Локальная структура примесных центров Tm^{2+} и Yb^{3+} во фторидах MeF_2 (Me=Ca,Sr,Ba)

© А.Д. Горлов, В.А. Чернышев, М.Ю. Угрюмов, А.В. Абросимов

Уральский государственный университет им. А.М. Горького, 620083 Екатеринбург, Россия

E-mail: Vladimir.Chernyshev@usu.ru

В оболочечной модели в приближении парных потенциалов рассчитана локальная кристаллическая структура кубических примесных центров $MeF_2:Tm^{2+}$ и $MeF_2:Yb^{3+}$, а также тригональных и тетрагональных центров $MeF_2:Yb^{3+}$ (Me=Ca,Sr,Ba).

Работа выполнена при поддержке грантов REC-005 (ЕК-005-XI) и Российского фонда фундаментальных исследований (№ 04-02-16427).

Интерес к исследованию примесных центров редкоземельных элементов (РЗМ) в широкозонных диэлектрических кристаллах MeF_2 (Me = Ca, Sr, Ba) связан с использованием этих материалов в качестве лазерных сред, детекторов ионизирующих излучений и сцинтилляторов. P3M ион (Tm^{2+}, Yb^{3+}) замещает катион Me^{2+} . при этом образуются кубические примесные центры (ПЦ) [1-3], а также в случае неизовалентного замещения ионом Yb³⁺ — тригональные и тетрагональные [4-6], в которых избыточный заряд компенсируется дополнительным дефектом решетки. Таким дефектом может быть ион F⁻, находящийся в ближайшем междоузлии на оси C_3 или C_4 (рис. 1). Локальная кристаллическая структура ПЦ $MeF_2: Yb^{3+}$ и $MeF_2: Tm^{2+}$ исследована методом ДЭЯР [1-6], однако этим методом достаточно сложно определить положение ионов F-, непосредственно окружающих примесный ион, вследствие эффектов ковалентности и перекрывания, а также невозможно определить положение катионов, обладающих нулевым ядерным спином. Одни из первых работ по расчету локальной структуры примесных центров РЗМ ионов в МеГ2 были сделаны Малкиным с сотрудниками [7,8]. В настоящей работе для определения локальной структуры ПЦ используется оболочечная модель и приближение парных взаимодействий.

1. Модель расчета энергии кристалла

Равновесные положения ионов в кристалле могут быть найдены путем минимизации энергии кристаллической решетки. В оболочечной модели в приближении парных взаимодействий выражение для энергии решетки имеет вид

$$U_{\text{lat}} = \frac{1}{2} \sum_{i} \sum_{k(\neq i)} V_{ik} + \frac{1}{2} \sum_{i} k_i \delta_i^2, \tag{1}$$

где $k_i \boldsymbol{\delta}_i^2$ — энергия взаимодействия остов-оболочка i-го иона, $\boldsymbol{\delta}_i$ — смещение оболочки относительно его остова, V_{ik} — энергия взаимодействия между i-м и k-м ионами,

которая может быть выражена следующим образом:

$$V_{ik} = \frac{X_i X_k}{|\mathbf{r}_i - \mathbf{r}_k|} + \frac{Y_i X_k}{|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i|} + \frac{X_i Y_k}{|\mathbf{r}_i - \mathbf{r}_k - \boldsymbol{\delta}_k|} + \frac{Y_i Y_k}{|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i - \boldsymbol{\delta}_k|} + f_{ik}(|\mathbf{r}_i - \mathbf{r}_k|) + g_{ik}(|\mathbf{r}_i - \mathbf{r}_k + \boldsymbol{\delta}_i - \boldsymbol{\delta}_k|), \quad (2)$$

где функция

$$f_{ik}(r) = -A_{ik} \exp(-B_{ik}r)/r \tag{3}$$

описывает близкодействующую экранировку электростатического взаимодействия остовов ионов, а функция

