Причины фрустрации магнитных связей в феррите NiFeCrO₄

© Л.Г. Антошина, А.Н. Горяга, Д.А. Чурсин

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Поступила в Редакцию 18 июня 2001 г.)

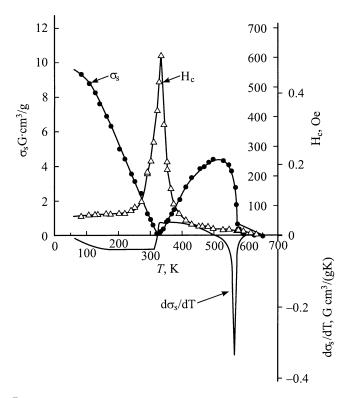
Впервые проведено исследование магнитострикции образца NiFeCrO₄. Установлено, что фрустрация магнитных связей имеет место только в B-подрешетке феррита, тогда как в A-подрешетке магнитная структура носит обычный характер. Сделан вывод, что причиной фрустрации магнитных связей в B-подрешетке является не только прямой отрицательный BB-обмен Cr_B^{3+} - Cr_B^{3+} , но и косвенный положительный AB-обмен Fe_A^{3+} - O^{2-} - Cr_B^{3+} .

На основе экспериментальных данных и анализа обменных взаимодействий в образце NiFeCrO₄ впервые показано, что в данном феррите имеет место отклонение магнитных моментов ионов Fe_A^{3+} от коллинеарности. Установлено, что при низких температурах ответственной за суммарный магнитный момент $n_{0\exp}$ данного феррита является B-подрешетка.

Ферриты со структурой шпинели являются наиболее подходящими объектами для образования фрустрированной магнитной структуры. Такая магнитная структура создается в них, как правило, путем разбавления обеих подрешеток феррита немагнитными ионами [1]. Известно однако, что для создания такой структуры достаточно наличия в ферритах-шпинелях нескольких обменных взаимодействий, различных как по знаку, так и по величине [2]. В последнее время появились работы [3,4], в которых фрустрированная магнитная структура обнаружена в ферритах-хромитах, содержащих достаточное количество ионов $\operatorname{Cr}_{8}^{3+}$, присутствие которых, по мнению авторов, и приводит к фрустрации магнитных связей.

Недавно с помощью эффекта Мессбауэра было обнаружено, что фрустрированная магнитная структура имеет место в феррите-хромите NiFeCrO₄ [5]. Авторы этой работы считают, что причиной фрустрации является наличие ионов Cr^{3+} в октаэдрических узлах феррита. Представляло интерес выяснить, является ли наличие ионов Cr_B^{3+} единственной причиной возникновения фрустрированной магнитной структуры в феррите NiFeCrO₄, или есть еще другие существенные причины, которые вызывают фрустрацию магнитных связей.

Ранее [6] при анализе аномальных температурных зависимостей спонтанной намагниченности $\sigma_s(T)$ у ферритов-хромитов нами был сделан вывод, что для возникновения аномальной зависимости N-типа (по Неелю) необходимо, чтобы хотя бы в одной из подрешеток феррита была фрустрированная магнитная структура. Поэтому представляло интерес выяснить, имеет ли место аналогичное явление у феррита NiFeCrO₄, также имеющего точку компенсации [1].


До сих пор в литературе остается открытым вопрос о том, какая из подрешеток феррита NiFeCrO₄ является ответственной за магнитный момент при 0 К. Например, в работе [7] предполагается, что ответственной за магнитный момент является A-подрешетка, а в работе [8,9] — B-подрешетка феррита. Известно, что данный феррит-хромит имеет катионное распределение Fe[NiCr]O₄. В предположении неелевского спинового

упорядочения, учитывая, что все ионы имеют только спиновый магнитный момент $\mu_{\text{Fe}^{3+}}=5\mu_B$, $\mu_{\text{Ni}^{2+}}=2\mu_B$ и $\mu_{\text{Cr}^{3+}}=3\mu_B$ при $T=0\,\text{K}$, феррит-хромит теоретически должен иметь магнитный момент $n_{0\text{th}}=0$ [9]. Однако экспериментально установлено, что при $T=0\,\text{K}$ магнитный момент этого образца составляет $n_{0\text{exp}}=0.4\mu_B$ [9]. Поскольку сильное прямое отрицательное обменное взаимодействие между ионами Cr_B^{3+} приводит к неколлинеарной магнитной структуре в B-подрешетке, не исключено, что при $T=0\,\text{K}$ ответственной за магнитный момент феррита-хромита NiFeCrO4 может оказаться A-подрешетка. Таким образом, представляло интерес выяснить, почему у данного образца $n_{0\text{th}} < n_{0\text{exp}}$ и какая из его подрешеток определяет магнитный момент при $0\,\text{K}$.

