Прохождение симметричного светового импульса сквозь широкую квантовую яму

© Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио*, С.Т. Павлов*,**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

*Escuela de Fisica de la UAZ,

Apartado Postal c-580, 98060 Zacatecas, Mexico

**Физический институт им. П.Н. Лебедева Российской академии наук,

117924 Москва, Россия

E-mail: ilang@dor.ioffe.rssi.ru, pavlov@ahobon.reduaz.mx

(Поступила в Редакцию 25 октября 2001 г.)

Рассчитаны отражение, прохождение и поглощение симметричного электромагнитного импульса, несущая частота которого близка к частоте межзонного перехода в квантовой яме. Уровни энергии в квантовой яме предполагаются дискретными, учитывается один возбужденный уровень. Рассматривается случай достаточно широкой ямы, когда длина волны импульса, соответствующая несущей частоте, сравнима с шириной ямы и необходимо учитывать зависимость матричного элемента межзонного перехода от волнового вектора света. Учтено различие в показателях преломления вещества квантовой ямы и барьера. Предполагается произвольное соотношение между обратными радиационным и нерадиационным временам жизни возбужденного уровня электронной системы. Учет пространственной дисперсии и различия в показателях преломления сильнее всего влияет на отражение, так как наряду с отражением, связанным с межзонными переходами в самой яме, имеет место дополнительное отражение от границ ямы. По сравнению с ранее рассмотренной моделью наиболее радикальные изменения имеют место в отражении в случае, когда обратное нерадиационное время жизни возбужденного состояния велико по сравнению с обратным радиационным временем жизни.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 00-02-16904) и программы МНТК "Физика твердотельных наноструктур" (97-1099). С.Т. Павлов благодарит Университет Закатекаса и Национальный совет Мексики по науке и технологии (CONACyT) за финансовую поддержку и гостеприимство. Д.А. Контрерас-Солорио благодарит CONACyT (27736-E) за финансовую поддержку.

В последнее время в работах [1-7] было исследовано изменение формы светового импульса при его прохождении сквозь квантовую яму. Рассматривались как асимметричный возбуждающий импульс с крутым фронтом [1-3], так и симметричный импульс [4,5]. Предполагалось, что несущая частота возбуждающего импульса ω_l близка к частоте электронного возбуждения ω_0 (двухуровневая система) [1,2,5]. Исследованы также трехуровневая система [7] и система со многими возбужденными состояниями [3,6]. Результаты этих работ справедливы для сравнительно узких квантовых ям, когда выполняется неравенство

$$\kappa d \ll 1,$$
 (1)

где d — ширина квантовой ямы, κ — модуль волнового вектора световой волны, соответствующий несущей частоте симметричного импульса. Фактически параметр κd в упомянутых работах полагался равным нулю, и вычисленные там отражение, поглощение и пропускание не зависели от ширины ямы. Для численной оценки величины κ используем длину волны излучения гетеролазера на основе арсенида галлия, равную 0.8μ . Этой длине волны соответствует энергия $\hbar \omega_l = 1.6 \, \mathrm{eV}$. Если показатель преломления вещества квантовой ямы

 $\nu=3.5$, то $\kappa=\nu\omega_l/c=2.8\cdot 10^5~{\rm cm}^{-1}$, где c — скорость света в вакууме. Для ширины ямы $d=500~{\rm \AA}$ параметр $\kappa d=1.4$. Таким образом, для достаточно широких ям учет пространственной дисперсии волн, составляющих возбуждающий импульс, может оказаться существенным.

Для широких квантовых ям неравенство $d \gg a_0$ (где a_0 — постоянная решетки) является очень сильным и при описании прохождения импульса сквозь квантовую яму можно использовать уравнения Максвелла для сплошной среды. При таком подходе следует учитывать различие в показателях преломления барьера и ямы. Тогда должно появиться дополнительное отражение от границ квантовой ямы, которое уменьшается с уменьшением параметра κd , но в области $\kappa d \geq 1$ может в некоторых случаях сравниться или превысить отражение, обусловленное резонансными переходами в квантовой яме. Вместе с отражением будет изменяться и прохождение световой волны. Таким образом, наряду с учетом зависимости отражения и прохождения от параметра к д должно быть принято во внимание различие в показателях преломления барьера и квантовой ямы. В настоящей работе учтено влияние этих двух факторов на форму отраженного и прошедшего сквозь квантовую яму светового импульса.

10 1681

Рассматривается система, состоящая из глубокой полупроводниковой квантовой ямы I типа, расположенной в интервале $0 \le z \le d$, и двух полубесконечных барьеров. Предполагается, что возбуждающий световой импульс распространяется вдоль оси z со стороны отрицательных z. Считается также, что барьеры прозрачны для импульса, а в квантовой яме импульс поглощается, вызывая резонансные межзонные переходы. Подразумевается собственный полупроводник и нулевые температуры. В качестве возбужденных состояний учитываются только такие, в которых один электрон перешел из валентной зоны в зону проводимости, в результате чего в валентной зоне образовалась дырка. Предполагается, что $\omega_l \cong \omega_g$ (ширина запрещенной зоны в квантовой яме $E_g=\hbar\omega_g)$ и в поглощении участвует малая доля валентных электронов, расположенных вблизи экстремума зоны, для которых справедлив метод эффективной массы. Для глубоких квантовых ям в этом случае можно пренебречь туннелированием электронов в барьер и считать, что в барьере электроны отсутствуют. Кроме того, уровни, расположенные близко к дну ямы, можно рассматривать в приближении бесконечно глубокой ямы. Исследуемая система неоднородна. Поскольку для широких квантовых ям неравенство (1) не выполняется, оптические характеристики такой системы полагается определять из решения уравнений Максвелла, в которых в качестве плотностей тока и заряда должны фигурировать выражения, следующие из микроскопического рассмотрения [8,9].

Окончательные результаты получены для одного дискретного уровня электронной системы в квантовой яме. Влиянием других уровней на отражение и поглощение света можно пренебречь, если несущая частота ω_l достаточно близка к частоте возбуждения выбранного уровня ω_0 , а остальные уровни расположены достаточно далеко от него. Дискретными уровнями в квантовой яме в случае $\hbar \mathbf{K}_{\perp} = 0$, где $\hbar \mathbf{K}_{\perp}$ — вектор суммарного квазиимпульса пары электрон-дырка в плоскости ямы, являются экситонные уровни в нулевом магнитном поле либо уровни в сильном магнитном поле, направленном перпендикулярно плоскости ямы. В качестве примера далее рассматривается уровень электронно-дырочной пары в сильном магнитном поле, направленном вдоль оси z, без учета кулоновского взаимодействия между электроном и дыркой, которое считается слабым возмущением для достаточно сильных магнитных полей и не очень широких ям [10]. Однако экситонный эффект не приводит к принципиальным изменениям полученных результатов, а только влияет на величину обратного радиационного времени жизни γ_r электронного возбуждения в квантовой яме. То же относится и к экситонным уровням в нулевом магнитном поле.

