01;05;08;11;12

Термостабильные ориентации в пьезокристаллах LGS, LGN для поверхностных акустических волн

© М.Ю. Двоешерстов, С.Г. Петров, В.И. Чередник, А.П. Чириманов

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Поступило в Редакцию 28 февраля 2000 г. В окончательной редакции 28 июня 2000 г.)

Проведен численный анализ температурных свойств поверхностных акустических волн (ПАВ) в новых пьезокристаллах LGS, LGN. Проанализированы оптимальные ориентации в данных кристаллах, имеющие нулевую величину температурного коэффициента задержки (ТКЗ) ПАВ 1-го порядка. Рассчитан ТКЗ ПАВ 2-го порядка у данных кристаллов в широком интервале рабочих температур. Показано, что зависимость материальных констант от температуры у кристалов LGS, LGN имеет сильно нелинейный характер. Проведен численный расчет свойств ПАВ в системе изотропный слой-пьезокристалл LGS, LGN. Показано, что при наличии на поверхности кристалла тонкого металлического слоя алюминия определенной толщины в некоторых случаях возможно расширить интервал рабочих температур, при которых ТКЗ ПАВ равен нулю.

Введение

Интерес к изучению свойств поверхностных акустических волн (ПАВ), распространяющихся в новых кристаллах LGS, LGN, вызван тем обстоятельством, что в данных пьезокристаллах имеются ориентации с достаточно высоким коэффициентом электромеханической связи (K^2) ПАВ, большим, чем у широко известного кристалла кварца. В то же время данные кристаллы, как известно [1,2], обладают хорошими термостабильными свойствами. В настоящее время найдены срезы и направления в данных кристаллах [1], имеющие нулевую величину температурного коэффициента задержки $TK3^{(1)}$ ПАВ 1-го порядка при комнатной температуре $t_0 = 25^\circ$.

Одной из важных технических характеристик в технике ПАВ является чувствительность термостабильного направления в кристалле к изменению внешней температуры. Как правило, абсолютная величина ТКЗ ПАВ обычно сильно изменяется при уходе рабочей температуры t от комнатной t_0 . Представляет интерес рассмотреть поведение ТКЗ $^{(1)}$ ПАВ у данных кристаллов в большом интервале рабочих температур. При этом у термостабильных направлений в данных кристаллах необходимо анализировать также значение температурного коэффициента задержки ПАВ 2-го порядка (ТКЗ $^{(2)}$).

При нанесении на поверхность пьезокристалла тонкой металлической пленки конечной толщины h меняются общие свойства ПАВ. Скорость волны V, температурный коэффициент задержки ТКЗ ПАВ могут либо уменьшиться, либо увеличиться в зависимости от свойств материала подложки и материала пленки. В некоторых случаях металлическая пленка, нанесенная на поверхность подложки, может улучшить термостабильные свойства ПАВ в такой структуре [3,4].

В данной работе рассмотрены срезы и направления в кристаллах LGS, LGN, имеющих нулевой $TK3^{(1)}$ ПАВ 1-го порядка. Проанализирован температурный коэффициент задержки ПАВ $TK3^{(2)}$ 2-го порядка в данных

срезах при учете температурных констант упругости 2-го порядка $TC_{ij}^{(2)}$, температурных пьезоконстант 2-го порядка $Te_{ij}^{(2)}$, температурных диэлектрических констант 2-го порядка $Te_{ij}^{(2)}$, а также коэффициента термического расширения $\alpha_{ij}^{(2)}$ 2-го порядка при комнатной температуре. Показано, как изменяется величина $TK3^{(1)}$, $TK3^{(2)}$ ПАВ в данных кристаллах при изменении рабочей температуры в интервале от -100 до $+120^{\circ}$ С.

Проанализировано изменение относительного времени задержки $\Delta \tau/\tau_0 = (\tau-\tau_0)/\tau_0$, где τ , τ_0 — время задержки ПАВ в широком интервале рабочих температур t. Показано, что зависимость материальных констант у кристаллов LGS, LGN от температуры носит сильно нелинейный характер, поэтому при расчете даже $TK3^{(1)}$ ПАВ 1-го порядка в широком интервале температур t необходимо обязательно учитывать второй порядок температурных материальных констант данных кристаллов.

