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New approach to nonlinear dynamics of fullerenes and fullerites
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New type of nonlinear (anharmonic) excitations — bushes of vibrational modes — in physical systems with point
or space symmetry are discussed. All infrared active and Raman active bushes for C60 fullerene are found by means
of special group-theoretical methods.

1. Introduction

Vibrations of many fullerenes and fullerites were inves-
tigated by different experimental and theoretical methods
(see [1,2] and references in these papers). Although
the majority of such studies are based on the harmonic
approximation only, some nonlinear (anharmonic) effects
also were discussed in a number of papers. For example,
combination modes of second order brought about by
anharmonicity of interactions in C60 fullerene are discussed
and the appropriate lines in infrared transmission spectra
are reported in [3]. The above effects do not exhaust the
influence of anharmonicity on the fullerene and fullerite
vibrational spectra, and we want to consider an application
for these objects of the consistent group-theoretical approach
for studying nonlinear vibrations in arbitrary physical sys-
tems with discrete (point or space) symmetry developed
in [4–7]. This approach reveals the existence of new
nonlinear dynamical objects (or new type of anharmonic
excitations) in systems with discrete symmetry which we
call bushes of normal modes. The concept of the bush of
modes can be explained as follows.

In the frame of the harmonic approximation, the set of
normal modes can be introduced which are classified by
irreducible representations (irreps) of the symmetry group G
of the considered physical system in equilibrium. In this
harmonic approximation, normal modes are independent of
each other, while interactions between them appear when
some anharmonic terms in the Hamiltonian are taken into
account. Let us note that a very specific pattern of atomic
displacements corresponds to each normal mode. As a
consequence, we can ascribe to a given mode a definite
symmetry group GD which is a subgroup of the symmetry
group G. The group GD is a symmetry group of the
instantaneous configuration of our system in its vibrational
state.

Let us excite at the initial instant t0 only one, arbitrarily
chosen mode which will be called the root mode. We
suppose that all other modes at the initial moment have
zero amplitude. Let the symmetry group GD and irrep Γ0

correspond to this root mode. Then we can pose the
following question: to which other modes can this initial
excitation spread from the root mode? We will refer to
these initially ”sleeping” modes, belonging to the different
irreps Γ j ( j 6= 0), as secondary modes.

A very simple answer to the above question was found
in [4,5]. It turns out that initial excitation can spread from the
root mode only to those modes whose symmetry is higher
than or equal to the symmetry group GD of the root mode.
We call the complete collection containing the root mode
and all secondary modes corresponded to it a bush of modes.
Since no other modes are excited, the full energy is trapped
in the given bush. As a consequence of the above idea, we
can ascribe the symmetry group GD (remember that this is
a group of the root mode) to the whole bush, and in this
sense we can consider the bush as a geometrical object.

It was proved in [4–6] that all modes belonging to a given
bush B [GD] are coupled by force interactions. It is very
important that the structure of a given bush is independent
of the type of interactions between particles of our physical
system.

A bush of normal modes can be considered as a dynamical
object, as well. Indeed, the set of modes corresponding to
a given bush B [GD] does not change in time, while the
amplitudes of these modes do change. We can write exact
dynamical equations for the amplitudes of the modes con-
tained in the bush B [GD], if interactions between particles
of our physical system are known. Thus, the bush B [GD]
represents a dynamical system whose dimension can be
essentially less than that of the original physical system.

The above properties of bushes of normal modes can
be summarized in the following manner. A normal mode
represents a specific dynamical regime in a linear physical
system which, upon being exciting at the initial instant t0,
continues to exist for any time t > t0. Similarly, a bush of
normal modes represents a specific dynamical regime in a
nonlinear system which can exist as a certain object for any
time t > t0.

2. Some mathematical aspects of bushes
of normal modes

Let us examine a nonlinear mechanical system of N mass
points (atoms) whose Hamiltonian is described by a point
or space group G. Let three-dimensional vectors xi (t)
(i = 1, 2, . . . ,N) determine the displacement of the
i -th atom from its equilibrium position at time t . The
3×N-dimensional vector X(t) = {x1(t), x2(t), . . . , xN(t)},
describing the full set of atomic displacements, can be
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decomposed into the basis vectors (symmetry-adapted co-
ordinates) of all irreps Γ j of the group G contained in the
mechanical representation1 Γ

X(t) =
∑

j i

µ j i (t)ϕ
( j )
i =

∑
j

∆ j . (1)

Here ϕ
( j )
i is the i -th basis vector of the nj -dimensional

irrep Γ j . The time dependence of X(t) is contained only
in the coefficients µ j i (t) while the basis vectors are time
independent. Thus, a given nonlinear dynamical regime of
the mechanical system described by the concrete vector X(t)
can be written as a sum of the contributions ∆ j from the
individual irreps Γ j of the group G.

