Особенности фононной теплопроводности полупроводников II–VI, содержащих ионы 3d-переходных металлов

© А.Т. Лончаков, В.И. Соколов, Н.Б. Груздев

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: lonchakov@imp.uran.ru

Представлены результаты исследования фононной теплопроводности полупроводников II–VI, содержащих ионы 3d-переходных металлов. Обнаруженные температурыне аномалии анализируются с привлечением динамического эффекта Яна—Теллера.

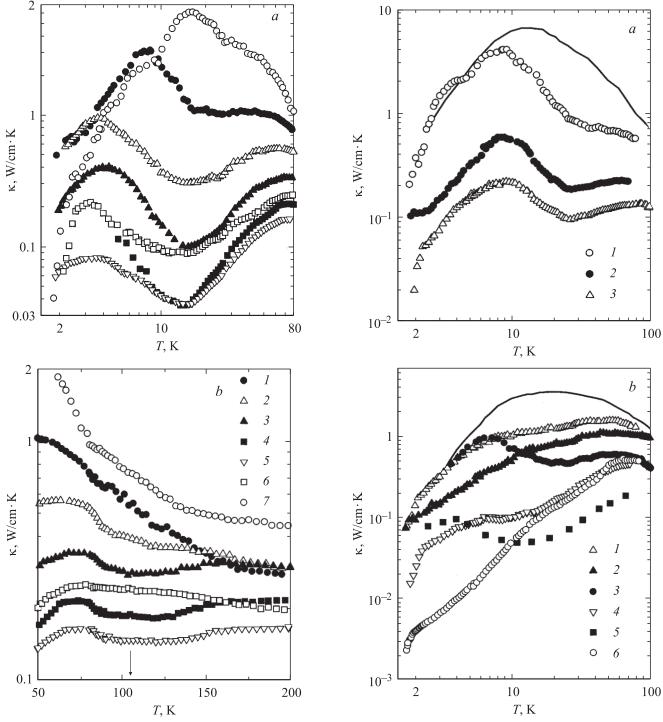
Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-02-96094-р2004 урал_а).

1. Введение

Для практического применения систм II-VI: 3d необходимо всестороннее исследование их физических свойств, среди которых несомненный интерес представляет фононная теплопроводность (ФТП) как одна из фундаментальных характеристик процессов релаксации колебаний решетки. Недавно в кристаллах ZnX: Ni²⁺ (X = Se,S) было обнаружено необычайно сильное резонансноподобное изменение ФТП при низких температурах [1]. Природа этой аномалии и связанной с ней нестабильности решетки ZnSe:Ni²⁺ [2,3] остается не вполне ясной. В настоящей работе с целью получения более полного представления о механизмах резонансного рассеяния акустических фононов в ZnX:Ni²⁺ и причинах решеточной неустойчивости ZnSe: Ni²⁺ проведены измерения ФТП монокристаллов ZnX, содержащих ионы различных 3d-переходных металлов (Ni^{2+} , Cr^{2+} , Fe^{2+} , Co^{2+} , Ti^{2+} и V^{2+}).

2. Образцы и методика эксперимента

Исследуемые монокристаллы были выращены по методу Бриджмена из расплава в условиях избыточного давления инертного газа [4]. Концентрация примеси в образцах определялась методами оптической эмиссионной спектроскопии индуктивно связанной плазмы (ISP/OES) и рентгеновского микроанализа.


Теплопроводность измерялась в интервале температур $1.8-200\,\mathrm{K}$ методом стационарного теплового потока. Температурный градиент и средняя температура образца измерялись при $T \geq 10\,\mathrm{K}$ двумя термопарами (Au+0.012% Fe)–Cu, а при $T \leq 10\,\mathrm{K}$ — парой германиевых термометров. Средний размер образцов составлял $1.5 \times 2.5 \times 10\,\mathrm{mm}$.