Показано влияние тонкого металлического слоя конечной толщины на характеристики ПАВ (скорость, ТК3).

Температурный коэффициент задержки ПАВ

Зависимость всех компонент материальных констант кристалла от рабочей температуры вблизи комнатной температуры представляется в следующем виде [5]

$$C_{ij}(t) = C_{ij}(t_0) \left(1 + TC_{ij}^{(1)}(t - t_0) + TC_{ij}^{(2)}(t - t_0)^2 + \dots \right),$$

$$e_{ij}(t) = e_{ij}(t_0) \left(1 + Te_{ij}^{(1)}(t - t_0) + Te_{ij}^{(2)}(t - t_0)^2 + \dots \right),$$

$$\varepsilon_{ij}(t) = \varepsilon_{ij}(t_0) \left(1 + T\varepsilon_{ij}^{(1)}(t - t_0) + T\varepsilon_{ij}^{(2)}(t - t_0)^2 + \dots \right),$$

$$\rho(t) = \rho(t_0) \left(1 + T\rho^{(1)}(t - t_0) + T\rho^{(2)}(t - t_0)^2 + \dots \right),$$

$$L(t) = L(t_0) \left(1 + \alpha_L^{(1)}(t - t_0) + \alpha_L^{(2)}(t - t_0)^2 + \dots \right). \quad (1)$$

Здесь $TC_{ij}^{(1)}$, $Te_{ij}^{(1)}$, $T\varepsilon_{ij}^{(1)}$, $TC_{ij}^{(2)}$, $Te_{ij}^{(2)}$, $T\varepsilon_{ij}^{(2)}$, $T\rho^{(1)}$, $T\rho^{(2)}$, $\alpha^{(1)}$, $\alpha^{(2)}$ — температурные коэффициенты констант упругости, пьезоконстант, диэлектрических констант, плотности и коэффициенты термического расширения соответственно 1-го и 2-го порядков; индексы i, j=1-6; L — длина образца, $t_0=25^{\circ}\mathrm{C}$ — комнатная температура, t — рабочая температура. При вычислении температурного коэффициента задержки $\mathrm{TK3}^{(1)}$, $\mathrm{TK3}^{(2)}$ ПАВ необходимо учитывать зависимость всех материальных констант $C_{ij}, e_{ij}, \varepsilon_{ij}$, плотности ρ пьезокристалла от температуры изменяется также длина L рабочей области кристалла.

При расчете $TK3^{(1)}$ 1-го порядка ПАВ вблизи комнатной температуры обычно учитывают значения температурных упругих, пьезоэлектрических, диэлектрических констант, плотности и коэффициента термического расширения только 1-го порядка [5]. Однако, как видно из формул (1), при рабочей температуре, значительно отличающейся от комнатной температуры, сомножитель $(t-t_0)$ может иметь весьма высокое значение. Кроме того, температурные материальные константы 2-го порядка также могут иметь весьма большие значения. При этом при расчете $TK3^{(1)}$ ПАВ в широком интервале рабочих температур необходимо учитывать значения температурных материальных констант кристалла 2-го порядка и выше.

Температурный коэффициент плотности кристалла $T\rho^{(1)}$ можно вычислить по следующей формуле [6]:

$$T\rho^{(1)} = -\left(\alpha_{11}^{(1)} + \alpha_{22}^{(1)} + \alpha_{33}^{(1)}\right),$$
 (2)

где $\alpha_{11}^{(1)}$, $\alpha_{22}^{(1)}$, $\alpha_{33}^{(1)}$ — коэффициенты температурного линейного расширения кристалла соответственно в направлениях X_1 , X_2 и X_3 в рабочей системе координат [2].

Для вычисления зависимости времени задержки (τ) ПАВ от температуры t можно также воспользоваться разложением в ряд Тейлора в области комнатной температуры

$$\tau = \tau_0(t_0) + \frac{d\tau}{dt} \bigg|_{t_0} (t - t_0) + \frac{1}{2} \left. \frac{d^2 \tau}{dt^2} \right|_{t_0} (t - t_0)^2$$

 $= \tau_0 \left[1 + \text{TK3}^{(1)}(t - t_0) + \text{TK3}^{(2)}(t - t_0)^2 + \dots \right], (3)$

где

$$TK3^{(1)} = \frac{1}{\tau_0} \left. \frac{d\tau}{dt} \right|_{t_0}$$

— температурный коэффициент задержки ПАВ 1-го порядка;

$$TK3^{(2)} = \frac{1}{2} \frac{1}{\tau_0} \left. \frac{d^2 \tau}{dt^2} \right|_{t_0} = \frac{1}{2} \left. \frac{d TK3^{(1)}}{dt} \right|_{t_0}$$

— температурный коэффициент задержки ПАВ 2-го порядка; τ , τ_0 — время задержки ПАВ при рабочей и комнатной температурах.