$$g_{ik}(r) = C_{ik} \exp(-D_{ik}r) - \lambda_{ik}/r^6$$

— близкодействующее отталкивание между оболочками ионов, записанное в форме потенциала Борна-Майера и взаимодействие Ван-дер-Ваальса; X_i , Y_i заряды остова и оболочки i-го иона, \mathbf{r}_i — вектор, определяющий положение его остова. В настоящей работе использовались следующие значения для зарядов остовов: $X_{\rm F} = +5$, $X_{\mathrm{Me}} = +8$, $X_{\mathrm{Yb}} = +11$, $X_{\mathrm{Tm}} = +10$. Заряды оболочек были определены из условия $Z_i = X_i + Y_i$, где Z_i — заряд иона в данном соединении. Расчет энергии кулоновского взаимодействия выполнялся методом Эвальда. Параметры близкодействующего взаимодействия для МеГ2 приведены в работе [9]. При расчете близкодействующего взаимодействия $Yb^{3+}-F^{-}$ и $Tm^{2+}-F^{-}$ электростатическое экранирование не учитывалось, параметры C и D и параметр k иона Yb^{3+} были получены из условия оптимального совпадения рассчитанных и экспериментально определенных радиальных и угловых смещений анионов в ПЦ MeF_2 : Yb^{3+} и MeF_2 : Tm^{2+} ($C_{Yb,T-F} = 262.594$, $D_{\mathrm{Yb-F}} = 2.054, \ D_{\mathrm{Tm-F}} = 2.181, \ k_{\mathrm{Yb}} = 25.020 \,\mathrm{a.u.}$). Для расчета локальной кристаллической структуры ПЦ использовался метод внедренного кластера, дефектная область включала семь и более координационных сфер.

Сфера (тип ионов)	CaF ₂			SrF ₂			BaF ₂	
	Чистый кристалл	Экспери- мент [3]	Расчет	Чистый кристалл	Экспери- мент [3]	Расчет	Чистый кристалл	Расчет
1 (F) 2 (Me) 3 (F)	235.8 385.1 451.6	452.4(6)	238.5 386.0 452.0	250.3 408.8 479.3	479.0(14)	244.3 407.1 479.3	267.5 436.9 512.3	251.1 434.0 514.2

Таблица 1. Радиальные координаты ионов вблизи Tm²⁺ в кубических ПЦ MeF₂: Tm²⁺ (pm)

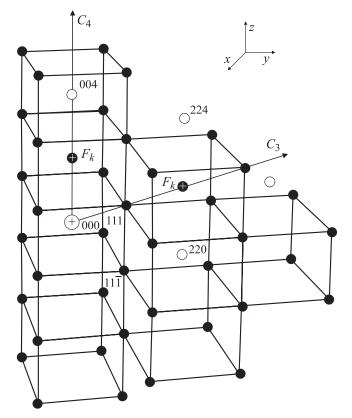
Примечание. Числа в скобках — величина ошибки в единицах последнего знака.

Таблица 2. Реальные координаты ионов вблизи Yb^{3+} в кубических ПЦ $MeF_2:Yb^{3+}$ (pm)

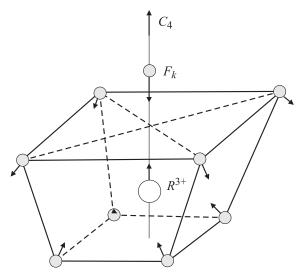
Сфера (тип ионов)	CaF ₂			SrF ₂			BaF_2		
	Чистый кристалл	Экспери- мент [1]	Расчет	Чистый кристалл	Экспери- мент [1]	Расчет	Чистый кристалл	Экспери- мент [1]	Расчет
1 (F)	235.8		235.5	250.3		238.7	267.5		241.8
2 (Me)	385.1		391.6	408.8		412.6	436.9		439.7
3 (F)	451.6	448.7(7)	449.7	479.3	475.3(6)	476.8	512.3	506.5(18)	512.2

Примечание. Числа в скобках — величина ошибки в единицах последнего знака.

2. Кубические примесные центры $Tm^{2+}: MeF_2$


В кубических ПЦ Tm^{2+} : MeF_2 (табл. 1) расчеты предсказывают увеличение расстояния до лигандов на 3 pm в CaF_2 по сравнению с чистым кристаллом и уменьшение на 6 и $10\,\mathrm{pm}$ в SrF_2 и BaF_2 . Согласно расчетам, ближайшее катионное окружение Tm^{2+} расширяется в CaF_2 и сжимается в SrF_2 и BaF_2 . Угловые координаты ионов в CaF_2 изменяются мало (в пределах 0.02°), в SrF_2 и BaF_2 в третьей координационной сфере увеличиваются на 0.06° и 0.12° .

3. Кубические, тетрагональные и тригональные $\Pi \coprod Yb^{3+} : MeF_2$


Согласно расчетам, в кубических ПЦ (табл. 2) расстояние Yb^{3+} –лиганд уменьшается, причем изменение расстояния в ряду MeF_2 возрастает с увеличением разности между ионными радиусами Yb^{3+} и замещенного катиона. Непосредственное катионное окружение примесного иона расширяется. Угловые координаты ионов в третьей координационной сфере в CaF_2 , SrF_2 и BaF_2 увеличиваются на $0.18,\,0.26$ и $0.33^\circ.$

В тетрагональном центре CaF_2 : Yb^{3+} согласно расчетам происходит смещение P3M иона навстречу фторукомпенсатору (рис. 2) на 23 pm. Компенсатор при этом смещается к примесному иону на 11 pm и расталкивает четверку лигандов, расположенную между ним и иттербием. Угол между осью C_4 и направлением на ион этой четверки увеличивается. Катионы, окружающие примесный ион, смещаются следующим образом. Четверка ионов типа 220 (рис. 1) расширяется в плоскости,

перпендикулярной оси C_4 , и сдвигается вниз вдоль оси, четырехугольники типа 202 и $20\overline{2}$ сдвигаются соответственно вверх и вниз вдоль оси C_4 и сжимаются в перпендикулярной ей плоскости.