1. Электрическое поле, наведенное проходящим импульсом

Пусть на одиночную квантовую яму со стороны отрицательных z падает симметричный возбуждающий импульс, которому соответствует электрическое поле круговой поляризации

$$\mathbf{E}_{0}(z,t) = \mathbf{e}_{l}E_{0}\exp(-i\omega_{l}p)\left\{\Theta(p)e^{-\gamma_{l}p/2} + [1-\Theta(p)]e^{\gamma_{l}p/2}\right\} + \text{c.c.}$$
(2)

3десь E_0 — вещественная амплитуда, $p=t-\nu_1z/c$,

$$\mathbf{e}_l = (\mathbf{e}_z \pm i\mathbf{e}_y)/\sqrt{2} - \tag{3}$$

единичный вектор круговой поляризации, ${\bf e}_x$ и ${\bf e}_y$ — вещественные орты, ν_1 — показатель преломления барьера, $\Theta(p)$ — функция Хевисайда, γ_l определяет нарастание и затухание симметричного импульса. Фурье-образ функции ${\bf E}_0(z,t)$ имеет вид

$$\mathbf{E}_{0}(z,\omega) = \exp(i\kappa_{1}z)\{\mathbf{e}_{l}E_{0}(\omega) + \mathbf{e}_{l}^{*}E_{0}(-\omega)\},$$

$$E_{0}(\omega) = E_{0}\gamma_{l}/[(\omega - \omega_{l})^{2} + (\gamma_{l}/2)^{2}],$$
(4)

где $\kappa_1 = \nu_1 \omega/c$.

В работе [11] решена задача о прохождении монохроматической электромагнитной волны сквозь квантовую яму с учетом ее пространственной дисперсии. Там же было получено выражение для плотности высокочастотного тока, который индуцируется в квантовой яме проходящей волной. Для случая одного возбужденного уровня и круговой поляризации падающих волн плотность тока имеет вид

$$\overline{\mathbf{J}}(z,t) = (1/2\pi) \int_{-\infty}^{\infty} d\omega \exp(-i\omega t) \overline{\mathbf{J}}(z,\omega),$$

$$\overline{\mathbf{J}}(z,\omega) = -\frac{\mathbf{e}_{l}\gamma_{r}\nu\omega}{4\pi}\,\Phi(z)\left[\frac{1}{\omega-\omega_{0}+i\gamma/2} + \frac{1}{\omega+\omega_{0}+i\gamma/2}\right]$$

$$\times \int_{0}^{d} dz' A(z', \omega) \Phi(z') + \text{c.c.} = \mathbf{e}_{l} \overline{\mathbf{J}}(z, t), \tag{5}$$

$$\hbar\omega_0 = \hbar\omega_g + \varepsilon(m_v) + \varepsilon(m_c) + \hbar\Omega_\mu(n+1/2) \qquad (6)$$

есть энергия межзонного перехода, соответствующая выбранному возбужденному состоянию, $\varepsilon(m_c)$ ($\varepsilon(m_v)$) — энергия уровня размерного квантования электрона (дырки) с квантовым числом m_c (m_v), $\Omega_{\mu}=|e|H/\mu c$ — циклотронная частота, e — заряд электрона, H — напряженность постоянного магнитного поля, $\mu=m_e m_h/(m_e+m_h)$, m_e (m_h) — эффективная масса электрона (дырки), n — квантовое число Ландау, γ — обратное нерадиационное время жизни возбужденного состояния. В приближении бесконечно глубокой ямы

$$\Phi(z) = (2/d)\sin(\pi m_c z/d)\sin(\pi m_v z/d). \tag{7}$$

В (5) введено обратное радиационное время жизни γ_r электронно-дырочной пары в магнитном поле при $\kappa d=0$

$$\gamma_r = (2e^2/\hbar c v)(p_{cv}^2/m_0\hbar\omega_g)(|e|H/m_0c),$$
 (8)

где m_0 — масса свободного электрона. Введен также скаляр $A(z,\omega)$, связанный с векторным потенциалом в представлении Фурье $\mathbf{A}(z,\omega)$ соотношением

$$\mathbf{A}(z,\omega) = \mathbf{e}_l A(z,\omega) + \mathbf{e}_l^* A(z,-\omega). \tag{9}$$

Формула, аналогичная (9), имеет место и для вектора электрического поля $\mathbf{E}(z,\omega)$. Выражение (5) справедливо для тяжелых дырок в кристаллах со структурой цинковой обманки, если ось z направлена вдоль оси симметрии четвертого порядка [12,13]. Входящая в γ_r вещественная константа p_{cv} связана с межзонным матричным элементом импульса для двух вырожденных зон

$$\mathbf{p}_{cv}^{\mathrm{I,II}} = p_{cv}(\mathbf{e}_{x} \mp i\mathbf{e}_{y})/\sqrt{2}.$$

Плотность тока $\overline{\mathbf{J}}_l(z,t)$ удовлетворяет условию $\mathrm{div}\,\overline{\mathbf{J}}_l(z,t)=0$ и, следовательно, наведенная плотность заряда $\rho(z,t)=0$. Тогда можно использовать калибровку $\varphi(z,t)=0$, где $\varphi(z,t)$ — скалярный потенциал, и

$$\mathbf{E}(z,t) = (-1/c)(\partial \mathbf{A}/\partial t), \quad \mathbf{E}(z,\omega) = (i\omega/c)\mathbf{A}(z,\omega). \quad (10)$$

Поскольку $\mathbf{E}(z,\omega) \sim \mathbf{A}(z,\omega)$, вместо уравнения для $A(z,\omega)$ удобно решать аналогичное уравнение для скаляра $E(z,\omega)$, которое имеет вид

$$d^{2}E(z,\omega)/dz^{2} + \kappa^{2}E(z,\omega) = -(4\pi/c)\overline{J}(z,\omega),$$

$$\kappa = \nu\omega/c,$$
(11)

в выражении для $\overline{J}(z,\omega)$ (5) нужно заменить, используя (10), $A(z',\omega)$ на $E(z',\omega)$.

