05.1;05.3 Об особенностях намагничивания поликристаллов в переменных встречных магнитных полях

© Г.А. Марков, Ю.А. Хон

Институт физики прочности и материаловедения СО РАН, Томск

Поступило в Редакцию 19 апреля 2001 г.

Показано, что в поликристаллическом ферримагнитном замкнутом сердечнике, помещенном во внешние переменные встречные магнитные поля с равными амплитудами, возникает переменное магнитное поле. Как следствие, во вторичной обмотке, намотанной на первичную, появляется электрический ток.

Поликристаллические ферро- и ферримагнетики представляют неоднородные системы с нелинейными свойствами. Как следствие, во внешнем магнитном поле с напряженностью $H = H_1 + H_2$ результирующее магнитное поле в среде $B(H) \neq B_1(H_1) + B_2(H_2)$. В частном случае, когда векторы H_1 и H_2 равны по величине, но направлены в противоположные стороны, вектор *В* может оказаться не равным нулю. Если H_1 и H_2 зависят от времени, то в среде возможно появление переменного магнитного поля. Указанный эффект действительно существует, и его можно проиллюстрировать на конкретном примере [1].

Брался замкнутый ферримагнитный сердечник, состоящий из пяти одинаковых ферритовых колец M600HH-8 K $100 \times 00 \times 10$, максимальная магнитная проницаемость которых равна 2000. Толщина каждого кольца составляла 20 mm, а внутренний и внешний диаметры — 60 и 100 mm соответственно. На этот сердечник была намотана первичная обмотка, содержащая $N_1 = 100$ витков из медного провода с площадью поперечного сечения 0.75 mm². Она состояла из двух секций по 50 витков в каждой. Витки первой секции наматывались в направлении, противоположном виткам второй. Вторая секция наматывалась на первую секцию. Выходные концы каждой секции соединялись вместе, а входные подключались к источнику питания. Общая длина проводника, из которого изготовлена первичная обмотка, была равна 32.5 m. Вторичная обмотка

78

из того же самого провода была намотана на вторую секцию первичной обмотки и содержала $N_2 = 50$ витков, намотанных в одном направлении. Активное электрическое сопротивление первичной обмотки $R_1 \approx 0.7 \Omega$, а вторичной в два раза меньше. По первичной обмотке пропускались импульсы тока различной длительности с амплитудой от 100 до 10^5 А.

При напряжениях U_1 на первичной обмотке, меньших 40 V, ток во вторичной обмотке не возникает. В интервале изменения U_1 от 40 V до значений примерно 100 V во вторичной обмотке возникает электрический ток. Но каких-либо закономерностей, связывающих отношение напряжения U_2 во вторичной обмотке к U_1 , выявить не удается. При $U_1 \ge 100$ V зависимость U_2 от U_1 становится линейной. В частности, при частоте электрического тока 5 kHz и $U_1 = 100$, 200, 300, 400, 500, 600, 700, 800, 900 V напряжение во вторичной обмотке $U_2 = 800$, 1750, 2500, 3400, 4300, 5250, 6250, 7250, 8250 V соответственно. Видно, что коэффициент трансформации $K = U_2/U_1$ слабо возрастает с увеличением напряжения на первичной обмотке. Даже при $N_2 = 1$ K > 1. Повышение напряжения во вторичной обмотке происходит при частотах электрического тока, меняющихся от сотых герца до десятков мегагерц. При этом зависимость коэффициента трансформации от частоты близка к линейной.

Качественная картина указанного эффекта состоит в следующем. В поликристаллическом материале каждое зерно имеет свое направление магнитного момента. В ненамагниченном состоянии дальний порядок в распределении магнитных моментов зерен отсутствует. Во внешнем магнитном поле \mathbf{H}_1 магнитное поле в среде $\mathbf{B}_1 = \mu_1(H_1)\mathbf{H}_1$. Магнитная проницаемость μ_1 определяется числом зерен, магнитные моменты которых образуют острый угол с Н1. Обозначим относительную концентрацию таких зерен в единице объема через η_1 . При возрастании $H_1\eta_1$ увеличивается. Изменение ориентации магнитных моментов зерен приводит к появлению упругого взаимодействия между зернами. Как результат, свободная энергия поликристалла помимо магнитной составляющей содержит также вклад, связанный с этим взаимодействием. Будем называть его для краткости упругой энергией. Распределение магнитных моментов в поле \mathbf{H}_1 соответствует минимуму свободной энергии. В противоположно направленном поле Н2 поле ${f B}_2 = \mu_2(H_2){f H}_2$. Магнитная проницаемость μ_2 определяется теми зернами, магнитные моменты которых образуют острый угол с H2. Относительная концентрация таких зерен равна $\eta_2 = \eta_2(\mathbf{H}_2)$. Распреде-