3. Экспериментальные результаты и их обсуждение

Рассмотрим сначала область низких температур $(1.8-80\,\mathrm{K})$. На рис. 1,a представлены кривые температурной зависимости коэффициента теплопроводности κ

кристаллов ZnSe, содержащих ионы Ni^{2+} , Co^{2+} и Fe^{2+} . Видно, что на кривых $\kappa(T)$ образцов ZnSe:Ni²⁺ при $T_{\min} \cong 15 \, \mathrm{K}$ наблюдается глубокий резонансного типа минимум, положение которого не зависит от концентрации ионов Ni^{2+} . Минимум $\kappa(T)$ обнаружен также для образца ZnSe: Fe $^{2+}$ при $T_{\min}\cong 13$ K. На рис. 2, a показаны зависимости $\kappa(T)$ для кристаллов ZnSe: Cr²⁺ и чистого ZnSe [5]. Видно, что на кривых $\kappa(T)$ примесных образцов наблюдается минимум при $T_{\min} \cong 27 \, \mathrm{K}$. В отличие от ионов Ni^{2+} , Fe^{2+} и Ci^{2+} легирование ZnSe кобальтом не приводит к какой-либо резонансноподобной аномалии $\kappa(T)$ вплоть до $T \approx 100$ K. Отметим, что Co^{2+} является единственным среди представленных на рис. 1 и 2, а ионом с орбитально невырожденным в кристаллическом поле T_d -симметрии основным состоянием (синглет 4A_2), тогда как основные термы ионов Ni^{2+} и Cr^{2+} — соответственно орбитальные триплеты ${}^{3}T_{1}$ и ${}^{5}T_{2}$, а иона Fe^{2+} — дублет ^{5}E . Другим 3d-ионом с орбитально невырожденным основным состоянием в тетраэдрическом окружении является Ti^{2+} (синглет ${}^{3}A_{2}$). Как видно из рис. 2, b, зависимость $\kappa(T)$ для образца ZnS: Ti²⁺, так же как и для ZnS: Co²⁺, не имеет выраженной аномалии резонансного типа. С другой стороны, на кривых $\kappa(T)$ кристаллов $ZnS:Ni^{2+}$ и $ZnS:Fe^{2+}$ наблюдаются минимумы при $T_{\min}\cong 22$ и $10\,\mathrm{K}$ соответственно. Зависимость $\kappa(T)$ для образца ZnS, содержащего ионы V^{2+} (основное состояние — триплет ${}^{4}T_{1}$), также необычна: легирование ванадием до концентрации $5 \cdot 10^{19} \, \text{cm}^{-3}$ приводит к уменьшению κ при $T \approx 4 \, \mathrm{K}$ приблизительно на два порядка по сравнению с чистым ZnS.

Зависимости $\kappa(T)$ для кристаллов ZnSe: 3d в области высоких температур $(T>80\,\mathrm{K})$ показаны на рис. 1,b. Видно, что на кривых $\kappa(T)$ образцов ZnSe: Ni^{2+} наблюдается минимум, положение которого $(T_{\min}\cong 115\,\mathrm{K})$ не зависит от концентрации примеси. Из сравнения рис. 1,a и b следует, что для появления высокотемпературного минимума $\kappa(T)$ требуется более высокая концентрация Ni^{2+} , чем для появления низкотемпературного. Как видно из рис. 1b, высокотемпературный минимум $\kappa(T)$ отсутствует для кристаллов ZnSe: Fe^{2+} , ZnSe: Co^{2+} и образцов ZnSe со сравнительно малым содержанием $\mathrm{Ni}^{2+}\approx (1-2)\cdot 10^{19}\,\mathrm{cm}^{-3}$.

Рис. 1. Температурная зависимость коэффициента теплопроводности κ в области низких (a) и более высоких (b) температур для образцов ZnSe, содержащих разные 3d-ионы (в скобках приведена концентрация в cm $^{-3}$): I — Ni $^{2+}$ ($1 \cdot 10^{19}$); 2 — Ni $^{2+}$ ($2 \cdot 10^{19}$); 3 — Ni $^{2+}$ ($5 \cdot 5 \cdot 10^{19}$); 4 — Ni $^{2+}$ ($1 \cdot 10^{20}$); 5 — Ni $^{2+}$ ($2 \cdot 10^{20}$); 6 — Fe $^{2+}$ ($3 \cdot 8 \cdot 10^{20}$); 7 — Со $^{2+}$ ($5 \cdot 10^{19}$). Стрелкой отмечена температура Дебая ($104 \, \mathrm{K}$) для поперечных акустических фононов в ZnSe [10].