Уравнение (11) является интегродифференциальным. Если формально представить его решение как сумму общего решения однородного уравнения и частного решения неоднородного уравнения, то вместо (11) получается интегральное уравнение Фредгольма второго рода¹

$$E(z,\omega) = C_1 e^{i\kappa z} + C_2 e^{-i\kappa z}$$
$$-\frac{i(\gamma_r/2)F(z)}{\omega - \omega_0 + i\gamma/2} \int_0^d dz' E(z',\omega) \Phi(z'), \quad (12)$$

которое справедливо для ω , близких к ω_0 , так как при его выводе в выражении (5) для $\overline{\mathbf{J}}(z,\omega)$ не учитывалось нерезонансное слагаемое $\omega+\omega_0+i\gamma/2$. Пренебрежение нерезонансным слагаемым эквивалентно неравенству

 $(\omega-\omega_0)/\omega_0\ll 1$. Таким образом, теория становится неточной при $\omega-\omega_0\approx\omega_0$, однако эта область частот расположена очень далеко от резонансной частоты ω_0 и интереса не представляет. Во временном представлении неточность теории проявляется на временах $t\leq t_0=\omega_0^{-1}$. Если $\hbar\omega_0=1.6\,\mathrm{eV}$, то $t_0=4\cdot 10^{-16}\,\mathrm{s}$. Произвольные константы C_1 и C_2 определяются из граничных условий в плоскостях z=0 и z=d, а функция F(z) имеет вид

$$F(z) = e^{i\kappa z} \int_{0}^{z} dz' e^{-i\kappa z'} \Phi(z') + e^{-i\kappa z} \int_{z}^{d} dz' e^{i\kappa z'} \Phi(z'). \quad (13)$$

Если $\gamma_r \ll \gamma$, то в уравнении (12) интегральный член можно считать малым возмущением и тогда достаточно учесть первое приближение по интегральному члену. Радиационное уширение уровней энергии в квазидвумерных системах возникает в результате нарушения трансляционной симметрии в направлении, перпендикулярном плоскости квантовой ямы [15,16]. В случае ям высокого качества рассеяние на неоднородностях границ ямы может вносит малый вклад в нерадиационное уширение уровня. То же относится и к рассеянию на фононах и примесях при низких температурах и малой концентрации примеси. В результате может оказаться, что $\gamma_r \geq \gamma$. В этом случае при решении (12) нельзя ограничиться первой итерацией, а нужно суммировать весь итерационный ряд. Можно показать [11], что этот ряд сводится к геометрической прогрессии и решение записывается в виде

$$E(z,\omega) = C_1 e^{i\kappa z} + C_2 e^{-i\kappa z} - \frac{i(\gamma_r/2)F(z)}{\omega - \omega_0 + i(\gamma + \gamma_r \varepsilon)/2}$$

$$\times \int_0^d dz' (C_1 e^{i\kappa z'} + C_2 e^{-i\kappa z'}) \Phi(z'). \tag{14}$$

Комплексная величина ε

$$\varepsilon = \varepsilon' + i\varepsilon'' = \int_{0}^{d} dz' \Phi(z') F(z')$$
 (15)

определяет изменение уширения и сдвиг уровня, которые появляются вследствие пространственной дисперсии волны. В предельном случае $\kappa d=0$ $\varepsilon=\delta_{m_cm_v}$. В барьерах, где наведенный ток отсутствует, вместо (11) справедливо уравнение

$$d^{2}E(z,\omega)/dz^{2} + \kappa_{1}^{2}E(z,\omega) = 0,$$

$$z \le 0, \quad z \ge d, \quad \kappa_{1} = \nu_{1}\omega/c. \tag{16}$$

решение которого представляется в виде

$$E^{l}(z,\omega) = E_{0}(\omega)e^{i\kappa_{1}z} + C_{R}e^{-i\kappa_{1}z},$$

$$z \leq 0; \quad E^{r}(z,\omega) = C_{T}e^{i\kappa_{1}z}, \quad z \geq d.$$
(17)

¹ Подобное уравнение рассматривалось в [14] для инверсионного слоя; в работе [11] получено точное решение уравнения (12) для случая монохроматической возбуждающей волны.

Первый член в выражении для $E^l(z,\omega)$ есть скалярная амплитуда фурье-образа возбуждающего импульса, C_R определяет амплитуду отраженной, C_T — амплитуду прошедшей сквозь яму волны. Коэффициенты C_1, C_2, C_R и C_T , являющиеся функциями частоты ω , определяются из условий непрерывности $E(z,\omega)$ и $dE(z,\omega)/dz$ на границах z=0 и z=d. В результате получаем, что

$$C_{1} = (2E_{0}(\omega)/\Delta)e^{-i\kappa d}[1+\xi+(1-\xi)\mathcal{N}],$$

$$C_{2} = -(2E_{0}(\omega)/\Delta)(1-\xi)[e^{i\kappa d}+\mathcal{N}],$$

$$C_{R} = E_{0}(\omega)\rho/\Delta,$$

$$C_{T} = 4E_{0}(\omega)\xi e^{-i\kappa_{1}d}[1+e^{-i\kappa d}\mathcal{N}]/\Delta,$$

$$\Delta = (\xi+1)^{2}e^{-i\kappa d} - (\xi-1)^{2}e^{i\kappa d}$$

$$-2(\xi-1)\mathcal{M}(\xi+1)e^{-i\kappa d}+\xi-1],$$
(18)

$$\rho = 2i(\xi^2 - 1)\sin\kappa d + 2[(\xi^2 + 1)e^{-i\kappa d} + \xi^2 - 1]\mathcal{N}.$$
 (19)

В (18) и (19) введены следующие обозначения:

$$\xi = \kappa/\kappa_1 = \nu/\nu_1, \tag{20}$$

$$\mathcal{N} = -i(\gamma_r/2)F^2(0)/[\omega - \omega_0 + i(\gamma + \gamma_r \varepsilon)/2], \qquad (21)$$

функция $E_0(\omega)$ определяется формулой (4). Из выражений (13) и (15) следует, что в случае $m_c=m_v=m$ (разрешенный межзонный переход в пределе $\kappa d=0$) функции F(z) и ε равны

$$F(z) = iB \left[2 - \exp(i\kappa z) - \exp(i\kappa(d - z)) \right]$$

$$- (\kappa d/\pi m)^2 \sin^2(\pi m z/d), \qquad (22)$$

$$F(0) = F(d) = iB \left[1 - \exp(i\kappa d) \right],$$

$$B = (4\pi^2 m^2/\kappa d) / \left[4\pi^2 m^2 - (\kappa d)^2 \right], \qquad (23)$$

$$\varepsilon' = F^2(0) \exp(-i\kappa d) = 4B^2 \sin^2(\kappa d/2),$$

$$\varepsilon'' = 2B \left[1 - B \sin \kappa d - 3(\kappa d)^2 / 8\pi^2 m^2 \right]. \tag{24}$$