ление магнитных моментов соответствует минимуму свободной энергии поликристалла. В однородном и изотропном магнетике при $|\mathbf{H}_2| = |\mathbf{H}_1|$ $\eta_2 = \eta_1$.

Во встречных магнитных полях с $H_1 = H_2 = H$ результирующее магнитное поле $B = \Delta \mu H$, где $\Delta \mu = \mu(H)(\eta_1 - \eta_2)$. Магнитная составляющая свободной энергии поликристалла в этом случае зависит от разности $\eta_1 - \eta_2$. При H = 0 $\eta_1 = \eta_2$. При значении H, меньшем некоторого критического значения H_0 , возрастание упругой энергии при $\eta_1 \neq \eta_2$ превышает магнитную составляющую свободной энергии. Поэтому η_1 остается равным η_2 , среда не намагничивается. При значениях H, превышающих H_0 , возрастание упругой энергии. В результате магнитные моменты η_1 зерен ориентируются вдоль поля H_1 , а магнитные моменты η_2 зерен — вдоль поля H_2 . Такое состояние среды с макроскопической намагниченностью становится термодинамически выгодным.

Рассмотрим теперь кинетику намагничивания поликристалла. Прежде всего заметим, что величины η_1 и η_2 характеризуют дальний порядок в распределении магнитных моментов зерен, т. е. η_1 и η_2 можно рассматривать в качестве параметров порядка в поликристаллическом магнетике. Кинетические уравнения для параметров порядка представляют уравнения баланса числа частиц [2,3]:

$$t_0 \partial \eta_1 / \partial t = F_1(\eta_1, \eta_2) + l_0^2 \Delta \eta_1, \tag{1}$$

$$t_0 \partial \eta_2 / \partial t = F_2(\eta_1, \eta_2) + l_0^2 \Delta \eta_2, \tag{2}$$

где t_0 — характерное время, а l_0 — характерная длина изменения параметров порядка, F_1 , F_2 — функции источников. Учитывая, что η_1 и η_2 являются малыми параметрами, F_1 , F_2 можно представить в виде [3]:

$$F_1 = a_1\eta_1 + b_1\eta_1^2 - \eta_1^3 + c\eta_1\eta_2, \quad F_2 = a_2\eta_2 + b_2\eta_2^2 - \eta_2^3 - d\eta_1\eta_2.$$
(3)

Здесь a_1, b_1, c, a_2, b_2, d — безразмерные коэффициенты. Имеющие физический смысл решения для параметров порядка должны удовлетворять условиям $0 \leq \eta_1 \leq 1, 0 \leq \eta_2 \leq 1, \eta_1 + \eta_2 \leq 1$. В переменных встречных магнитных полях $\Delta \mu = \Delta \mu(t)$. Частота изменения $\Delta \mu$ определяется частотой ω электрического тока в первичной обмотке. При $t_0 \ll 1/\omega$ намагничивание поликристалла определяется стационарными

решениями уравнений (1), (2). В настоящей работе рассматривается именно этот случай.

Намагничивание среды в поле \mathbf{H}_1 описывается уравнением (1) при c=0. Поскольку установление дальнего порядка в распределении магнитных моментов зерен происходит в сколь угодно слабом поле, то однородное стационарное решение $\eta_1 = 0$ при $H_1 > 0$ должно быть всегда неустойчивым относительно малых возмущений. Это имеет место при $a_1 \ge 0$. Не равное нулю устойчивое однородное стационарное решение $\eta_{10} = b_1/2 + (b_1/4 + a)1/2$. Отсюда следует, что $0 \le b_1 < 1/2$. При $H_1 \to \infty$ среда намагничивается до насыщения, $\eta_{10} \to 1$. Поэтому коэффициент a_1 должен быть монотонно возрастающей функцией H_1 . Используя те же самые соображения при намагничивании в поле \mathbf{H}_2 при d = 0, находим, что $a_2 \ge 0$, $0 \le b_2 < 1/2$. Для однородного изотропного магнетика следует положить $a_1 = a_2$, $b_1 = b_2$.