Как известно [7], температурный коэффициент задержки 1-го порядка $TK3^{(1)}$ ПАВ можно вычислить по следующей формуле:

$$TK3^{(1)} = \frac{1}{\tau} \left. \frac{d\tau}{dt} \right|_{t_0} = \alpha_{11}^{(1)} - TKV^{(1)}, \tag{4}$$

где $TKV^{(1)}$ — температурный коэффициент скорости ПАВ 1-го порядка, который соответственно равен [5]

$$TKV^{(1)} = \frac{1}{V(t_0)} \frac{\partial V}{\partial t}, \tag{5}$$

где $V(t_0)$ — скорость ПАВ при комнатной температуре t_0 , V — скорость ПАВ при рабочей температуре t.

Если высшие порядки в соотношении (3) не учитывать, относительное изменение времени задержки ПАВ $\Delta \tau / \tau_0 = (\tau - \tau_0) / \tau_0$ можно представить в следующем виле:

$$\frac{\tau - \tau_0}{\tau_0} = \text{TK3}^{(1)}(t - t_0) + \text{TK3}^{(2)}(t - t_0)^2.$$
 (6)

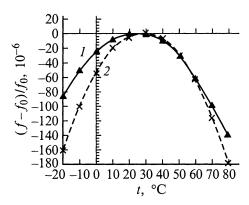
В самом общем случае мы можем использовать общее уравнение для вычисления зависимости относительной времени задержки ΠAB от температуры t

$$\frac{\tau - \tau_0}{\tau_0} = \int\limits_{t_0}^t \alpha_\tau dt,\tag{7}$$

где

$$\alpha_{\tau} = \frac{1}{\tau} \, \frac{d\tau}{dt}$$

— общий ТКЗ ПАВ при любой температуре t.


Заметим [7], что относительное изменение частоты (f) ПАВ соответственно равно

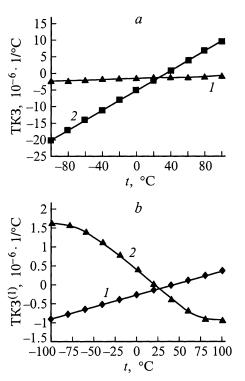
$$\Delta f/f_0 = (f - f_0)/f_0 = -\Delta \tau/\tau_0.$$
 (8)

Таким образом, используя соотношения (1)–(8), можно вычислить все температурные характеристики ПАВ: $TK3^{(1)}$, $TK3^{(2)}$, $\Delta \tau / \tau_0$, $\Delta f / f_0$. При этом сначала необходимо вычислить скорость (V) ПАВ (численный расчет на ЭВМ [2]) при различных рабочих температурах в заданном срезе кристалла и направлении распространения ПАВ (срез и направление ПАВ в кристалле, как известно [5], можно задать с помощью трех углов Эйлера: ϕ , Θ , ψ).

Анализ термостабильных ориентаций в кристаллах LGS, LGN

В последнее время различными авторами [8–10] были проведены численные расчеты температурных свойств ПАВ в перспективных ориентациях у кристаллов LGS, LGN. Однако рассчитанные величины ТКЗ⁽¹⁾, ТКЗ⁽²⁾ ПАВ достаточно сильно отличаются от экспериментально измеренных [10]. Это связано с тем, что в различных

Рис. 1. Теоретическая и экспериментальная зависимости $\Delta f/f_0$ от температуры в кристалле LGS (0, 140, 24°). \times эксперимент, — — вычисления.