В представлении Фурье вектор электрического поля ${\bf E}^r(z,\omega)$ справа от квантовой ямы, согласно (17), имеет вид

$$\mathbf{E}^{r}(z,\omega) = \exp(i\kappa_1 z) [\mathbf{e}_l C_T(\omega) + \mathbf{e}_l^* C_T(-\omega)], \quad z \ge d, \quad (25)$$

а вектор поля слева от ямы $\mathbf{E}^l(z,\omega)$, включающий в себя поле возбуждающего импульса (4) и поле отраженной волны $\Delta \mathbf{E}^l(z,\omega)$, равен

$$\mathbf{E}^{l}(z,\omega) = \mathbf{E}_{0}(z,\omega) + \Delta \mathbf{E}^{l}(z,\omega), \tag{26}$$

$$\Delta \mathbf{E}^{l}(z,\omega) = \exp[-(i\kappa_{1}z)]$$

$$\times [\mathbf{e}_{l}C_{R}(\omega) + \mathbf{e}_{l}^{*}C_{R}(-\omega)], \quad z \geq d. \quad (27)$$

2. Переход к временному представлению

Во временном представлении вектор электрического поля прошедшего сквозь квантовую яму импульса согласно (17), представляется в виде $(p=t-zv_1/c)$

$$\mathbf{E}^{r}(z,t) = \mathbf{e}_{l}\mathbf{E}^{r}(z,t) + \text{c.c.},$$

$$E^{r}(z,t) = (1/2\pi) \int_{-\infty}^{+\infty} d\omega \exp(-i\omega p) C_{T}(\omega), \quad z \ge d. \quad (28)$$

Аналогично вектор поля отраженного от ямы импульса равен

$$\Delta \mathbf{E}^{l}(z,t) = \mathbf{e}_{l}\Delta \mathbf{E}^{l}(z,t) + \text{c.c.},$$

$$\Delta E^{r}(z,t) = (1/2\pi) \int_{-\infty}^{+\infty} d\omega \exp(-i\omega s) C_{R}(\omega), \quad z \le d. \quad (29)$$

где $s=t+z\nu_1/c$, а функция $C_T(\omega)$ и $C_R(\omega)$ после подстановки в (18) $E_0(\omega)$ из (4) и $\mathscr{N}(\omega)$ из (21) принимают вид

$$C_{T}(\omega) = \frac{4E_{0}\gamma_{l}\xi \exp(-i\kappa_{1}d)}{\mathcal{L}\mathcal{D}} \times \frac{\omega - \omega_{0} - \gamma_{r}\varepsilon''/2 + i\gamma/2}{(\omega - \omega_{l})^{2} + (\gamma_{l}/2)^{2}}, \quad (30)$$

$$C_R(\omega) = \frac{E_0 \gamma_l}{\varphi_0}$$

$$\times \frac{\mathscr{B}[\omega - \omega_0 - \gamma_r \varepsilon''/2 + i(\gamma + \gamma_r \varepsilon')/2] - i\mathscr{B}_1 \gamma_r \varepsilon'/2}{(\omega - \omega_l)^2 + (\gamma_l/2)^2}, \quad (31)$$

$$\mathcal{D} = \omega - \omega_0 - \gamma_r \mathcal{F}_1 / 2 + i(\gamma + \gamma_r \mathcal{F}_2) / 2, \tag{32}$$

$$\mathcal{L} = (1+\xi)^2 \exp(-i\kappa d) - (1-\xi)^2 \exp(i\kappa d), \qquad (33)$$

$$\mathcal{B} = -2i(1-\xi^2)\sin\kappa d$$
,

$$\mathcal{B}_1 = 2[1 + \xi^2 - (1 - \xi^2) \exp(i\kappa d)],$$
 (34)

$$\mathscr{F}_1 = \varepsilon'' - \frac{2\varepsilon'(1-\xi^2)\sin\kappa d}{1+\xi^2+(1-\xi^2)\cos\kappa d},$$

$$\mathscr{F}_2 = \frac{2\xi \varepsilon'}{1 + \xi^2 + (1 - \xi^2)\cos\kappa d}.$$
 (35)

В интегралах (28) и (29) полюсами подынтегральных функций являются $\omega = \omega_l \pm i\gamma_l/2$, а также полюс в нижней полуплоскости ω , определяемый уравнением $\mathcal{D}=0$. Строго говоря, входящие в \mathcal{D} (см. (32)) функции \mathcal{F}_1 и \mathcal{F}_2 зависят от ω , так как от ω зависит модуль волнового вектора $\kappa=\nu\omega/c$. Однако в силу сделанных при выводе формулы (12) предположений ω не должна сильно отличаться от частоты ω_0 , и при решении уравнения $\mathcal{D}=0$ достаточно ограничиться первой итерацией. В результате получаем следующее значение полюса в нижней полуплоскости:

$$\omega = \omega_0 - \gamma_r \mathcal{F}_1(\omega_0) - i \left(\gamma + \gamma_r \mathcal{F}_2(\omega_0) \right) / 2. \tag{36}$$

При использовании приближенного значения полюса (36) получим, что

$$\kappa = \kappa_0 = \nu \omega_0 / c, \quad \kappa_1 = \kappa_{10} = \nu_1 \omega_0 / c. \tag{37}$$

С другой стороны, полюсы $\omega = \omega_l \pm i \gamma_l/2$ приводят к $\kappa = \kappa_l = \nu \omega_l/c$, $\kappa_1 = \kappa_{1l} = \nu_1 \omega_l/c$. Поскольку теория справедлива при выполнении неравенства $(\omega_l - \omega_0)/\omega_0 \ll 1$, в дальнейшем считаем, что $\kappa_l = \kappa_0 = \kappa$, $\kappa_{1l} = \kappa_{10} = \kappa_1$.