Each vibrational regime X(t), can be associated with a
definite subgroup GD (GD ⊆ G) which describes the sym-
metry of the instantaneous configuration of this system. Now
the following essential idea is proposed. The subgroup GD

is conserved in time; its elements cannot disappear during
time evolution except for the case of spontaneous breaking
of symmetry which we will not consider in the present
paper. This is the direct consequence of the principle of
determinism in classical mechanics.

Introducing the operators ĝ ∈ Ĝ acting on the 3N-dimen-
sional vectors X(t), which correspond to the elements g ∈ G
acting on the three-dimensional vectors xi (t), we can write
the above condition of conservation of GD as a condition of
invariance of the vector X(t) under the action of the elements
of the group GD

ĝX(t) = X(t), g ∈ GD . (2)

Combining Eqs. (1) and (2) one obtains (for the details
see [6]) the following invariance conditions for individual
irreps Γ j

(Γ j ↓ GD)c j = c j . (3)

Here Γ j ↓ GD is the restriction of the irrep Γ j of the
group G to the subgroup GD , i.e. the set of matrices
of Γ j which correspond to the elements g ∈ GD only. The
nj -dimensional vector c j in Eq. (3) is the invariant vector in
the carrier space of the irrep Γ j corresponding to the given
subgroup GD ⊂ G. Note that each invariant vector of a
given irrep Γ j determines a certain subspace of the carrier
space of this representation, and the total number of arbitrary
constants upon which the vector depends is equal to the
dimension of this subspace. If in solving Eq. (3) we find that
c j 6= 0, then the irrep Γ j does contribute to the dynamical
regime X(t) with the symmetry group GD . Moreover, the
invariant vector c j determines the explicit form of the mode
of the irrep Γ j belonging to the bush of modes associated
with the given nonlinear dynamical regime.

We shall illustrate the general statements of bush theory
with C60 fullerene having the buckyball structure and the
icosahedral symmetry group G = Ih. There are 10 irre-
ducible representations of dimensions 1 (Ag, Au), 3 (F1g,

1 Considering vibrational regimes only, we can treat Γ as a 3N − 6
vibrational representation of the group G.

F1u, F2g, F2u), 4 (Gg, Gu) and 5 (Hg, Hu) associated with
the group Ih. The infrared (IR) active modes belong to
the irrep F1u, and the modes, which are active in Raman
(R) experiments, belong to irreps Ag or Hg. We found all
bushes of modes for C60 fullerene. There are 22 different
bushes for this fullerene. Let us consider the bush B7
corresponding to the symmetry group GD = C5v ⊂ Ih.
Only four irreps Ag,Hg, F1u and F2u contribute to it (the
appropriate invariant vectors are zero for all other irreps of
the icosahedral group G = Ih)2

B7: [symmetry C5v] :

Ag(a)− Ih, Hg(a, 0.577a, 0, 0.516a,−0.258a)−D5d

F1u(0, 0, a)−C5v, F2u(a, 0.258a, 0.197a) −C5v. (4)

The arbitrary constants entering into the description of
different invariant vectors are not connected with each other.
As all invariant vectors listed in Eq. (4) are one-parametric
(their arbitrary constants are denoted by the same symbol a
only for clarity), it is clear that the bush B7 depends
on four arbitrary constants (one constant for each of the
four irreps). The structure of the bush B7 (see Eq.(4))
shows that there exist only four contributions ∆ j to the
appropriate dynamical regime X(t). We denote them3 as
∆[Ag],∆[Hg],∆[F1u],∆[F2u]. The invariant vectors listed
in Eq. (4) permit us immediately to write the explicit form
of the dynamical regime X(t) corresponding to the bush B7
by replacing the arbitrary constants with the four functions
of time µ(t), ν(t), γ(t) and ξ(t)

X(t) = ∆[Ag] + ∆[Hg] + ∆[F1u] + ∆[F2u]

= µ(t)ϕ[Ag] + ν(t)
{
ϕ1[Hg] + 0.577ϕ2[Hg]

+ 0.516ϕ4[Hg]− 0.258ϕ5[Hg]
}

+ γ(t)ϕ3[F1u]

+ ξ(t)
{
ϕ1[F2u] + 0.258ϕ2[F2u] + 0.197ϕ3[F2u]

}
. (5)

Eq. (5) is a consequence of the relation of the group G
and its subgroup GD only, and now we should take into
account the concrete structure of our physical system to
find the explicit form of the basis vectors ϕ( j )

i of the irreps
entering into Eq. (5). They can be obtained by conventional
group-theoretical methods, for example, by the projection
operation method. The basis vectors of the irreps determine
the specific patterns of the displacements of all 60 atoms of
the C60 fullerene structure.