Для решения вопроса о природе магнитного момента у феррита-хромита NiFeCrO $_4$ проведено исследование поведения его намагниченности, коэрцитивной силы и магнитострикции.

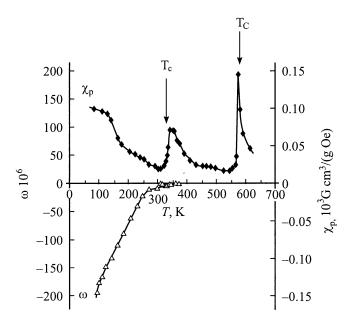
Образец NiFeCrO₄ был приготовлен по керамической технологии. Первый отжиг проводился при температуре 1000° С в течение 4 h, второй — при температуре 1350° С также в течение 4 h. Оба отжига проводились на воздухе с последующим медленным охлаждением. Проведенные рентгеновские исследования показали, что образец является однофазной шпинелью. Намагниченность измерялась баллистическим методом в полях до $11 \, \text{kOe}$ в интервале температур $80\text{--}600 \, \text{K}$. Остаточная намагниченность σ_r и коэрцитивная сила H_c были определены из измерения петли гистерезиса. Магнитострикция измерялась тензометрическим методом в полях до $12 \, \text{kOe}$ в интервале температур от $80 \, \text{до} \, 400 \, \text{K}$.

На рис. 1 приведены температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $(d\sigma_s/dT)(T)$. Видно, что зависимость $\sigma_s(T)$ является кривой типа N; температура компенсации составляет $T_c=325\,\mathrm{K}$, температура Кюри $T_c=575\,\mathrm{K}$. Экстраполяция зависимости $\sigma_s(T)$ на $0\,\mathrm{K}$ дает величину σ_{0s} , из которой найдено, что $n_{0\mathrm{exp}}=0.40\pm0.01\,\mu_B$, что хорошо согласуется с данными [9].

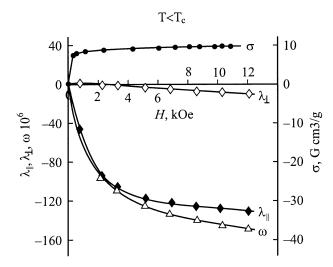
Рис. 1. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$, коэрцитивной силы $H_c(T)$ и производной спонтанной намагниченности $(d\sigma_s/dT)(T)$ для образца NiFeCrO₄.

Из рис. 1 также видно, что в районе температуры Кюри T_{C} зависимость производной спонтанной намагниченности от температуры $|(d\sigma_s/dT)(T)|$ имеет резкий максимум. Такое поведение зависимости $(d\sigma_s/dT)(T)$ вблизи T_{C} характерно для обычного ферримагнетика, имеющего зависимость $\sigma_s(T)$ типа Q, и это доказывает, что при $T > T_c$ ответственной за магнитный момент является А-подрешетка феррита, в которой фрустрированная магнитная структура отсутствует. Однако при $T < T_c$ зависимость $(d\sigma_s/dT)(T)$ практически постоянна, что обычно наблюдается у ферритов с фрустрированной магнитной структурой [10,11]. Таким образом, исходя из поведения зависимостей $\sigma_s(T)$ (N-типа) и $(d\sigma_s/dT)(T)$, можно сделать предположение, что ответственной за магнитный момент феррита-хромита NiFeCrO₄ при 0 K является октаэдрическая подрешетка.