После интегрирования по ω скалярные функции $E^r(z,t)$ и $\Delta E^l(z,t)$ принимают вид

$$E^{r}(z,t) = (4\xi E_0/\mathcal{L}) \exp(-i(\omega_l p + \kappa_1 d))$$

$$\times \{ [1 - \Theta(p)] \exp(\gamma_l p/2) W_T(\gamma_l) + \Theta(p) \epsilon_T \}, \quad (38)$$

$$\Delta E^{l}(z,t) = (E_0/\mathcal{L}) \exp(-i\omega_l s)$$

$$\times \left\{ [1 - \Theta(s)] \exp(\gamma_l s/2) W_R(\gamma_l) + \Theta(s) \epsilon_R \right\}, \quad (39)$$

где функции ϵ_T и ϵ_R представляются единой формулой

$$\epsilon_{T(R)} = e^{-\gamma_l p(s)/2} W_{T(R)}(-\gamma_l) - e^{i(\Delta \omega - \gamma_r \mathcal{F}_1/2)p(s)}$$

$$\times W'_{T(R)} e^{-(\gamma + \gamma_r \mathcal{F}_2)p(s)/2}.$$
(40)

В (38)-(40) введены следующие обозначения:

$$\Delta\omega = \omega_l - \omega_0,\tag{41}$$

$$W_T(\gamma_l) = [\Delta \omega - \gamma_r \varepsilon''/2 + i(\gamma + \gamma_l)/2]/\Omega(\gamma_l), \qquad (42)$$

$$W_R(\gamma_l) = \{ \mathscr{B}[\Delta\omega - \gamma_r \varepsilon''/2 + i(\gamma + \gamma_l + \gamma_r \varepsilon')/2]$$

$$-i\gamma_r \varepsilon' \mathcal{B}_1/2 \}/\Omega(\gamma_l), \tag{43}$$

$$W_T' = -i(\gamma_r/2)[\mathcal{F}_2 - i(\varepsilon'' - \mathcal{F}_1)] \left(\frac{1}{\Omega(-\gamma_l)} - \frac{1}{\Omega(\gamma_l)}\right), (44)$$

$$W_R' = -i(\gamma_r/2) \{ \mathscr{B}[\varepsilon' - \mathscr{F}_2 + i(\varepsilon'' - \mathscr{F}_1)] + \varepsilon' \mathscr{B}_1 \}$$

$$\times \left(\frac{1}{\Omega(-\gamma_l)} - \frac{1}{\Omega(\gamma_l)}\right),\tag{45}$$

$$\Omega(\gamma_l) = \Delta\omega - \gamma_r \mathcal{F}_1/2 + i(\gamma + \gamma_l + \gamma_r \mathcal{F}_2)/2. \tag{46}$$

Заметим, что учет зависимости κ от ω приводит к замене в выражении для $E^r(z,t)$ (38) переменной p на $p'=p+t_1$, где $t_1=\nu_1 d/c$ соответствует времени, за которое свет проходит квантовую яму. Таким образом, учет зависимости κ от ω сказывается только в случае $p \leq t_1$. Если $d=500\,\text{Å}$, $\nu_1=3$, то $t=5\cdot 10^{-16}\,\text{s}\cong t_0$. Поскольку $t_1\cong t_0$, учет зависимости κ от ω при вычислении интегралов (28) и (29) является превышением точности, так как приводит к поправкам того же порядка, которые не учитывались при выводе формулы (12). Полученные выражения для $E^r(z,t)$ и $E^l(z,t)$ довольно громоздки, и их аналитическое исследование затруднено. Поэтому представляют интерес два предельных случая, когда

эти выражения существенно упрощаются. Если среда однородна, т. е. $v_1 = v$, то

$$\kappa_1 = \kappa, \quad \mathcal{L} = 4 \exp(-i\kappa d),$$

$$\mathscr{B} = 0$$
, $\mathscr{B}_1 = 4$, $\mathscr{F}_1 = \varepsilon''$, $\mathscr{F}_2 = \varepsilon'$

и выражения (38) и (39) переходят в

$$E^{r}(z,t) = E_{0}(z,t) + \Delta E^{r}(z,t)$$

$$= E_{0}(z,t) - E_{0}(i\gamma_{r}\varepsilon'/2)\exp(-i\omega_{l}p)$$

$$\times \{[1 - \Theta(p)]\exp(\gamma_{l}p/2)/\Omega(\gamma_{l}) + \Theta(p)\epsilon\}, \quad (47)$$

$$\Delta E^{l}(z,t) = -E_{0}(i\gamma_{r}\varepsilon'/2)\exp(-i(\omega_{l}s - \kappa d))$$

$$\times \left\{ [1 - \Theta(s)] \exp(\gamma_l s/2) / \Omega(\gamma_l) + \Theta(s)\epsilon \right\}, \quad (48)$$

где функция $\Omega(\gamma_l)$, определенная в (46), превращается в

$$\Omega(\gamma_l) = \Delta\omega - \gamma_r \varepsilon''/2 + i(\gamma + \gamma_l + \gamma_r \varepsilon')/2, \tag{49}$$

а функция (40) принимает вид

$$\epsilon = \exp(-\gamma_l t/2)/\Omega(-\gamma_l) - \exp[i(\Delta\omega - \gamma_r \varepsilon''/2)t]$$

$$\times \exp[-(\gamma + \gamma_r \varepsilon')t/2] \{\Omega(-\gamma_l)^{-1} - \Omega(\gamma_l)^{-1}\}. \quad (50)$$

Для E^r параметр t=p, для ΔE^l t=s. Функция $\Delta E^r(z,t)$ определяет искажение прошедшего сквозь яму возбуждающего импульса.

Из (47) и (48) видно, что учет пространственной дисперсии в случае однородной среды приводит к сдвигу частоты ω_0 на величину $\gamma_r \varepsilon''/2$ и к замене γ_r на $\tilde{\gamma}_r = \gamma_r \varepsilon'$. Величина $\tilde{\gamma}_r$ совпадает с вычисленным в [3,7] обратным радиационным временем жизни электроннодырочной пары в сильном магнитном поле при $\mathbf{K}_{\perp}=0$ в случае произвольной величины κd . Если пространственную дисперсию не учитывать, т.е. считать, что $\kappa d = 0$, то, согласно (24), $\varepsilon' \to 1$, $\varepsilon'' \to 0$ и формулы (47) и (48) переходя в выражения, полученные в [5] для случая однородной среды и отсутствия пространственной дисперсии. Формулы (47) и (48) совпадают с аналогичными выражениями, полученными в работе [5] (формула (15)), если там под частотой перехода ω_0 понимать $\omega_0 + \gamma_r \varepsilon''/2$, а под γ_r — величину $\tilde{\gamma}_r$. Представляет также интерес предельный случай слабой пространственной дисперсии, когда $\kappa d \to 0$, но среда неоднородна, т.е. $\nu_1 \neq \nu$. Это может иметь место для сравнительно узких квантовых ям. Полагая в формулах (38) и (39) $\kappa d = 0$, получим, что $\mathscr{L}=4\xi$, $\mathscr{B}=0$, $\mathscr{B}_1=4\xi^2$, $\mathscr{F}_2=0$, $\mathscr{F}_2=\xi$ и

$$\Delta E^{r}(z,t) = (-iE_{0}\gamma_{r}\xi/2) \exp(-i\omega_{l}p)$$

$$\times \{ [1 - \Theta(p)] \exp(\gamma_{l}p/2)/\Omega(\gamma_{l}) + \epsilon'(p)\Theta(p) \}, \quad (51)$$

$$\epsilon'(p) = \exp(-\gamma_{l}p/2)/\Omega(-\gamma_{l})$$

 $-\exp[i\Delta\omega p - (\gamma + \gamma_r \xi)p/2](\Omega(-\gamma_l)^{-1} - \Omega(\gamma_l)^{-1}). \tag{52}$

