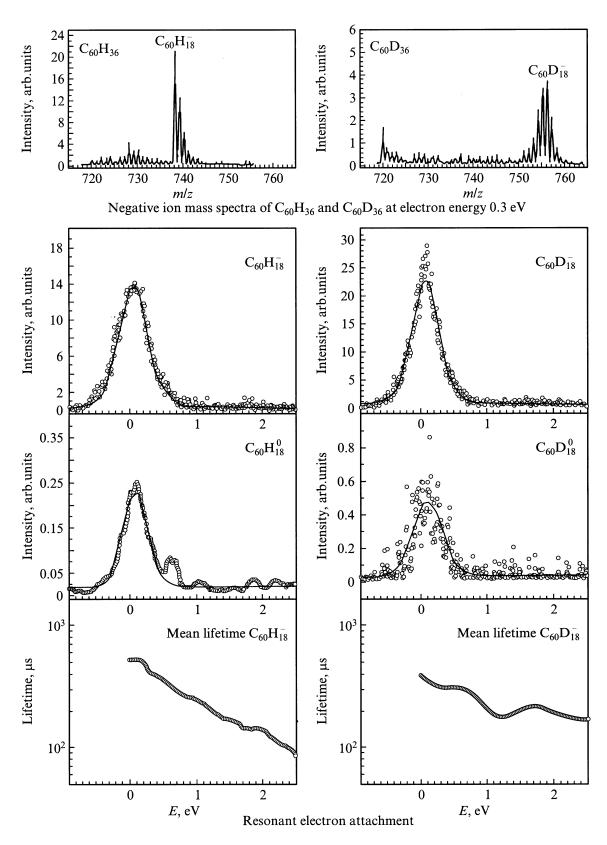
Отрицательные ионы гидрированных и дейтерированных фуллеренов C₆₀

© Ш.К. Насибуллаев, Ю.В. Васильев*, Р.Р. Абзалимов, А.С. Лобач**, И.О. Башкин***, D. Wallis*, T. Drewello*

Институт физики молекул и кристаллов Российской академии наук,

450075 Уфа, Россия E-mail: nsk@anrb.ru


- * Department of Chemistry, University of Warwick, Coventry CV4 7AL, England, U.K.
- ** Институт проблем химической физики Российской академии наук,
- 142432 Черноголовка, Московская обл., Россия
- *** Институт физики твердого тела Российской академии наук,
- 142432 Черноголовка, Московская обл., Россия

Представлены результаты масс-спектрометрических и теоретических исследований гидро- и дейтеропроизводных фуллерена $C_{60}H(D)_x$. Обсуждаются образование и распад вследствие автоотрыва электрона отрицательных молекулярных ионов гидрофуллеренов $C_{60}H_{18}$ и $C_{60}D_{18}$, проводится сравнительный анализ этих процессов для различных производных фуллеренов.

Работа проводилась при содействии Российского фонда фундаментальных исследований (гранты № 01-02-16561 и 99-02-17299) и ИНТАС (грант № 97-30027).

Гидропроизводные фуллерена $C_{60}H_x$ являются предметом интенсивных экспериментальных и теоретических исследований на протяжении последних нескольких лет [1]. Изучение этих соединений может дать важную информацию о природе связывания атомов водорода в молекуле; кроме того, с этими соединениями связаны перспективные приложения. В данной работе масс-спектрометрия резонансного захвата электронов наряду с лазерно-десорбционной масс-спектрометрией была применена для исследования низкоэнергетических электрон-молекулярных взаимодействий гидрированных фуллеренов $C_{60}H_{18}$, $C_{60}H_{36}$, $C_{60}D_{36}$ и процессов образования отрицательных ионов (ОИ) этих молекул под воздействием лазерного излучения.