Рис. 2. Зависимость коэффициента теплопроводности κ от температуры. a — для образцов ZnSe: Cr^{2+} с концентрациями Cr^{2+} $1\cdot 10^{19}$ (I), $6.5\cdot 10^{19}$ (2) и $1\cdot 10^{21}$ cm $^{-3}$ (3); b — для образцов ZnS, содержащих разные 3d-ионы (в скобках приведена концентрация в cm $^{-3}$): I — Ti^{2+} $(3.8\cdot 10^{19})$; 2 — Co^{2+} $(5\cdot 10^{19})$; 3 — Ni^{2+} $(2.6\cdot 10^{19})$; 4 — Fe^{2+} $(6\cdot 10^{19})$; 5 — Fe^{2+} $(3.5\cdot 10^{20})$ [5]; 6 — V^{2+} $(5\cdot 10^{19})$. Сплошные кривые — теплопроводность чистых кристаллов ZnSe и ZnS (по данным [5]).

Таким образом, экспериментальные данные показывают, что ионы Co^{2+} и Ti^{2+} не являются источниками резонансного рассеяния фононов в полупроводниках ZnX, тогда как 3d-ионы, основное состояние которых в тетраэдрическом окружении является орбитально вырожденным (Ni^{2+} , Cr^{2+} , Fe^{2+} и V^{2+}), оказывают необычнайно сильное влияние на ФТП. В последнем случае взаимодействие электронного состояния примеси с вырожденными колебаниями решетки снимает вырождение основного состояния иона. Этот эффект, известный как динамический эффект Яна-Теллера (ЯТ), может привести к дополнительному рассеянию акустических фононов, имеющему резонансную природу, и поэтому значительно повлиять на $\kappa(T)$ полупроводников [6].

Резонансное рассеяние фононов в кристаллах ZnX:3d, приводящее к минимуму $\kappa(T)$, должно сопровождаться переходом электрона примеси из основного состояния в возбужденное. Рассмотрим конкретную систему ZnSe: Ni²⁺. Известно, что учет спин-орбитального взаимодействия (СОВ) приводит к расщеплению основного состояния иона Ni^{2+} в поле T_d -симметрии на четыре подуровня [7]. Расстояние δ между основным состоянием A_1 (или Γ_1) и ближайшим к нему верхним подуровнем T_1 (Γ_4) в первом порядке теории возмущений по СОВ равно $\approx (3/2)\lambda$, где λ — константа СОВ. К сожалению, значение этого параметра для Ni²⁺ в кубических соединениях II-VI неизвестно. Если взять величину $\lambda \approx 100-150\,\mathrm{cm}^{-1}$, которая, по-видимому, близка к λ для свободного иона Ni²⁺ [8], получим $\delta \approx 20-30\,\mathrm{meV}$, что значительно больше предполагаемой величины резонансной энергии 4 meV [3]. Ситуация может кардинально измениться при включении в гамильтониан задачи взаимодействия ЯТ. Если энергия ЯТ-взаимодействия окажется больше энергии СОВ (случай сильного взаимодействия ЯТ), то, согласно [9], имеет место значительное сжатие картины спин-орбитального расщепления, что может вполне обеспечить для ZnSe: Ni²⁺ требуемую величину резонансной энергии в несколько meV.

Таким образом, глубокий низкотемпературный $(T_{\min}\cong 15~\mathrm{K})$ минимум $\kappa(T)$ для кристаллов ZnSe: Ni²⁺ можно рассматривать как следствие разонансного рассеяния фононов в системе с сильным ЯТ-взаимодействием.