источниках значения температурных материальных констант как 1-го, так и 2-го порядков у этих кристаллов значительно отличаются. В работе [9] приведен численный анализ основных свойств ПАВ в кристалле LGS при трех различных вариантах материальных констант. Наконец, в работе [10] приведены уточненные значения термоконстант 1-го и 2-го порядков и произведены теоретический расчет и экспериментальные измерения величины $\Delta f/f_0$ в кристалле LGS ориентации (0, 140, 24°) в широком интервале температур от -20 до $+80^{\circ}$ (рис. 1). Как видно, при использовании материальных констант для LGS из работы [8] (кривая 1) и работы [10] (кривая 2) расчетные зависимости $\Delta f / f_0(t)$ значительно отличаются. Однако при этом экспериментальные значения (обозначены крестиками на кривой 2) абсолютно совпадают с теоретическими рассчитанными при использовании уточненных значений материальных констант для LGS.

Отсюда можно сделать вывод: используя в расчете материальные константы из работы [10] для кристалла LGS, можно произвести предварительно численный расчет температурных свойств $(TK3^{(1)}, TK3^{(2)})$ ПАВ в любой ориентации кристалла в широком интервале температур, который с достаточной степенью точности совпадает с экспериментальными измерениями.

В качестве примера на рис. 2, a показаны рассчитанные зависимости ТКЗ $^{(1)}$ ПАВ от температуры при учете термоконстант только 1-го (кривая I) и при учете термоконстант 1-го и 2-го порядков (кривая 2) для кристалла LGS ориентации (0, 140, 22.5°). Как видно, учет термоконстант 2-го порядка очень существенно изменяет вид зависимости ТКЗ $^{(1)}$ ПАВ от температуры. Так, используя в расчетах термоконстанты только 1-го порядка (кривая I), получаем, что величина ТКЗ $^{(1)}$ ПАВ практически не зависит от температуры и имеет близкое к нулю значение. Во втором случае (кривая I) в интервале температур (от I00 до I120°С) величина ТКЗI1 ПАВ изменяется от I20 I10 до I10 до I10 до I10 имеет нулевое значение при I10 до I10

Заметим, что для широко известного ST, X кварца [9] учет температурных материальных констант 2-го порядка при расчете температурных свойств ПАВ практически не меняет вид зависимости $TK3^{(1)}$ и $\Delta \tau/\tau_0$ ПАВ от температуры. При изменении температуры от -100 до $+120^{\circ}$ C величина $TK3^{(1)}$ ПАВ меняется от $-8\cdot 10^{-6}$ 1/°C до $6\cdot 10^{-6}$ 1/°C. Величина $\Delta \tau/\tau_0$ ПАВ в данном интервале температур имеет значение порядка 0.0005, а ход зависимости $\Delta \tau/\tau_0$ ПАВ от температуры имеет параболический вид. При этом величина $TK3^{(2)}\approx 31.9\cdot 10^{-9}$ 1/°C². Напротив, в кристалле LGS температурная зависимость материальных констант имеет сильно нелинейный характер.

Экспериментально снятые температурные зависимости скорости объемных волн в кристалле LGN, а также материальные константы, термоконстанты 1-го и 2-го порядков взяты из работы [11]. На рис. 2, b показаны зависимости $TK3^{(1)}$ ПАВ от температуры для кристалла LGN ориентации (0, 138.5, 23°). Видно, что зависимость $TK3^{(1)}$ ПАВ от температуры имеет также линейный характер, если не учитывать температурные материальные константы 2-го порядка (кривая I), и, наоборот, при учете их зависимость $TK3^{(1)}$ ПАВ от температуры имеет нелинейный характер. Более того, если в первом случае при увеличении температуры от -100 до $+120^{\circ}$ С $TK3^{(1)}$ ПАВ изменяется от $-1 \cdot 10^{-6}$ $1/^{\circ}$ С до $+1.5 \cdot 10^{-6}$ $1/^{\circ}$ С, то во втором случае — от $+1.5 \cdot 10^{-6}$ $1/^{\circ}$ С до $-1 \cdot 10^{-6}$ $1/^{\circ}$ С. В этом случае

Рис. 2. Зависимости ТКЗ⁽¹⁾ ПАВ от температуры с учетом 1-го (*I*) и с учетом 1-го и 2-го порядков (*2*) термоконстант для кристалла LGS ориентации (0, 140, 22.5°) (*a*) и для кристалла LGN ориентации (0, 138.5, 23°) (*b*).

