05;12

Фазовая диаграмма и особенности физических свойств трехкомпонентной системы ниобатов натрия—лития—кадмия

© Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, А.Я. Данцигер, С.И. Дудкина, И.В. Позднякова, В.А. Сервули

Научно-исследовательский институт физики Ростовского государственного университета,

344090 Ростов-на-Дону, Россия

E-mail: larisa@riphys.rnd.su.

(Поступило в Редакцию 19 октября 1999 г. В окончательной редакции 5 мая 2000 г.)

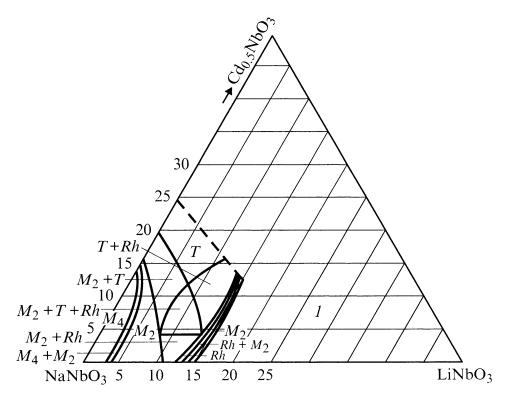
Уточнена фазовая диаграмма тройной системы $(Na, Li, Cd_{0.5})NbO_3$. Исследованы электрофизические параметры твердых растворов в широкой области концентраций компонентов. Получены составы для высокотемпературных преобразователей.

Введение

Настоящее исследование является продолжением и уточнением работы [1], в которой описаны фазовые переходы и физические свойства системы (Na,Li,Cd_{0.5})NbO₃. На основе дополнительных структурных данных построена более точная фазовая диаграмма указанной тройной системы, что позволило более детально интерпретировать ее физические свойства. Так же как и в [1], изучено шесть сечений этой системы, соответствующих 5-20 mol% *z*-компоненты системы $\text{Cd}_{0.5}\text{NbO}_3$. В каждом сечении синтезированы составы с содержанием LiNbO₃ от 1 до 15 mol%, образующие *y*-сечения. Режимы синтеза и спекания образцов приведены в [1].

Экспериментальные результаты и их обсуждение

На рис. 1 представлена часть фазовой диаграммы с выделенной областью системы, прилегающей к вершине NaNbO₃. Тонкими линиями нанесены сечения y и z, более толстыми — граничные линии областей различной симметрии (одно-, двух-, и трехфазных).


Фазовая диаграмма тройной системы согласуется с диаграммами ограничивающих ее бинарных систем. В системе (100 - z)NaNbO₃ – z Cd_{0.5}NbO₃ [2] твердые растворы (TP) образуются до z = 25. В интервале 0 < z < 15 структура ТР имеет ромбическую симметрию. Параметры элементарной ячейки связаны с параметрами перовскитной моноклинной ячейки a, b, β следующими соотношениями: $A = 2a \cos \beta/2$, B = 4b, $C = 2a\sin\beta/2$ (фаза M_4). При $z \cong 15$ изменяется кратность параметра B: B = 2b (фаза M_2). В интервале $19 < z \le 25$ ТР имеют тетрагональную симметрию (фаза T), существование сверхструктуры выявить не удалось из-за присутствия на рентгенограммах этих ТР очень слабых линий примесных фаз. Между фазами M_2 и T имеется широкая область их сосуществования.

B системе (100 - y)NaNbO₃-yLiNbO₃ [3] при увеличении у образуются ТР различной симметрии в последовательности: ромбическая M_4 (0 < y < 3.5) \rightarrow ромбическая $M_2 \ (4 \le y \le 10.5) \to$ ромбоэдрическая Rh $(12 \le y \le 12.5) \rightarrow$ ромбическая M_2 (12.5 < y < 14). Между однофазными областями расположены области сосуществования фаз. При дальнейшем увеличении у наблюдается широкая гетерогенная область, в которой наряду с TP на основе NaNbO₃ присутствует LiNbO₃. В соответствии с этим на диаграмме тройной системы, прилегающей к вершине NaNbO₃, определились широкие области кристаллизации $TP M_2, M_4, T$ и узкие области Rh и M2; широкие области сосуществования двух фаз — $M_2 + Rh$, $M_2 + T$, T + Rh, узкие — M_2+M_4 , $Rh+M_2$ и область сосуществования трех фаз — $M_2 + T + Rh$.