Масс-спектры ОИ гидрофуллеренов $C_{60}H_{36}$ и $C_{60}D_{36}$, полученные в режиме резонансного захвата электронов при энергии электронов $\sim 0.3 \, \text{eV}$, представлены на рисунке. Были записаны также кривые эффективного выхода ОИ $C_{60}H(D)_{18}^-$ как функции энергии электронов. На рисунке эти кривые показаны вместе с кривыми выхода нейтральных молекул $C_{60}H(D)_{18}^0$, образующихся путем автоотщепления электронов от соответствующих ОИ во второй бесполевой области одноступенчатого секторного масс-спектрометра, а также с кривыми времени жизни этих ОИ относительно автоотрыва электрона. Все кривые были записаны при приблизительно идентичных условиях (одинаковая настройка источника ионов, одинаковые температуры молекулярных пучков), и какоголибо резкого различия (в пределах погрешности измерений данных экспериментов) в спектре гидро- и дейтеропроизводных фуллерена С₆₀ не наблюдалось. Однако оба соединения показали интересный температурный эффект для средних времен жизни ОИ. С ростом температуры молекулярного пучка время жизни ОИ $C_{60}H(D)_{18}^-$ из обоих изотопомеров возрастало, причем различие низкотемпературных и высокотемпературных значений достигало двух раз. Это оказалось совершенно неожиданным, так как, согласно общим принципам статистической теории ОИ, должна наблюдаться обратная картина. Уместно напомнить известные из литературы [2] данные о молекуле $C_{60}H_{18}$ и его фторированного аналога $C_{60}F_{18}$. Обе молекулы, как принято считать, обладают одним устойчивым изомером симметрии C_{3v} с весьма характерным расположением атомов водорода/фтора вокруг одного из "полюсов" каркаса C_{60} . Этот изомер $C_{60}H(F)_{18}$ достаточно хорошо изучен методами ЯМР и кристаллографии, и нет сомнений в его структуре. Вплоть до настоящего времени в литературе нет сообщений о существовании каких-либо других устойчивых измеров $C_{60}H(F)_{18}$. Наши предварительные масс-спектрометрические исследования изомера С₆₀F₁₈, полученного в результате реакций фуллерена С₆₀ с различными фторнесущими реагентами, указали на существование еще одного термодинамически устойчивого изомера молекулы $C_{60}F_{18}$. По крайней мере нам удалось установить разницу в 0.5 eV для энергий ионизации, зарегистрировать различное поведение поперечного сечения образования ОИ как функции энергии электронов и определить разное время жизни ОИ $C_{60}F_{18}^-$. Пока до конца неясен вопрос о возможной структуре другого изомера. Однако очевидно, что нашие новые данные по гидрированным аналогам С₆₀F₁₈ невозможно объяснить без привлечения другого изомера $C_{60}H(D)_{18}$. В самом деле, полуэмпирические расчеты, проведенные нами в рамках данного исследования, показали, что хорошо установленный изомер $C_{60}H_{18}$ симметрии C_{3v} характеризуется двукратным вырождением основного состояния ОИ. Тогда, согласно статистической теории, константа скорости автоотщепления электрона (величина, обратная времени жизни ОИ) от такого иона должна удвоиться по сравнению с невырожденным слу-

Масс-спектры отрицательных молекулярных ионов и кривые эффективного выхода отрицательных ионов $C_{60}H(D)_{18}$ соединений $C_{60}H_{36}$ (левая колонка) и $C_{60}D_{36}$ (правая колонка).

чаем (при прочих равных условиях, например близких величинах сродства к электрону (СЭ)). Соответственно величина времени жизни двукратно вырожденного состояния должна быть в 2 раза меньше. Таким образом, либо с ростом температуры молекулярного пучка происходит изомеризация симметричного изомера структуры C_{3v} в несимметричный, либо изначально существующий несимметричный изомер обладает большей температурой сублимации и его влияние начинает сказываться при высокой температуре молекулярного пучка. Действительно, наши теоретические расчеты показали, что существует несколько изомеров $C_{60}H(D)_{18}$, термодинамически более выгодных, чем известный изомер симметрии C_{3v} . Однако их реализация в природе может встретить трудности по чисто химическим причинам, изложенным в [3]. Более естественно предположить существование такого же полярного изомера, как C_{3v} , но менее симметричного.

Одним из важных вопросов, связанных с исследованием ОИ гидрированных фуллеренов С₆₀H_x, является вопрос о возможности образования ОИ гидрофуллеренов с большим содержанием водорода х. В литературе [4] высказывалось мнение, что максимальная степень насыщения, при которой может образовываться ОИ, не превышает 10. На основе масс-спектров лазерной десорбции и резонансного захвата электронов нами было доказано существование долгоживущего ОИ $C_{60}H_{18}^{-}$ [5]. исследования вопроса о том, при каком максимальном насыщении х может образовываться ОИ, были проведены расчеты энергий СЭ молекул С₆₀Н_г в диапазоне $0 \le x \le 60$. Расчеты выполнялись полуэмпирическим квантово-химическим методом АМ1. Для каждой молекулы рачет проводился с оптимизацией геометрии как для нейтрального состояния, так и для отрицательного молекулярного иона. Энергия СЭ рассчитывалась как $E_a(x) = E_x^{(0)} - E_x^{(-)}$. Здесь $E_x^{(z)}$ — полная энергия иона, z — заряд иона. Рассчитанные энергии СЭ были приведены к экспериментальному значению СЭ C_{60} (x = 0) 2.65 eV. Отметим, что оцененные таким образом величины СЭ неплохо предсказывают экспериментальные оценки СЭ $C_{60}H_{18}^-$ (1.4 eV — эксперимент, 1.18 eV — расчет). Проведенные расчеты СЭ показывают, что верхняя граница степени насыщения атомами водорода x_{max} , при которой еще может образовываться ОИ, равна приблизительно 30.

Список литературы

- [1] Н.Ф. Гольдшлегер, А.П. Моравский. Успехи химии **66**, *4*, 353 (1997).
- [2] O.V. Boltalina, M. Bühl, A. Khong, M.A. Saunders, J.M. Street, R. Taylor. J. Chem. Soc., Perkin, Trans. 2, 1475 (1999).
- [3] A.D. Darwish, A.G. Avent, R. Taylor, D.R.M. Walton. J. Chem. Soc., Perkin Trans. 2, 2051 (1996).
- [4] R.L. Hettich, C. Jin, P.F. Britt, A.A. Tuinman, R.N. Compton. Mater. Res. Soc. Sump. Proc. 349, 133 (1994).
- [5] Y.V. Vasil'ev, R.R. Abzalimov, Sh.K. Nasibullaev, A.S. Lobach, T. Drewello. J. Phys. Chem. A105, 4, 661 (2001).