Коэффициенты с, d учитывают влияние упругого взаимодействия между зернами на намагничивание поликристалла. Естественно считать, что для однородного изотропного магнетика |c| = |d|. Вследствие симметрии уравнений (1), (2) относительно замены c на -c достаточно рассмотреть значения $c \ge 0$. Анализ уравнений $F_1 = F_2 = 0$ показывает, что при $a \ll c$ устойчивых однородных решений $\eta_{10} - \eta_{20} > 0$ не существует, т.е. в слабых внешних полях среда находится в исходном состоянии с $\eta_{10} = \eta_{20}$. Если $a \approx c$, то имеется единственное устойчивое относительно малых возмущений однородное стационарное решение $\eta_{10} > \eta_{20} > 0$. Вектор намагничивания среды параллелен полю **H**₁. При этом разность $\eta_1 - \eta_2 \leq 0, 1$ и, следовательно, $\Delta \mu \leq 0.1 \mu$. Условие $a \approx c$ определяет критическое значение напряженности внешнего магнитного поля. При $a/c \rightarrow \infty \eta_{20} \rightarrow \eta_{10}$ и $\Delta \mu \rightarrow 0$. Намагниченность среды уменьшается. Таким образом, $\Delta \mu$ при увеличении напряжения на первичной обмотке скачком возрастает до конечного значения, а затем монотонно уменьшается. Поскольку решение $\eta_{20} - \eta_{10} = 0$ неустойчиво, то переход системы в состояние $\eta_{10} > \eta_{20} > 0$ происходит гомогенно, т.е. намагничивание поликристалла при *H* > *H*₀ протекает спонтанным образом. При этом магнитные моменты зерен поворачиваются на угол, не превышающий $\pi/2$, поэтому намагничивание поликристалла во встречных магнитных полях может происходить в широком диапазоне изменения ω .

Вычислим теперь коэффициент трансформации. Для определеннности будем полагать, что первая секция первичной обмотки и вторичная

обмотка имеют одинаковое направление намотки проводника. Индуктивности контуров определяются числом витков и магнитной проницаемостью. Индуктивность первичной обмотки $L_1 = 0$. Индуктивность вторичной обмотки $L_2 \sim \mu N_2^2$. Коэффициент пропорциональности зависит от выбора системы единиц и геометрических размеров сердечника. В выражение для коэффициента трансформации он не входит, поэтому в явном виде не выписан. Коэффициенты взаимной индукции намотанных друг на друга соленоидов $L_{12} = L_{21} \sim \Delta \mu N_1 N_2 / 2$. Пренебрегая падением напряжения на первичной обмотке и сопротивлением вторичной, находим

$$U_1 \sim N_1 N_2 / 2d(\Delta \mu I_2) / dt, \tag{4}$$

$$U_2 \sim -[N_1 N_2 / 2d(\Delta \mu I_1) / dt + N_2^2 \mu dI_2 / dt].$$
 (5)

Здесь I_1 , I_2 — токи в первичной и вторичной обмотках. Для $N_2 \approx N_1$, $dI_1/dt \approx dI_2/dt$ значение $K \approx \Delta \mu/\mu$. При $\Delta \mu \approx 0.1 \mu$ получаем $K \approx 10$. Увеличение напряжения на первичной обмотке приводит к уменьшению $\Delta \mu$ и возрастанию K. Заметим, что при $N_2 \rightarrow 1 K > 1$, т.е. трансформатор типа [1] всегда является повышающим. При этом связь $U_2N_2 = U_1N_1$, присущая обычному трансформатору, в рассматриваемом случае отсутствует.

Список литературы

- [1] Патент № 2119205, Россия, МКИ С 1 6Н 01 F 30/06. Трансформатор (варианты) / Марков Г.А. Приоритет 05.02.97. Опубл. 20.09.98 Бюл. № 26.
- [2] Кернер Б.С., Осипов В.В. // УФН. 1990. В. 9. С. 2-73.
- [3] Хон Ю.А. // Изв. вузов. Физика. 1999. № 6. С. 3-7.