Рассмотрено поведение однородного параметра деформации δ [4] и электрофизических параметров ТР y- и z-сечений. Как известно [5–7], электрофизические параметры сегнетоэлектрических (СЭ) ТР различных систем, содержащих морфотропные области (МО), имеют экстремальные значения в окрестности МО, которые коррелируют со значениями структурных параметров, в частности параметра δ .

Рассмотрим наиболее полно исследованные сечения изученной системы, которые к тому же проходят через наибольшее число фаз и МО. Среди z-сечений этим условиям удовлетворяет сечение z=5, которое проходит через три фазы M_4 , M_2 Rh и три МО — узкую двухфазную МО₁ (M_4+M_2), широкую трехфазную МО₂ (M_2+T+Rh) и очень узкую двухфазную МО₃ ($Rh+M_2$) (рис. 2,a,b).

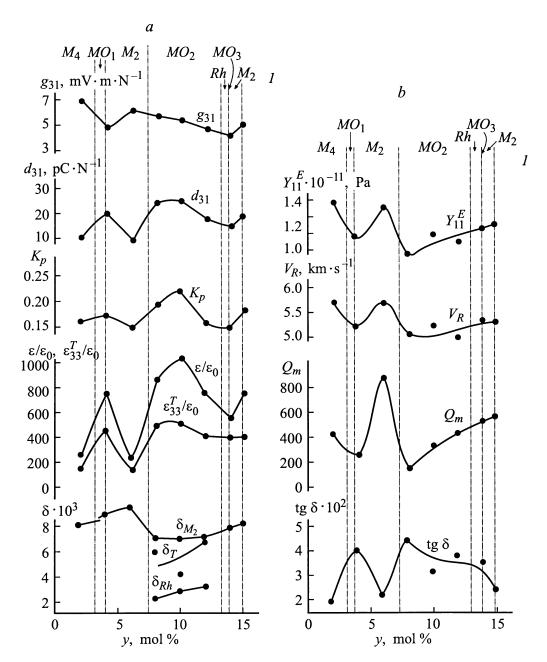
На рис. 2,a приведены концентрационные зависимости параметра δ , относительных диэлектрических проницаемостей $\varepsilon/\varepsilon_0$, $\varepsilon_{33}^T/\varepsilon_0$, коэффициента электромеханической связи K_p и пьезоэлектрических параметров d_{31}, g_{31} ; на рис. 2,b — тангенса угла диэлектрических потерь $\operatorname{tg} \delta$, механической добротности Q_M , скорости звука V_R и модуля Юнга Y_{11}^E . Из данных рис. 2,a видно, что диэлектрические проницаемости TP, а также параметры K_p и d_{31} имеют по два максимума: большие

Рис. 1. Фазовая диаграмма тройной системы (Na,Li,Cd_{0.5})NbO₃ (I — гетерогенная область).

максимумы приближаются к центру трехфазной MO_2 , меньшие расположены на правой границе узкой MO_1 . Положение этих максимумов относительно MO_1 нельзя считать точным, так как система исследовалась с большим (2 mol%) шагом, а ширина MO_1 около 1 mol%. Кроме этого, все перечисленные параметры проходят через минимумы внутри фазы M_2 .

Что касается пьезоэлектрического параметра g_{31} , который, как известно, пропорционален остаточной поляризации P_r , то его максимумы сдвинуты влево от обеих указанных МО в сторону фаз M_2 и M_4 (в фазе M_4 этот максимум не завершен из-за отсутствия соответствующих образцов). Такие положения максимумов g_{31} наблюдаются обычно в СЭ системах [5,6].

Рассмотренные зависимости электрофизических параметров можно связать с ходом параметра δ , который минимален внутри обеих МО и проходит через максимум в фазе¹ M_2 .