Рис. 1. Положение F^- -компенсатора в структуре флюорита. Темные кружки — анионы, светлые — катионы.

Рис. 2. Смещения анионов в тетрагональном примесном центре.

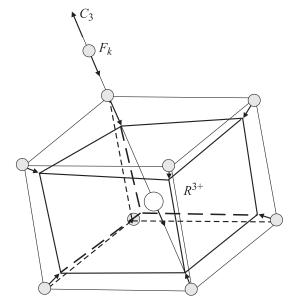


Рис. 3. Смещения анионов в тригональном примесном центре.

В тригональных ПІЦ SrF₂: Yb³⁺ и BaF₂: Yb³⁺ расчет предсказывает одинаковый характер смещений (рис. 3). Примесный ион смещается от фтора-компенсатора по оси C_3 на 4.4 рм в SrF₂ и 4.6 рм в BaF₂. Фторкомпенсатор смещается относительно междоузлия в чистом кристалле к Yb³⁺ на 44 рм в BaF₂ и на 27 рм в SrF₂. Непосредственное окружение примесного иона сжимается, при этом наибольшие смещения испытывает ион (111) (рис. 1), который смещается к Yb³⁺ на 45 рм в BaF₂ и на 31 рм в SrF₂. Угол между осью C_3 и направлением на ион увеличивается для тройки лигандов (11 $\bar{1}$) и уменьшается для ($\bar{1}\bar{1}1$). Координаты анионов вблизи Yb³⁺ в тетрагональном и тригональном ПЦ приведены в табл. 3, 4.

Таблица 3. Координаты анионов вблизи Yb^{3+} в тетрагональном ПЦ $CaF_2: Yb^{3+}$ (начало координат на примесном ионе)

Сфалера, тип ядер, (их количество)	R, pm	θ , deg	φ , deg
1, 111(4)	235.2	63.92	45
$1, 11\bar{1}(4)$	247.9	129.94	45
\mathbf{F}_k	238.4	0	0

Таблица 4. Координаты анионов вблизи Yb^{3+} в тригональных ПЦ (начало координат на примесном ионе)

		SrF ₂ : Yb	$BaF_2: Yb^{3+}$		
Сфалера, тип ядер,	R, pm	θ ,	, deg	R, pm	θ , deg
(их количество)	Расчет	Расчет	Экспери- мент [5]	Расчет	Расчет
1, 111(1)	224.2	0	0	226.7	0
$1, \bar{1}\bar{1}\bar{1}(1)$	239.4	180	180	243.3	180
$1, 11\bar{1}(3)$	241.9	70.57	71.0(1)	245.9	70.97
1, 111(3)	238.9	109.03	109.6(1)	241.4	109.14
F_k	478.8	0	0	499.9	0

Таким образом, в рамках оболочечной модели с одним набором параметров близкодействующего взаимодействия $Yb^{3+}-F$ и $Tm^{2+}-F$ удалось одновременно описать структуру кубических и низкосимметричных $\Pi \coprod$.

Список литературы

- [1] C.A. Ramos, C. Fainstein, M. Tovar. Phys. Rev. B. **32**, *1*, 64 (1985).
- [2] D. Kiro, W. Low. Phys. Rev. Let. 20, 18, 1010 (1968).
- [3] W. Hayes, P.H.S. Smith. J. Phys. C: Sol. Stat. Phys. 4, 841 (1971).
- [4] О.В. Назарова, Т.И. Санадзе. Сообщ. АН СССР 87, 2, 329 (1977).
- [5] Б.Г. Берулава, Р.И. Мирианашвили, О.В. Назарова, Т.И. Санадзе. ФТТ 19, 6, 1771 (1977).
- [6] J.M. Baker, E.R. Davies, J.P. Hurrell. Proc. Roy. Soc. A 308, 403 (1968).
- [7] Б.З. Малкин. ФТТ 11, 5, 1208 (1969).
- [8] М.П. Давыдова, Б.З. Малкин, А.Л. Столов. В сб.: Спектроскопия кристаллов. Наука, Л., (1978). С. 27.
- [9] А.Е. Никифоров, А.Ю. Захаров, В.А. Чернышев. ФТТ **46**, *9*, 1588 (2004).