при комнатной температуре основные характеристики ПАВ в данной ориентации следующие: скорость ПАВ $V=2.6407\,\mathrm{km/s}$, коэффициент электромеханической связи [5] $K^2=0.414\%$, $\mathrm{TK3^{(1)}}=-0.09\cdot 10^{-6}\,\mathrm{1/°C}$, $\mathrm{TK3^{(2)}}=-9.5\cdot 10^{-9}\,\mathrm{1/°C^2}$, угол между направлением фазовой и групповой скоростями [2] $PFA=4.8^\circ$, коэффициент анизотропии [5] $\gamma=-2.47$.

Таким образом, можно сделать вывод, что зависимость материальных констант у кристаллов LGS, LGN от температуры имеет сильно нелинейный характер, поэтому даже при расчете $TK3^{(1)}$ ПАВ в достаточно широком интервале рабочих температур необходимо обязательно учитывать их второй порядок (1) в отличие от пьезокварца.

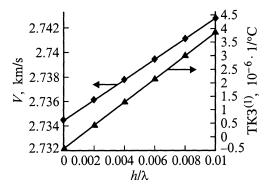
Влияние тонкой металлической пленки конечной толщины на температурный коэффициент задержки ПАВ

При наличии на поверхности пьезокристалла тонкой изотропной металлической пленки конечной толщины необходимо решать задачу о распространении ПАВ в слоистой структуре изотропный слой-пьезоподложка. При этом будем иметь систему двух волновых уравнений движения [5], одно из которых относится к материалу пленки конечной толщины, другое — к материалу подложки. Далее, 10 граничным условиям должны удовлетворять две линейные комбинации парциальных волн, одна из которых относится к подложке, а вторая — к верхнему слою. Эти граничные условия формулируются следующим образом [5]: непрерывность напряжений T_{31} , T_{32} , T_{33} на поверхности раздела слой-подложка и равенство нулю T_{31} , T_{32} , T_{33} на поверхности верхнего слоя $X_3 = h$; непрерывность смещений u_1, u_2, u_3 на поверхности раздела; равенство нулю потенциала φ на границе пленка-подложка при металлизированой изотропной пленке.

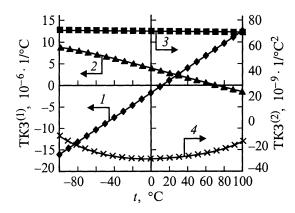
При вычислении зависимости скорости $V_{\rm cл}$ и ТКЗ $_{\rm cл}$ ПАВ от температуры в слоистой структуре необходимо учитывать следующие обстоятельства: а) зависимость материальных констант C_{ij} , e_{ij} , ε_{ij} анизотропной подложки от температуры (1); b) температурное расширение кристалла (1); c) зависимость плотности ρ кристалла (2) и плотности материала слоя $\rho_{\rm cл}$ от температуры; d) зависимость упругих констант Ламэ изотропного слоя от температуры [7]; e) температурное расширение пленки [7]; f) изменение толщины пленки h при изменении температуры [7]; g) наличие начальных внутренних термических напряжений в слоистой структуре, возникающие из-за разности коэффициентов термического расширения материалов пленки и подложки [12].

При этом температурный коэффициент задержки ПАВ в слоистой структуре можно вычислить по следующей формуле [7]:

$$TK3_s^{(1)} = \frac{1}{\tau_0} \left. \frac{d\tau_s}{dt} \right|_{t_0} = \alpha_{11}^{(1)} - TKV_s^{(1)}, \tag{9}$$


где τ_s , τ_0 — время задержки ПАВ в слоистой структуре при рабочей и комнатной температуре. $\text{TK}V_s^{(1)}$ — температурный коэффициент скорости ПАВ в слоистой структуре, $\alpha_{11}^{(1)}$ — коэффициент термического расширения кристалла в направлении распространения волны.

Если толщина пленки h много меньше толщины подложки H, можно считать, что при изменении рабочей температуры длина подложки изменяется в какую-либо сторону и при этом также изменяется и длина пленки. Заметим, однако, что толщина пленки h при этом также меняется на некоторую величину [7]. Кроме того, если коэффициенты термического расширения материалов пленки и подложки существенно различны, то при изменении рабочей температуры в такой структуре возникают внутренние термические напряжения [12], которые также дают вклад в характеристики ПАВ. В данной работе этот случай мы не рассматриваем.