В данном случае

$$\Omega(\gamma_l) = \Delta\omega + i(\gamma + \gamma_l + \gamma_r \xi/2), \tag{53}$$

а $\Delta E^l(z,t)$ отличается от (51) заменой p на s. Видно, что неоднородность среды без учета пространственной дисперсии приводит только к замене γ_r на $\gamma_r \xi$, т.е. к замене в выражении (8) для γ_r ν на ν_1 . Формулы (51) и (52) совпадают с полученными в [5], если γ_r там заменить на $\xi \gamma_r$. Поскольку в реальных системах $\xi \cong 1$, изменения, вносимые только неоднородностью среды, невелики. Предельный переход $\gamma_l \to 0$ означает переход к монохроматической возбуждающей волне. В этом предельном случае формулы (38) и (39) сводятся к выражениям, полученным в [11].

3. Отражение и пропускание возбуждающего импульса

Поток энергии $\mathbf{S}(p)$, соответствующий электрическому полю возбуждающего импульса, равен

$$\mathbf{S}(p) = (\mathbf{e}_z/4\pi)(c/\nu_1)(\mathbf{E}_0(z,t))^2 = \mathbf{e}_z S_0 P(p), \qquad (54)$$

где $S_0 = c E_0^2/(2\pi\nu_1)$, \mathbf{e}_z — единичный вектор в направлении z. Безразмерная функция P(p) определяет пространственную и временную зависимость потока энергии возбуждающего импульса,

$$P(p) = (\mathbf{E}_0(z,t))^2 / S_0 = \Theta(p)e^{-\gamma_l p} + [1 - \Theta(p)]e^{\gamma_l p}.$$
 (55)

Проходящий поток, т.е. поток справа от ямы, по аналогии с (54) имеет вид

$$\mathbf{S}^{r}(z,t) = (\mathbf{e}_{z}/4\pi)(c/\nu_{1})(\mathbf{E}^{r}(z,t))^{2} = \mathbf{e}_{z}S_{0}\mathscr{T}(p). \tag{56}$$

Для отраженного потока (слева от квантовой ямы) получаем

$$\mathbf{S}^{l} = -(\mathbf{e}_{z}/4\pi)(c/\nu_{1})(\Delta \mathbf{E}^{l}(z,t))^{2} = -\mathbf{e}_{z}S_{0}\mathcal{R}(s). \tag{57}$$

Безразмерные функции $\mathcal{T}(p)$ и $\mathcal{R}(s)$ определяют доли прошедшей и отраженной энергии возбуждающего импульса.

Определим по аналогии с [5] поглощенный поток энергии \mathbf{S}^a как разность входящего в квантовую яму потока слева $\mathbf{S} + \mathbf{S}^l$ при z=0 и выходящего из ямы потока справа \mathbf{S}^r при z=d в один и тот же момент времени t

$$\mathbf{S}^{a}(t) = \mathbf{S}(t) + \mathbf{S}^{l}(t) - \mathbf{S}^{r}(t). \tag{58}$$

Используя определения (54)—(58), представим $\mathbf{S}^a(t)$ в виде

$$\mathbf{S}^{a}(t) = \mathbf{e}_{z} S_{0}[P(t) - \mathcal{R}(t) - \mathcal{T}(t)]. \tag{59}$$

Определяя долю поглощенной энергии $\mathcal{A}(t)$ равенством $\mathbf{S}^a(t) = \mathbf{e}_z S_0 \mathcal{A}(t)$, получим

$$\mathcal{A}(t) = P(t) - \mathcal{R}(t) - \mathcal{T}(t). \tag{60}$$

Формулу (60) можно обобщить, если отодвинуть плоскости, в которых наблюдаются потоки, на расстояние $z=-z_0$ слева от ямы и на z_0 справа от ямы $(z_0>0)$. Тогда вместо (60) получим

$$\mathcal{A}(x) = P(x) - \mathcal{R}(x) - \mathcal{T}(x), \tag{61}$$

где $x=p=s=t-\nu_1|z_0|/c$. Выражения для величин $\mathscr{T},\,\mathscr{R}$ и $\mathscr{A},\,$ которые определяются скалярами $E^r(z,t)$ и $\Delta E^l(z,t)$ по общим формулам (38) и (39), здесь не приводятся ввиду их чрезвычайной громоздкости. Величины $P(t),\,\mathscr{T}(t)$ и $\mathscr{R}(t)$ всегда положительны, $\mathscr{A}(t)$ может быть любого знака. Отрицательное поглощение в некоторый момент времени t означает, что электронная система квантовой ямы отдает энергию, накопленную в предыдущие моменты времени.

4. Временная зависимость отражения, пропускания и поглощения в случае точного резонанса $\omega_l = \omega_0$

Рассмотрим сначала предельный случай $\gamma\gg\gamma_r$. Тогда поля ${\bf E}^r(z,t)$ и $\Delta{\bf E}^l(z,t)$ из (38) и (39) можно представить в виде разложения в ряд

$$\mathbf{E}^{r}(z,t) = \mathbf{E}_{0}^{r}(z,t) + (\gamma_{r}/\gamma)\mathbf{E}_{1}^{r}(z,t) + \dots, \tag{62}$$

$$\Delta \mathbf{E}^{l}(z,t) = \Delta \mathbf{E}_{0}^{l}(z,t) + (\gamma_{r}/\gamma)\Delta \mathbf{E}_{1}^{l}(z,t) + \dots$$
 (63)

где

$$\mathbf{E}_0^r(z,t) = \mathbf{e}_l(4\xi E_0/\mathcal{L}) \exp[-i(\omega_l p + \kappa_1 d)]\{[1 - \Theta(p)]\}$$

$$\times \exp(\gamma_l p/2) + \Theta(p) \exp(-\gamma_l p/2) + \text{c.c.}, \tag{64}$$

$$\Delta \mathbf{E}_0^l(z,t) = -\mathbf{e}_l(\mathscr{B}E_0/\mathscr{L})\exp(-i\omega_l s)\{[1-\Theta(p)]\}$$

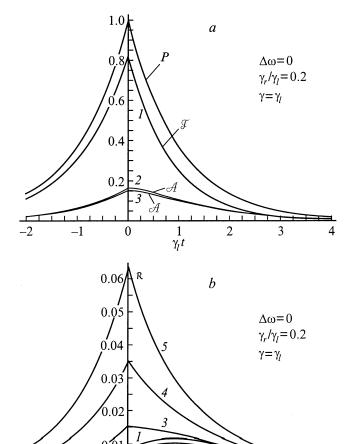
$$\times \exp(\nu_l s/2) + \Theta(s) \exp(-\nu_l s/2) + \text{c.c.}, \tag{65}$$

соответствуют прошедшему и отраженному импульсам при $\gamma_r=0$, т.е. когда поглощение в квантовой яме отсутствует.