Нами впервые проведено исследование продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций образца NiFeCrO4. Используя данные λ_{\parallel} и λ_{\perp} , мы рассчитали величину объемной $\omega=\lambda_{\parallel}+2\lambda_{\perp}$ магнитострикции. Известно, что для продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций ферромагнетика с нефрустрированной магнитной структурой выполняется правило Акулова: $\lambda_{\parallel}=-2\lambda_{\perp}$, в результате чего объемная магнитострикция ω должна быть равна нулю.


На рис. 2 приведены температурные зависимости объемной магнитострикции $\omega(T)$, рассчитанной в поле

 $H=12\,\mathrm{kOe}$, и восприимчивости парапроцесса $\chi_p(T)$, измеренной в поле $H=6-10\,\mathrm{kOe}$. Обнаружено, что ниже температуры компенсации T_c величина ω , будучи отрицательной, резко возрастает с понижением температуры, достигая при $T=93\,\mathrm{K}$ значительной величины ($\omega\approx-193\cdot10^{-6}$). Выше T_c магнитострикция ω практически равна нулю, что согласуется с правилом Акулова и, таким образом, еще раз подтверждает, что в A-подрешетке магнитная структура не является фрустрированной. Из рис. 2 также видно, что резкий рост $\omega(T)$ ниже температуры T_c сопровождается резким увеличением воспримичивости парапроцесса $\chi_p(T)$, свидетельствующим об увеличении истинной намагниченности образца в магнитном поле.


Нами установлено, что поведение продольной λ_{\parallel} , поперечной λ_{\perp} и объемной ω магнитострикций сильно отличается для температур ниже температуры компенсации T_c и выше ее.

На рис. З приведены изотермы намагниченности $\sigma(H)$, продольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций, измеренные при температуре $T < T_c$. Видно, что как $\lambda_{\parallel}(T)$, так и $\lambda_{\perp}(T)$, будучи обе отрицательными, носят аномальный характер: величина λ_{\parallel} почти в 10 раз больше, чем λ_{\perp} . Отсутствие насыщения на кривой $\omega(H)$, так же как и на зависимости $\sigma(H)$, свидетельствует о наличии парапроцесса, связанного с уменьшением степени неколлинеарности в B-подрешетке феррита при низких температурах.

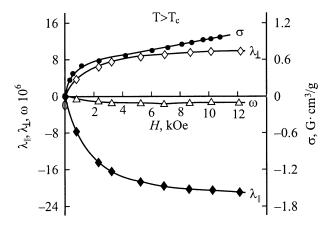

На рис. 4 приведены аналогичные изотермы $\sigma(H)$, $\lambda_{\parallel}(H)$, $\lambda_{\perp}(H)$ и $\omega(H)$, снятые при температуре $T>T_c$. Что касается величин λ_{\parallel} и λ_{\perp} , то во всех полях для них практически выполняется правило Акулова $\lambda_{\parallel}=-2\lambda_{\perp}$,

Рис. 2. Температурные зависимости объемной магнитострикции $\omega(T)$, рассчитанной в поле $H=12\,\mathrm{kOe}$, и восприимчивости парапроцесса $\chi_p(T)$, измеренной в поле $H=6-10\,\mathrm{kOe}$, для образца NiFeCrO₄.

Рис. 3. Изотермы намагниченности $\sigma(H)$, а также произвольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций для образца NiFeCrO₄ при $T=123.5\,\mathrm{K}.$

Рис. 4. Изотермы намагниченности $\sigma(H)$, а также продольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$ и объемной $\omega(H)$ магнитострикций для образца NiFeCrO₄ при T=343.5 K.

поэтому величина объемной магнитострикции $\omega\approx 0$. Также видно, что на зависимостях $\sigma(H)$, $\lambda_{\parallel}(H)$ и $\lambda_{\perp}(H)$ отсутствует насыщение. На основании этих результатов можно сделать вывод, что при $T>T_c$ парапроцесс имеет другую природу, чем в случае $T< T_c$. По-видимому, парапроцесс при $T>T_c$ обусловлен увеличением степени неколлинеарности в B-подрешетке феррита.

Таким образом, проведенные исследования магнитных и магнитострикционных свойств феррита $Fe[NiCr]O_4$ позволили установить, что фрустрация магнитных связей имеет место только в B-подрешетке феррита, тогда как в A-подрешетке магнитная структура носит обычный характер. Также показано, что ответственной за магнитный $n_{0 \exp}$ у данного феррита является B-подрешетка.