При наличии материала пленки конечной толщины скорость V и $TK3^{(1)}$ ПАВ будут изменяться в ту или другую сторону в зависимости от толщины пленки, от свойств материала слоя и кристаллической подложки. Известно [13], что при некоторых сочетаниях материалов подложки и пленки определенной толщины можно, например, получить нулевой $TK3^{(1)}$ ПАВ в каком-либо направлении кристалла и при этом еще и увеличить коэффициент электромеханической связи ПАВ (K^2) . В другом случае можно попытаться с помощью пленки увеличить диапазон рабочих температур, при которых TK3 ПАВ будет мало изменяться в большом интервале рабочих температур.

На рис. З показана зависимость скорости V и ТКЗ⁽¹⁾ ПАВ от соотношения h/λ (λ — длина волны ПАВ) при наличии тонкой металлической пленки алюминия на поверхности кристалла LGS для ориентации (0, 140, 22.5°). Как видно из рисунка, скорость и ТКЗ⁽¹⁾ ПАВ при увеличении толщины алюминиевой пленки возрастает линейным образом. При $h/\lambda = 0.01$ ТКЗ⁽¹⁾ = $4 \cdot 10^{-6}$ 1/° С.

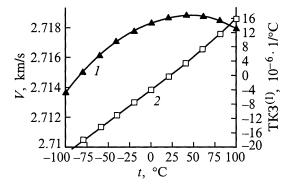

На рис. 4 показаны зависимости $TK3^{(1)}$ и $TK3^{(2)}$ ПАВ от температуры для слоистых систем: слой алюминия Al $(h/\lambda=0.005)+$ кристалл LGS ориентации

Рис. 3. Зависимости скорости V_s и $TK3_s^{(1)}$ ПАВ от соотношения h/λ в слоистой структуре Al + LGN (0, 140, 22.5°) при комнатной температуре.

Рис. 4. Зависимости ТКЗ⁽¹⁾ (1,2) и ТКЗ⁽²⁾ (3,4) ПАВ от температуры для слоистых систем Al $(h/\lambda=0.005)+LGS$ (0, 140, 22.5°), Al $(h/\lambda=0.005)+LGN$ (0, 138.5, 23°).

Рис. 5. Зависимости скорости V (I) и ТКЗ⁽¹⁾ (2) ПАВ от температуры для слоистой системы Al ($h/\lambda = 0.003$) + LGN (10, 150, 37°).

 $(0, 140, 22.5^{\circ})$ (кривые 1, 3) и слой алюминия Al $(h/\lambda = 0.005)$ + кристалл LGN ориентации (0, 138.5, 23°) (кривые 2, 4). Видно, что при изменении рабочей температуры от -100° С до $+100^{\circ}$ С для кристалла LGS величина $TK3^{(1)}$ ПАВ (кривая 1) изменяется от $-15 \cdot 10^{-6} \, 1/^{\circ} \text{C}$ до $+13 \cdot 10^{-6} \, 1/^{\circ} \text{C}$ и имеет нулевое значение при температуре 10°C. В данном случае при наличии алюминиевой пленки на поверхности кристалла конечной толщины температура, при которой ТКЗ⁽¹⁾ ПАВ имел нулевое значение, уменьшилась. Величина $TK3^{(2)}$ ПАВ (кривая 3) при этом изменяется незначительно и имеет значение $+70 \cdot 10^{-9} \, 1/^{\circ} C^{2}$. кристалла LGN величина ТКЗ⁽¹⁾ (кривая 2) изменяется от $+8 \cdot 10^{-6} \, 1/^{\circ} \text{C}$ до $-2 \cdot 10^{-6} \, 1/^{\circ} \text{C}$ и имеет нулевое значение при температуре 50°C. Величина ТК $3^{(2)}$ ПАВ (кривая 4) при этом изменяется от $-30 \cdot 10^{-9} \, 1/^{\circ} \text{C}$ до $-10 \cdot 10^{-9} \, 1/^{\circ} C^2$.