It is important to note that each of the irreps Ag,Hg, F1u

and F2u is contained in the vibrational representation of
C60 fullerene several times, namely, 2, 8, 4 and 5 times,
respectively. (These numbers are equal to the numbers of
fundamental frequencies of normal modes associated with

2 Since some elements of the matrices of multidimensional irreps of the
group G = Ih are irrational numbers, we keep only three digits after the
decimal point when we write the invariant vectors.

3 Hereafter we write the symbol j of the irrep Γ j generating the
contribution ∆ j in square brackets next to symbol ∆.
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the considered irreps). As a consequence, we must treat
the time-dependent coefficients in Eq. (5) as vectors of
the appropriate dimensions. Because of this we ascribe
a new index (k) to the basis vectors determining the
number of times (mj ) the irrep Γ j enters into the vibrational
representation. Each contribution ∆ j ”splits” into mj

copies ∆ jk, where k = 1, 2, . . . ,mj and, therefore,

X(t) =
∑

j

∆ j =
∑

j

( mj∑
k=1

∆ jk

)
. (6)

For the case of the bush B7 we have ∆[Ag] = ∆1[Ag]
+∆2[Ag], ∆[F1u] = ∆1[F1u]+∆2[F1u]+∆3[F1u]+∆4[F1u],
etc.

The bush B7 in the C60 fullerene structure forms a
19-dimensional dynamical object: its evolution is de-
scribed by the dynamical variables listed below as com-
ponents of the four vectorial variables µ(t), ν(t), γ(t) and
ξ(t): µ(t) = [µ1(t), µ2(t)], ν(t) = [ν1(t), . . . , ν8(t)],
γ(t) = [γ1(t), . . . , γ4(t)], ξ(t) = [ξ1(t), . . . , ξ5(t)].

Thus, although only four of the ten irreps contribute to
the bush B7, its dimension is equal to 19 because several
copies of each of these four irreps are contained in the
full vibrational representation of C60 fullerene. We cannot
predict the concrete evolution of the amplitudes of the
bush modes without specific information of the nonlinear
interactions in the considered physical systems, but we can
assert that there does exist an exact nonlinear regime which
involves only the modes belonging to a given bush.

3. Optical bushes for C60 fullerene

As was already noted, there are 22 bushes of vibrational
modes for C60 fullerene structure. Five of them are infrared
active and six are Raman active. We call these bushes by
the term ”optical”. The root modes of the optical bushes
belong to the infrared active irrep F1u or to the Raman active
irreps Ag and Hg. We want to emphasize that some modes
associated with the irreps which are not active in optics can
be contained in a given optical bush.

All optical bushes with their symmetry groups (in square
brackets), numbers of irreps contributing to them, and their
dimensions (in parentheses) are listed below.

Infrared active bushes:

B7 [C5v] (4, 19); B11 [C3v] (6, 31); B15 [C2v] (7, 46);
B19 [Cs] (9, 89); B22 [C1] (10, 174).

Raman active bushes:

B1 [Ih] (1, 2); B4 [D5d] (2, 10); B5 [D3d] (3, 16);
B10 [D2h] (3, 24); B16 [C2h] (5, 45); B20 [Ci ] (5, 87).

Supposing that nonlinearity of the considered system is
weak4 we can estimate the relative values of the contribu-
tions from different irreps to a given bush. For example, for

4 According to results obtained in the paper [3] this hypothesis is valid
for C60 fullerene vibrations.

above discussed infrared active bush B7 we have

∆[F1u](root) = O(ε), ∆[F1u](secondary) = O(ε3),

∆[F2u] = O(ε3), ∆[Ag] = O(ε2), ∆[Hg] = O(ε2).

Here ε is an appropriate small parameter characterizing the
value of the root mode.

Thus, in the case of weak nonlinearity, the contributions
of different irreps can be of essentially different value. This
property seems to be important for the interpretation of the
vibrational spectra of bushes of modes.

4. Conclusion

In the present paper, we consider a new type of possible
nonlinear excitations — bushes of normal modes — in
vibrational spectra of fullerenes and fullerites, using as an
example the C60 buckyball structure. We believe that special
experiments for revealing the bushes of vibrational modes in
their pure form will be important for further elucidation of
the role of these fundamental dynamical objects in various
phenomena in fullerenes and fullerites. It seems that such
experiments may be similar to those by Martin and others
reported in [3]. However, unlike these experiments, we must
use the monochromatic incident light with frequency close
to that of the root mode and with polarization along the
symmetry axis of the chosen bush.

The first-principle calculations are desirable for obtaining
the coefficients of the anharmonic terms in C60 fullerene for
a more detailed description of the bush dynamics.

The concept of bushes of normal modes and the appro-
priate mathematical methods for their analysis are valid for
both molecular and crystal structures. Such a possibility
can simplify the assignment of the different optical lines in
fullerites brought about by both intra- and inter-vibrations of
the C60 molecular clusters.

It will be very interesting to study interactions between
bushes of vibrational modes and electron subsystems in
fullerenes and fullerites.
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