При интерпретации высокотемпературного минимума $\kappa(T)$ учтем, что $T_{\min}\cong 115\,\mathrm{K}$ близка к температуре Дебая $\Theta=104\,\mathrm{K}$ для поперечных акустических фононов, которые в ZnSe вносят основной вклад в ФТП [10]. Согласно [6], резонансная энергия фононов при рассеянии на двухуровнейвой системе должна по крайней мере в 2-3 раза превышать T_{\min} . Поэтому высокотемпературный минимум в ZnSe:Ni²+ в отличие от низкотемпературного не может иметь резонансную природу. На наш взгляд, он является следствием специфического рассеяния эффективных ЯТ-фононов в кристаллах с высокой концентрацией Ni²+. Специфика рассеяния определяется самой природой динамического эффекта ЯТ, связанной с переориентацией искажений ЯТ [11]. Фононные спектры ZnSe [12] дают основание

предполагать, что ЯТ-фононами в ZnSe: Ni²⁺ могут быть либо TA(L)-, либо TA(X)-фононы. Взаимодействие иона Ni²⁺ с первыми приводит к тетрагональным искажениям решетки [13], а со вторыми ведет, по-видимому, к тригональным. Известно, что для основного состояния 5E иона Fe²⁺ в соединениях II–VI характерно слабое ЯТ-взаимодействие [14]. Вероятно, с этим связано отсутствие высокотемпературного минимума $\kappa(T)$ для ZnSe: Fe²⁺.

4. Заключение

В интервале температур $1.8-200\,\mathrm{K}$ исследована ФТП кристаллов ZnSe и ZnS, содержащих ионы различных 3d-переходных металлов. Выявлены две главные особенности $\kappa(T)$ для этих соединений: 1) сильное резонансное рассеяние фононов на 3d-ионах с орбитально вырожденным основным состоянием; 2) высокотемпературный минимум $\kappa(T)$ для кристаллов ZnSe: Ni^{2+} при $T_{\mathrm{min}}\cong 115\,\mathrm{K}$, близкой к Θ для поперечных акустических фононов. Предполагается, что обнаруженные аномалии являются проявлением в $\kappa(T)$ соединений II—VI динамического эффекта ЯТ на глубоких примесных центрах.

Список литературы

- В.И. Соколов, А.Т. Лончаков. Письма в ЖЭТФ 73, 11, 708 (2001); А.Т. Лончаков, Н.Б. Груздев, В.И. Соколов. ФТТ 44, 8, 1462 (2003).
- [2] V.I. Sokolov, S.F. Dubinin, S.G. Teploukhov, V.D. Parkhomenko, A.T. Lonchakov, V.V. Gudkov, A.V. Tkach, I.V. Zhevstovskikh, N.B. Gruzdev. Solid State Commun. 129, 8, 507 (2004).
- [3] V.V. Gudkov, A.T. Lonchakov, A.V. Tkach, I.V. Zhevstovskikh, V.I. Sokolov, N.B. Gruzdev. JEM 33, 7, 815 (2004).
- [4] М.П. Кулаков, А.В. Фадеев. Изв. АН СССР. Неорган. материалы 22, 3, 392 (1986).
- [5] G.A. Slack. Phys. Rev. B 6, 10, 3791 (1972).
- [6] E. Sigmund, K. Lassmann. Phys. Stat. Sol. (b) 111, 2, 631 (1982); J. Maier, E. Sigmund. J. Phys. C: Solid State Phys. 17, 23, 4141 (1984); A. Puhl, E. Sigmund, J. Maier. Phys. Rev. B 32, 12, 8234 (1985).
- [7] H.A. Weakliem. J. Chem. Phys. **36**, *8*, 2117 (1962).
- [8] G. Goetz, G. Roussos, H.-J. Schulz. Solid State Commun. 57, 5, 343 (1986).
- [9] F.S. Ham. Phys. Rev. 138, 6A, A1727 (1965).
- [10] R.D. Bijalwan, P.N. Ram, M.D. Tiwari. J. Phys. C: Solid State Phys. 16, 13, 2537 (1983).
- [11] M.D. Sturge. The Jahn-Teller Effect in Solids. Solid State Physics. Academic Press, London (1967). V. 20. P. 126–127.
- [12] K. Kunc, M. Balkanski, M.A. Nusimovich. Phys. Stat. Sol. (b) 72, 1, 229 (1975).
- [13] J.T. Vallin, G.A. Slack, S. Roberts. Phys. Rev. B 2, 11, 4313 (1970).
- [14] G.A. Slack, F.S. Ham, R.M. Chrenko. Phys. Rev. 152, 1, 376 (1966); F.S. Ham, G.A. Slack. Phys. Rev. B 4, 3, 777 (1971).