В предельных случаях $\kappa d \neq 0$, $\xi = 1$ или $\kappa d = 0$, $\xi \neq 1$ $\Delta E_0^l(z,t) = 0$, так как согласно (34), $\mathcal{B} = 0$. В первом случае это связано с тем, что среда становится однородной, во втором — с тем, что вещества в квантовой яме становится очень мало и проходящая волна на него не реагирует. В этих предельных случаях, как это следует из (57), $\mathcal{R}(t) \sim (\gamma_r/\gamma)^2$, т.е. является малой величиной. При переходе к общему случаю $\kappa d \neq 0$, $\xi \neq 1$ $\mathcal{R}(t)$ принимает вид

$$\mathcal{R}(t) = S_0^{-1} \left[\left(\Delta \mathbf{E}_0^l(s) \right)^2 + 2 (\gamma_r / \gamma) \left(\Delta \mathbf{E}_0^l(s) \Delta \mathbf{E}_1^l(s) \right) \right], \quad (66)$$

что приводит к существенному увеличению отражения за счет первого слагаемого в (66). Что касаетс пропускания $\mathcal{T}(t)$, то в предельных случаях $\kappa d=0$ или $\xi=1$ $\mathcal{T}(t)=P(t)$. При переходе к общему случаю пропускание изменяется слабо, так как множитель $16\xi/|\mathcal{L}|^2$ и здесь не слишком сильно отличается от единицы.



 $\gamma_l t$

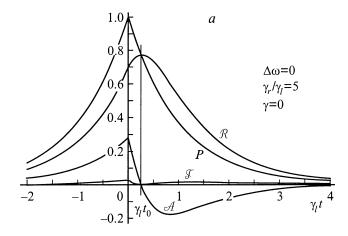
На рис. 1 представлены временные зависимости безразмерных пропускания \mathcal{F} , поглощения \mathcal{A} и отражения \mathcal{R} для разных значений параметров κd и ξ . Из рис. 1, a видно, что кривые $\mathcal{F}(t)$ практически совпадают для значений $\kappa d=0$, $\xi=1$ и $\kappa d=1.5$, $\xi=1.1$. То же имеет место для поглощения $\mathcal{A}(t)$. Как следует из рис. 1, b, отражение, являясь малой величиной, существенно зависит от параметра ξ для $\kappa d=1.5$: при изменении ξ от 1 до 1.3 $\mathcal{R}(t)$ возрастает в 8 раз.

В предельном случае $\gamma_r \gg \gamma$ наведенные поля сравнимы по величине с полем возбуждающего импульса, поэтому форма прошедшего сквозь квантовую яму импульса меняется очень сильно. Это видно из рис. 2, где пропускание мало, а преобладающим является отражение \mathcal{R} . В работе [5] было введено понятие особых точек на временных кривых \mathcal{T} , \mathcal{A} и \mathcal{R} . В частности, одна из этих точек (точка полного отражения первого типа)

определялась условием $\Re(t_0) = P(t_0)$, $\Im(t_0) = \Im(t_0) = 0$ (рис. 2, a). Если учесть, что $\xi \neq 1$, $\kappa d \neq 0$ (рис. 2, b), то в точке полного отражения имеет место другое условие: $\Im(t_0) + \Im(t_0) = 0$, $\Re(t_0) = P(t_0)$. Это означает, что $\Im(t) < 0$, т.е. приходит генерация излучения, которое было накоплено системой в более ранние моменты времени. Возникшая при переходе к общему случаю особая точка согласно классификации [5], есть особая точка полного отражения второго типа. Отметим также, что пропускание, показанное на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведенного на рис. 2, b в несколько раз больше приведельном случае является $\Im(t)$.

5. Отклонение несущей частоты от резонансной

В работе [5] было показано, что отклонение $\Delta \omega$ несущей частоты от резонансной приводит к осцилляциям величин $\mathcal{A}(t)$ и $\mathcal{R}(t)$ во времени. Однако осцилляции



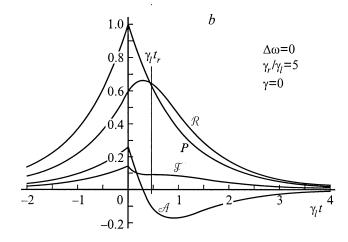


Рис. 2. Временная зависимость $P, \mathcal{R}, \mathcal{A}$ и \mathcal{F} в случае точного резонанса, $\gamma_r \gg \gamma$. $a-\xi=1$, $\kappa d=0$; $b-\xi=1.1$, $\kappa d=1.5$. $\gamma_l t$ и $\gamma_l t_r$ — особые точки полного отражения первого и второго типа соответственно.

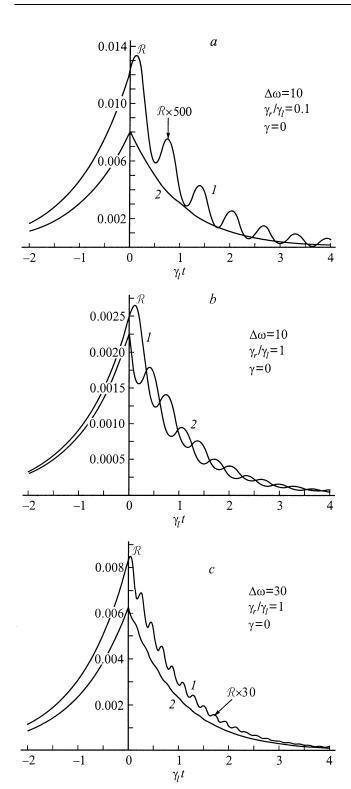


Рис. 3. Временная зависимость отражения в случае отклонения несущей частоты от резонансной для $\gamma=0$ и $\Delta\omega=10$, $\gamma_r/\gamma_l=0.1$ (a); $\Delta\omega=10$, $\gamma_r/\gamma_l=1$ (b); $\Delta\omega=30$, $\gamma_r/\gamma_l=1$ (c). $I-\xi=1$, $\kappa d=0$; $2-\xi=1.1$, $\kappa d=1.5$.