На рис. 5 показана зависимость скорости V и ТКЗ⁽¹⁾ ПАВ от температуры при наличии тонкой металлической пленки алюминия Al ($h/\lambda=0.003$) на поверхности кристалла LGN для ориентации (10, 150, 37°). Зависимость скорости ПАВ (кривая I) при изменении

температуры имеет параболический характер. При этом зависимость $TK3^{(1)}$ ПАВ (кривая 2) от температуры имеет линейный характер. Заметим, что для данной ориентации кристалла LGN при $t_0 = 25^{\circ}\mathrm{C}$ без алюминиевой пленки на поверхности основные характеристики ПАВ следующие: скорость ПАВ $V=2.721\,\mathrm{km/s}$, коэффициент электромеханической связи $K^2 = 0.418\%$, $TK3^{(1)} = -2.4 \cdot 10^{-6} \text{ 1/°C}, TK3^{(2)} = 123 \cdot 10^{-9} \text{ 1/°C}^2, \text{ угол}$ между направлением фазовой и групповой скоростями $PFA = -6.9^{\circ}$, коэффициент анизотропии $\gamma = -0.9$. При наличии алюминиевой пленки $(h/\lambda = 0.003)$, как следует из рис. 5, температурный коэффициент задержки ПАВ при комнатной температуре уменьшился: $TK3_s^{(1)} = -0.4 \cdot 10^{-6} \text{ 1/°C}$. Кроме того, численный расчет показал, что температурный коэффициент задержки 2-го порядка ПАВ в слоистой структуре также уменьшился: $TK3_s^{(2)} \approx 11 \cdot 10^{-9} \text{ 1/°C}^2$. Таким образом, тонкая алюминиевая пленка определенной толщины $(h/\lambda = 0.003)$, нанесенная на поверхность кристалла LGS ориенации (0, 150, 37°), термостабилизирует данный срез кристалла.

Заключение

В результате численного анализа температурных характеристик ПАВ в кристаллах LGS, LGN показано, что зависимость значений материальных констант от температуры у данных кристаллов имеет сильно нелинейный характер в отличие от кристалла кварца. Рассчитаны значения $TK3^{(1)}$, $TK3^{(2)}$ ПАВ 1-го и 2-го порядков в некоторых ориентациях у данных кристаллов в широком интервале температур.

Показано, каким образом изменяется скорость, ТКЗ ПАВ в слоистой структуре: пленка-пьезокристалл при изменении как толщины металлической пленки, так и рабочей температуры. Показано, что при наличии на поверхности кристалла LGN тонкого металлического слоя алюминия определенной толщины в некоторых направлениях распространения ПАВ возможно улучшить их термостабильные свойства.

Список литературы

- [1] Yakovkin I.B., Taziev R.M., Kozlov A.S. // Proc. IEEE Ultrason. Symposium. 1995. P. 389–393.
- [2] Dvoesherstov M.Yu. // Proc. IEEE UFFC. IV Intern. Symposium. St. Petersburg, 1998. P. 149–153.
- [3] Морозов А.И., Проклов В.В., Станковский Б.А. Пьезоэлектрические преобразователи для радиоэлектронных устройств. М.: Радио и связь, 1981. 184 с.
- [4] Shimizu Y., Tarazaki A., Sakaue T. // Proc. IEEE Ultrason. Symposium. 1976. P. 519–522.
- [5] Олинер А. Поверхностные акустические волны. М.: Мир, 1981. 500 с.
- [6] Andrew J., Slobodnik Jr. // IEEE Trans. on Son. and Ultrason. 1973. Vol. SU-20. N 4. P. 315–323.
- [7] Wiliams D.F., Cho F.Y. // IEEE Ultrason. Symp. 1979. P. 627–631.

- [8] Sarharov S.,, Senushencov P., Medvedev A., Pisarev-sky Yu. // IEEE Freq. Contr. Symp. 1995. P. 647.
- [9] Inoue K., Sato K. // J. Appl. Phys. 1998. Pt 1. Vol. 37. N 5B. P. 2909–2913.
- [10] Bungo A., Jian C., Yamaguchi K. et al. // IEEE Ultrason. Symp. 1999. P. 1–4.
- [11] Pisarevsky Yu., Senushencov P., Popov P., Mill B. // IEEE Freq. Contr. Symp. 1995. P. 653.
- [12] Ашбель И.Я., Двоешерстов М.Ю., Петров С.Г. // Акуст. журн. 1990. Т. 36. Вып. 2. С. 360–361.
- [13] Parker T.E. // J. Appl. Phys. 1979. Vol. 50. N 3. P. 111–114.