma 1, \gamma 2$ и $\gamma 3$ имеют общую природу и принадлежат низкотемпературной $(\gamma 1)$ и высокотемпературным $(\gamma 2, \gamma 3)$ модификациям одного и того же центра. Обсуждаются модели дефекта в виде отрицательно заряженной вакансии углерода или комплекса, включающего примесный атом А1 и атом С, занимающий кремниевую или межузельную позицию.

Авторы благодарны В.В. Емцеву и Д.В. Полоскину за предоставленную возможность γ -облучения кристаллов SiC и за полезные обсуждения, а также И.О. Черноглазовой за проведение ряда измерений и расчетов.

Работа частично поддержана РФФИ по гранту № 00-02-16950.

Список литературы

- G.D. Watkins. In: Deep Centers in Semiconductors, ed. by S.T. Pantelides (N.Y., Gordon and Breach, 1986) p. 147 and references therein.
- [2] H. Itoh, A. Kawasuso, T. Ohshima, M. Yoshikava, I. Nashiyama, S. Tanigawa, S. Misawa, H. Okumura, S. Yoshida. Phys. St. Sol. (a), 162, 173 (1997).
- [3] L.A. de S. Balona. J.H. Loubser. J. Phys. C: Sol. St. Phys., 3, 2344 (1970).
- [4] В.С. Вайнер, В.А. Ильин. ФТТ, 23, 3482 (1982); V.S. Vainer, V.A. Il'in. Sov. Phys. Sol. St., 23, 2125 (1982).
- [5] Н.М. Павлов, М.И. Иглицин, М.Г. Косаганова, В.Н. Соломатин. ФТП, 9, 1279 (1975); [N.M. Pavlov, M.I. Iglitsyn, M.G. Kosaganova, V.N. Solomatin. Sov. Phys. Semicond., 9, 845 (1975)].
- N.T. Son, W.M. Chen, J.L. Lindstrom, B. Monemar, E. Janzen.
 Mater. Sci. Forum, 264–268, 599 (1998); N.T. Son, P.N. Hai,
 E. Janzen. Mater. Sci. Forum, 353–356, 499 (2001).
- [7] A. Zywietz, J. Furthmueller, F. Bechsted. Phys. Rev. B, 59, 15166 (1999-I).
- [8] T. Wimbauer, B.K. Meyer, A. Hofstaetter, A. Scharmann, H. Overhof, Phys. Rev. B, 56, 7384 (1997).
- [9] H.J. von Bardeleben, J.L. Cantin, I. Vickridge, G. Battistig. Phys. Rev. B, 62, 10126 (2000-I).
- [10] H.J. von Bardeleben, J.L. Cantin, L. Henry, M.F. Barthe, Phys. Rev. B, 62, 10841 (200-II).
- [11] E. Sorman, N.T. Son, W.M. Chen, O. Kordina, C. Hallin, E. Janzen. Phys. Rev., B, 61, 2613 (2000).
- [12] E.N. Mokhov, Yu.A. Vodakov. Inst. Phys. Conf. Ser. No 155, Ch. 3, 177 (1997) and references therein.
- [13] L.S. Dang, K.M. Lee, G.D. Watkins. Phys. Rev. Lett., 45 (5), 390 (1980).
- [14] P.G. Baranov, I.V. Ilyin, E.N. Mokhov. Sol. St. Commun., 100, 371 (1996).
- [15] A.V. Duijn-Arnold, J. Mol, R. Verberk, J. Schmidt, E.N. Mokhov, P.G. Baranov. Phys. Rev. B, 60, 15829 (1999-I) and references therein.
- [16] I.V. Ilyin, E.N. Mokhov, P.G. Baranov. Mater. Sci. Forum, 353–356, 521 (2001).
- [17] B.K. Meyer, A. Hofstaetter, P.G. Baranov. Mater. Sci. Forum, 264–268, 591 (1998).
- [18] В.Г. Грачев. ЖЭТФ, **65**, 1029 (1987); Sov. Phys. JETP, **65**, 1029 (1987).
- [19] D. Volm, B.K. Meyer, E.N. Mokhov, P.G. Baranov. Mater. Res. Soc. Symp. Proc., 339, 705 (1994).
- [20] G.D. Watkins. Phys. Rev. B, 1, 1908 (1970).
- [21] G.D. Watkins. Phys. Rev. B, 13, 2511 (1976).

Редактор Т.А. Полянская

Paramagnetic defects in γ -irradiated silicon carbide crystals

I.V. Ilyin, E.N. Mokhov, P.G. Baranov

Ioffe Physicotechnical institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Paramagnetic defects have been first observed in γ irradiated SiC crystals. Three types of defects (referred to as γ 1, γ 2 and γ 3) were found in 4*H*-SiC:Al and 6*H*-SiC:Al *p*-type crystals by the electron paramagnetic resonance technique. All centers have similar spin Hamiltonian parameters, S being 1/2, and are characterized by a significant g-factor anisotropy. The $\gamma 1$ center has nearly axial symmetry with respect to the local z-axis, which is oriented approximately along one of Si-C bonds which does not coincide with the c-axis. The $\gamma 2$ and $\gamma 3$ centers have a lower symmetry, though their orientation along these axes is still pronounced. The highest g-value $[g_{\tau}]$ reduces in a series from $\gamma 1$ to γ 3. The γ 1 signal could be observed at temperatures from 3.5 up to 15 K, γ 2 and γ 3 signals — at 10–35 K and 18–50 K, respectively. For some orientations of the crystal a hyperfine interaction of $\gamma 1$ center with ²⁹Si nuclei was observed. Centers $\gamma 1$, $\gamma 2$ and $\gamma 3$ could be destroyed above 160°C annealing and probably belong to defects in the C sublattice. Assumption is made that $\gamma 1$, $\gamma 2$ and $\gamma 3$ centers have a common nature and belong to low-temperature $(\gamma 1)$ and high-temperature (γ 2 and γ 3) modifications of the same defect. The models of defects are being discussed.