Обращает на себя внимание тот факт, что на рис. 2, a бо́льший максимум $\varepsilon_{33}^T/\varepsilon_0$ расположен не за пределами правой границы широкой MO_2 , как это обычно имеет место [5,6], а внутри MO_2 . Такая же ситуация наблюдалась в некоторых сечениях системы $(Na,Li,Pb_{0.5})NbO_3$ [7]. Объяснялось это в [7], в частности, сосуществованием двух фаз M и Rh, приводящим к значительному увеличению числа возможных направлений вектора спонтанной поляризации N=8(Rh)+12(M)=20 по

сравнению с монофазными областями (в системах на основе ЦТС [5,6] эта величина значительно меньше N = 8(Rh) + 6(T) = 14, поэтому практически не влияет на положение максимума $\varepsilon_{33}^T/\varepsilon_0$). В рассматриваемом же случае в трехфазной MO_2 величина N еще более значительна N = 8(Rh) + 12(M) + 6(T) = 26, что и приводит к заметному увеличению ориентационной части диэлектрической проницаемости внутри МО и соответствующему положению максимумов как $\varepsilon/\varepsilon_0$, так и $\varepsilon_{33}^T/\varepsilon_0$. Это в свою очередь оказывает влияние и на положения максимумов K_p и d_{31} , на которые величина дз1 оказывает значительно меньшее влияние (к тому же значения дз1 в этой системе невелики). Сходная ситуация наблюдается и в узкой МО₁, где $N = 12(M_2) + 12(M_4) = 24$ и максимум $\varepsilon_{33}^T/\varepsilon_0$ оказывает большее влияние на величины K_p , d_{31} , чем максимум дз1.

Концентрационные зависимости параметров tg δ , Q_M , V_R и Y_{11}^E , приведенные на рис. 2, b, можно объяснить исходя из сегнетожесткости TP, характеризующей устойчивость доменной структуры к внешним воздействиям [5]. Как показано в [5], с ростом сегнетожесткости параметры δ , Q_M , V_R , Y_{11}^E возрастают, а $\varepsilon_{33}^T/\varepsilon_0$ и tg δ уменьшаются. Это и приводит к близости положений максимумов и минимумов $\varepsilon_{33}^T/\varepsilon_0$ и tg δ (рис. 2, b), в то время как положения максимумов Q_M , V_R и Y_{11}^E близки к положению минимума $\varepsilon_{33}^T/\varepsilon_0$ (и наоборот).

Среди *у*-сечений наиболее четкие закономерности изменений параметров прослеживаются при y = 4

 $^{^{1}}$ Влияние $\mathrm{MO_{3}}$ на концентрационные зависимости параметров трудно учесть вследствие ее чрезвычайной узости.

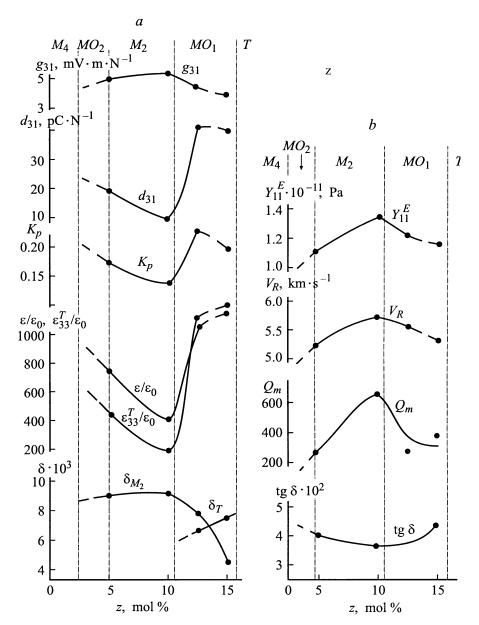


Рис. 2. Зависимости структурных и электрофизических характеристик твердых растворов системы $(Na,Li,Cd_{0.5})NbO_3$ от содержания LiNbO₃ для сечения z=5 mol% $Cd_{0.5}NbO_3$ (I — гетерогенная область).