Подтверждением данного вывода может быть аналогичное поведение изотерм продольной $\lambda_{\parallel}(H)$ и поперечной $\lambda_{\perp}(H)$ магнитострикций при $T < T_c$ феррита-

хромита NiFe_{1.1}Cr_{0.9}O₄, имеющего катионное распределение Fe[NiFe_{0.1}Cr_{0.9}]O₄, у которого при низких температурах ответственной за магнитный момент является B-подрешетка феррита [12].

Представляло интерес выяснить причины появления фрустрированных связей в феррите-хромите NiFeCrO₄. Поскольку причиной возникновения фрустрированной магнитной структуры может быть либо разбавление феррита немагнитными ионами [1], либо наличие в образце различных по знаку и величине обменных взаимодействий [2], то следовало оценить обменные взаимодействия между ионами, входящими в состав этого феррита.

В исследуемом образце, согласно [13], могут иметь место следующие обменные взаимодействия: межподрешеточные косвенные обменные взаимодействия $Fe_A^{3+}-O^2-Cr_B^{3+}$ и $Fe_A^{3+}-O_2-Ni_B^{2+}$, внутриподрешеточные косвенные взаимодействия $Ni_B^{2+}-O^2-Ni_B^{2+}$, $Ni_B^{2+}-O^2-Cr_B^{3+}$ и $Cr_B^{3+}-O^2-Cr_B^{3+}$, а также прямой обмен $Cr_B^{3+}-Cr_B^{3+}$. Внутриподрешеточными обменными взаимодействиями в A-подрешетке феррита со структурой шпинели как всегда можно пренебречь.

Ион $\mathrm{Fe}_A^{3+}(t_{2g}^3e_g^2)$, имея магнитной d_{z2} -орбиталь, образует p_σ -связь с p-орбитой кислорода. В свою очередь ион $\mathrm{Cr}_B^{3+}(t_{2g}^3e_g^0)$ имеет магнитными только t_{2g} -орбитали и образует с этой же орбитой кислорода p_π -связь. Следовательно, межподрешеточное косвенное обменное взаимодействие $\mathrm{Fe}_A^{3+}\mathrm{-O^{2-}-Cr}_B^{3+}$, образованное $p_\sigma - p_\pi$ -связью, будет положительного знака умеренной силы [13]. Межподрешеточное косвенное обменное взаимодействие $\mathrm{Fe}_A^{3+}\mathrm{-O^{2-}-Ni}_B^{2+}$ между ионами $\mathrm{Fe}_a^{3+}(t_{2g}^3e_g^2)$ и $\mathrm{Ni}_B^{2+}(t_{2g}^6e_g^2)$ образовано $p_\sigma - p_\sigma$ -связью, поэтому следует ожидать, что оно является отрицательным и сильным (высокая температура Кюри исследуемого феррита: $T_C=575\,\mathrm{K}$).

Внутриподрешеточное BB-взаимодействие положительного знака между ионами Ni^{2+} в $(t_{2g}^6e_g^2)$, расположенными в октаэдрических узлах, образованное $p_\pi-p_\pi$ -связью, будет слабым. Поскольку у иона Ni_B^{2+} $(t_{2g}^6e_g^2)$ магнитной будет e_g -орбита, а у иона Cr_B^{3+} $(t_{2g}^3e_g^0)$ — t_{2g} -орбита, внутриподрешеточное обменное взаимодействие $\mathrm{Ni}_B^{2+}-\mathrm{O}^{2-}-\mathrm{Cr}_B^{3+}$, образованное $p_\sigma-p_\pi$ -связью, будет отрицательным и сравнительно сильным. Внутриподрешеточный обмен $\mathrm{Cr}_B^{3+}-\mathrm{Cr}_B^{3+}$ между ионами Cr_B^{3+} $(t_{2g}^3e_g^0)$ будет прямым и сильным отрицательного знака. Отрицательное внутриподрешеточное косвенное обменное взаимодействие $\mathrm{Cr}_B^{3+}-\mathrm{O}^{2-}-\mathrm{Cr}_B^{3+}$ является очень слабым, и им, как правило, пренебрегают.