были различимы только для малых значений этих величин. С другой стороны, учет неоднородности среды и пространственной дисперсии приводит к появлению дополнительного отражения от границ квантовой ямы,

которое может превысить осциллирующую составляющую $\mathcal{R}(t)$. На рис. 3 приведены примеры влияния неоднородности среды и пространственной дисперсии световой волны на функцию $\mathcal{R}(t)$. Наиболее значительные изменения имеют место в случае $\gamma_r/\gamma_l \ll 1$, т.е. для короткого возбуждающего импульса. Как видно из рис. 3, a, значение $\mathcal{R}(0)$ увеличивается по сравнению со случаем $\xi = 1$, $\kappa d = 0$ более чем в 300 раз, осцилляции здесь неразличимы ввиду их малой амплитуды. Для промежуточного случая $\gamma_r = \gamma_l$ (рис. 3, b) изменения невелики и осцилляции на кривой, соответствующей $\xi = 1.1, \, \kappa d = 1.5, \, {\rm хорошо} \, {\rm видны}. \, {\rm B} \, {\rm случае}, \, {\rm показанном}$ на рис. 3, c, отражение $\mathcal{R}(0)$ увеличивается в 22 раза, осцилляции еще различимы. Что касается поглощения, то осциллирующие кривые $\mathcal{A}(t)$ слабо изменяются при переходе к неоднородной среде. Это объясняется тем, что поглощение обусловлено квантовыми переходами в квантовой яме, которые слабо зависят от показателя преломления.

На рис. 4 приведены кривые $\mathcal{R}(t)$ для случая $\gamma_r\gg\gamma_l$ (длинный возбуждающий импульс), когда $\Delta\omega\neq0$, но осцилляции отражения практически незаметны. Из рис. 4 следует, что учет только пространственной дисперсии уменьшает отражение по сравнению со случаем $\kappa d=0$. Это объясняется уменьшением эффективного обратного радиационного времени жизни $\gamma_r \varepsilon'$, так как ε' есть убывающая функция параметра κd . Переход к неоднородной среде приводит к росту отражения, тем большему, чем больше параметр ξ .

Общий вывод, который можно сделать на основе полученных результатов, заключается в том, что учет неоднородности среды и пространственной дисперсии плоских волн, составляющих возбуждающий импульс, сильнее всего влияет на отражение. Изменения наиболее значительны в том случае, когда отражение, связанное с межзонными переходами в квантовой яме, мало и маскируется более сильным отражением от границ ямы.

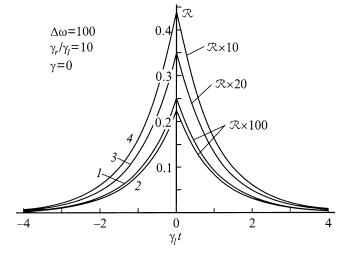


Рис. 4. Отражение в случае сильного отклонения несущей частоты от резонансной. $I-\xi=1,\ \kappa d=0;\ 2-\xi=1.1,\ \kappa d=1.5;\ 3-\xi=1.2,\ \kappa d=1.5;\ 4-\xi=1.3,\ \kappa d=1.5.$

Это имеет место в предельном случае $\gamma\gg\gamma_r$ (выше это было продемонстрировано для точного резонанса $\Delta\omega=0$) и при отклонении несущей частоты от резонансной в другом предельном случае $\gamma\ll\gamma_r$. Следует отметить также зависимость отражения от параметра ν/ν_1 , которая усиливается за счет отражения от границ ямы. Изменение пропускания также имеет место только в том случае, если $\mathscr T$ мало.

В реальных полупроводниковых гетероструктурах примесные электроны барьера перетекают в квантовую яму, искажая вблизи границ ее прямоугольную форму. Поэтому развитая выше теория справедлива для случая достаточно чистых веществ и широких ям, когда размер искаженных приграничных областей мал по сравнению с шириной ямы. Кроме того, теория справедлива для глубоких квантовых ям, положение первых уровней в которых и соответствующие им волновые функции мало отличаются от положения уровней и волновых функций в бесконечно глубокой яме. Поскольку в теории учтен только один возбужденный уровень, соседние уровни в яме должны быть расположены на расстояниях, превышающих ширину рассматриваемого уровня, а ширина по энергии возбуждающего импульса должна быть меньше по сравнению с расстояниями между соседними уровнями. Эти требования налагают ограничение сверху на ширину ямы. Например, для $d = 500 \,\text{Å}$ и $m_c = 0.06 m_0$ разность двух низших уровней размерного квантования $\cong 10^{-3}$ eV.

Список литературы

- I.G. Lang, V.I. Belitsky, M. Gardona. Phys. Stat. Sol. (a) 164, 1, 307 (1997).
- [2] I.G. Lang, V.I. Belitsky. Solid. State Commun. 107, 10, 577 (1998).
- [3] I.G. Lang, V.I. Belitsky. Phys. Lett. **A245**, 3–4, 329 (1998).
- [4] D.A. Contreras-Solorio, S.T. Pavlov, L.I. Korovin, I.G. Lang. Phys. Rev. B62, 23, 16815 (2000); Cond-mat/0002229.
- [5] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ 42, 12, 2230 (2000); Cond-mat/0006364.
- [6] И.Г. Ланг, Л.И. Коровин, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ **43**, *6*, 117 (2001); Cond-mat/0004178.
- [7] I.G. Lang, L.I. Korovin, D.A. Contreras-Solorio, S.T. Pavlov. Cond-mat/0001248.
- [8] C.V. Duke. Phys. Rev. 168, 816 (1968).
- [9] А.Я. Шик. ФТТ **12**, *1*, 67 (1970).
- [10] И.В. Лернер, Ю.Е. Лозовик. ЖЭТФ 78, 3, 1167 (1980).
- [11] Л.И. Коровин, И.Г. Ланг, Д.А. Контрерас-Солорио, С.Т. Павлов. ФТТ **43**, *11*, 2091 (2001); Cond-mat/0104262.
- [12] J.M. Luttinger, W. Kohn. Phys. Rev. 97, 869 (1955).
- [13] И.М. Цидильковский. Зонная структура полупроводников. Наука, М. (1978).
- [14] Л.И. Коровин, Б.Э. Эшпулатов. ФТТ **21**, *12*, 3703 (1979).
- [15] L.C. Andreani, F. Tassone, F. Bassani. Solid State Commun. 77, 11, 641 (1991).
- [16] L.C. Andreani. In: Confined Electrons and Photons / Ed. E. Burstein, C. Weisbuch. Plenum Press, N.Y. (1995). P. 57.