(рис. 3,a,b). Это сечение проходит через две фазы M_2 и T и две MO — широкую $\mathrm{MO}_1(T+M_2)$ и узкую $\mathrm{MO}_2(M_4+M_2)$ (рис. 1). Из данных рис. 3,a видно, что закономерности изменения электрофизических параметров в окрестности широкой MO_1 близки к наблюдаемым в большинстве CO систем [5,6]: максимум $\varepsilon_{33}^T/\varepsilon_0$ (незавершенный) смещен к правой границе MO_1 , максимум g_{31} — к левой границе (за ее пределами); максимумы K_p и d_{31} расположены в середине MO_2 . Приближение к границе узкой MO_2 сопровождается возрастанием $\varepsilon/\varepsilon_0, \varepsilon_{33}^T/\varepsilon_0, K_p, d_{31}$. Указанные изменения параметров коррелируют с ходом δ .

Что касается параметров Q_M , V_R и Y_{11}^E (рис. 3, b), то их изменения противоположны изменениям $\varepsilon/\varepsilon_0$, $\varepsilon_{33}^T/\varepsilon_0$, в то время как изменение tg δ происходит в том же направлении. Как показано выше, это согласуется с изменением сегнетожесткости TP.

Составы рассмотренной системы, как и в большинстве ниобатных систем, обладают высокой скоростью звука и низкой плотностью, что полезно для определенных применений [6]. Наряду с этим они имеют еще ряд свойств, представляющих практический интерес. Среди них высокая температура Кюри $T_k (\geq 400^{\circ}\text{C})$ и широкий спектр значений диэлектрической проницаемости

Рис. 3. Зависимости структурных и электрофизических характеристик твердых растворов системы $(Na,Li,Cd_{0.5})NbO_3$ от содержания $Cd_{0.5}NbO_3$ для сечения y=4 mol% LiNbO₃.

(от 160 до 1000—1200) при приемлемых пьезоэлектрических параметрах. Это позволяет использовать их в высокотемпературных преобразователях, работающих в высоко- и среднечастотных диапазонах.

Параметры некоторых составов системы (Na,Li,Cd_{0.5})NbO₃

№ состава	T_k , °C	$\varepsilon_{33}^T/\varepsilon_0$	K_p	g_{31} , $mV \cdot m/N$	Q _M	V _R , km/s
1	365	195	0.13	5.1	670	5.8
2	395	1070	0.28	6.2	225	5.8
3	400	295	0.14	4.4	560	5.6
4	420	520	0.22	5.4	340	5.2
5	430	415	0.18	5.1	560	5.3

В таблице приведены некоторые составы с указанными свойствами, расположенные в порядке возрастания их температур Кюри.

Заключение

Проведены прецизионные рентгенографические исследования твердых растворов системы (Na,Li,Cd_{0.5})NbO₃, позволившие более точно установить симметрию кристаллизующихся фаз, структурные переходы, морфологию морфотропных областей.

Изучены зависимости электрофизических параметров твердых растворов в широкой области концентраций и установлена их связь со структурными параметрами, в

частности с однородным параметром деформации. Получены составы с высокой температурой Кюри, широким спектром значений диэлектрической проницаемости и приемлемыми пьезоэлектрическими параметрами, что позволяет использовать их в высокотемпературных преобразователях, работающих в высоко- и среднечастотных диапазонах.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (РФФИ), грант № 99-02-17575.

Список литературы

- [1] Фесенко Е.Г., Резниченко Л.А., Иванова Л.С. и др. // ЖТФ. 1985. Т. 55. Вып. 3. С. 601–606.
- [2] Lewis B., White E.A.D. // J. Electronics. 1956. Vol. 1. P. 646–664
- [3] Шилкина Л.А., Резниченко Л.А., Куприянов М.Ф., Фесенко Е.Г. // ЖТФ. 1977. Т. 47. Вып. 10. С. 2173–2178.
- [4] Фесенко Е.Г., Филипьев В.С., Куприянов М.Ф. // ФТТ. 1969.Т. 11. Вып. 2. С. 466–471.
- [5] Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Ростов-на-Дону: изд-во Ростовского ун-та, 1983. 156 с.
- [6] Данцигер А.Я., Разумовская О.Н., Резниченко Л.А., Дудкина С.И. Высокоэффективные пьезокерамические материалы. Оптимизация поиска. Ростов-на-Дону: Пайк, 1995. 92 с.
- [7] Резниченко Л.А., Разумовская О.Н., Данцигер А.Я. и др. // Сб. докл. Междунар. научно-практической конф. "Пьезотехника-97". Обнинск, 1997. С. 197–207.