Таким образом, впервые показано, что в данном образце NiFeCrO₄ сильному отрицательному косвенному AB-обмену Fe_A^{3+} - O^{2-} - Ni_B^{2+} противоборствует положительное косвенное AB-взаимодействие Fe_A^{3+} - O^{2-} - Cr_B^{3+} достаточной силы, что приводит к отклонению магнитных моментов ионов Fe_A^{3+} от коллинеарности. Поэтому можно сделать вывод, что экспериментальный суммарный магнитный момент $n_{0 \exp}$ феррита NiFeCrO₄

будет обсуловлен возникновением неколлинеарности в A-подрешетке.

Внутриподрешеточные отрицательные обменные взаимодействия Ni_B^{2+} — O^{2-} — Cr_B^{3+} и Cr_B^{3+} — Cr_B^{3+} , являясь значительно слабее межподрешеточных AB-взаимодействий, играют меньшую роль в формировании суммарного магнитного момента образца, однако приводят к появлению неколлинеарной магнитной структуры в B-подрешетке. По-видимому, при низких температурах под действием внешнего магнитного поля происходит уменьшение неколлинеарности в B-подрешетке, в результате чего на изотермах намагниченности $\sigma(H)$ и магнитострикций $\lambda_{\parallel}(H)$ и $\lambda_{\perp}(H)$ отсутствует насыщение.

Учитывая вышеизложенное, можно считать, что за создание фрустрированной магнитной структуры в B-подрешетке ответствен не только прямой отрицательный внутриподрешеточный обмен $Cr_B^{3+}-Cr_B^{3+}$, но и косвенный положительный межподрешеточный обмен $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$, роль которого будет больше, чем роль прямого обмена. Подтверждением данного предположения может служить тот факт, что в чистом никелевом хромите $Ni[Cr_2]O_4$ фрустрированная магнитная структура не обнаружена. Следовательно, большое количество ионов Cr_B^{3+} в отсутствие положительного AB-обмена $Fe_A^{3+}-O^{2-}-Cr_B^{3+}$ не приводит к фрустрации магнитных связей в хромите $NiCr_2O_4$.

Основываясь на полученных результатах по исследованию намагниченности и магнитострикции ферритахромита NiFeCrO₄, можно сделать вывод, что фрустрированная магнитная структура имеет место только в B-подрешетке этого образца.

Список литературы

- [1] C.P. Poole, H.A. Farach. Z. Phys. **B47**, 55, (1982).
- [2] J.M.D. Coey. J. Appl. Phys. 49, (3), 1646 (1978).
- [3] K. Muraleedharan, J.K. Srivastava, V.R. Marathe, R. Vijayargharan. J. Magn. Magn. Mater. 49, 333 (1985).
- [4] H. Mohan, I.A. Shaikh, R.G. Kulkarni. Phys. **B217**, 292 (1996).
- [5] J.K. Srivastava, K. Muraleedharan, R. Vijayaragharan. Phys. Stat. Sol. (b) 140, K47 (1987).
- [6] Л.Г. Антошина, А.Н. Горяга, В.В. Саньков. ФТТ **42**, *8*, 1446 (2000).
- [7] J.A. Kulkarni, K. Muraleedharan, J.K. Srivastava, V.R. Marathe, V.S. Darshane, C.R.K. Murty, R. Vijayaraghavan. J. Phys. C: Solid State Phys. 18, 2593 (1985).
- [8] J.K. Srivastava, K.Le. Dang, P. Veillet. J. Phys. C: Solid State Phys. 19, 599 (1986).
- [9] T.R. McGuire, S.W. Greenwald. Solid State Physics in Electronics and Telecommunications (3(1)), 50 (1960).
- [10] Л.Г. Антошина, Е.Н. Кукуджанова. ФТТ 40, 8, 1505 (1998).
- [11] Л.Г. Антошина, А.Н. Горяга, Е.Н. Кукуджанова, И.А. Фильгус. ЖЭТФ 111, 5, 1732 (1997).
- [12] Л.Г. Антошина, А.Н. Горяга, Р.Р. Аннаев. ФТТ **42**, *11*, 2048 (2000).
- [13] Д. Гуденаф. Магнетизм и химическая связь. Металлургия, М., (1968).