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Spin relaxation in asymmetrical heterostructures
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Electron spin relaxation by the D’yakonov–Perel’ mechanism is investigated theoretically in asymmetrical AIIIBV

heterostructures. Spin relaxation anisotropy for all three dimensions is demonstrated for a wide range of
structural parameters and temperatures. Dependences of spin relaxation rates are obtained both for a GaAs-based
heterojunctions and a triangular quantum wells. The calculations show a several-orders-of-magnitude difference
between spin relaxation times for heterostructure parameters realized in experiments.

1. Introduction

The degrees of freedom of spin have received a great deal
of attention throughout the development of semiconductor
physics. Recently, the spin properties of carries have been
investigated intensely in low-dimensional semiconductor
structures. In electronics, much interest in spin has been
aroused by recent proposals to construct spin transistors and
spin computers based on heterostructures [1,2].

The spin-orbit interaction, governing the spin behavior, is
much more complex in semiconductor heterostructures than
in bulk systems. The bulk spin-orbit terms take a more
interesting form in two-dimensional (2D) systems, and, in
addition, new terms appear, which are absent in bulk.

In [3] we considered electron spin dunamics in asymmet-
rical heterostructures. A giant anisotropy of spin relaxation
times caused by interference of different spin-orbit terms has
been revealed. In this work, we calculate the spin relaxation
rates in real asymmetrical structures. A heterojunction and
a triangular quantum well (QW) are considered in detail.
The effect of heteropotential asymmetry on spin relaxation
is investigated in a wide range of electron concentrations
and temperatures. We show that the giant spin relaxation
anisotropy is governed by external parameters, that opens
up new possibilities for spin engineering.

2. Theory

Let us consider a system with spin-orbit interaction de-
scribed by the Hamiltonian HSO(k), where k is a wavevector.
HSO(k) is equivalent to a Zeeman term with effective mag-
netic field dependent on k. In the presence of scattering, the
wavevector changes and, hence, the effective magnetic field
changes too. Therefore, in the case of frequent scattering,
the electrons move in a chaotically changing magnetic field.
The spin dynamics in such a system has diffusion character,
which leads to loss of any specific spin orientation. This is
called the D’yakonov–Perel’ spin relaxation mechanism [4],
which is the main spin relaxation mechanism is many AIIIBV

bulk semiconductors and heterostructures.
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For a 2D system with any HSO(k) (where k lies in the
plane of the heterostructure), one can show, similarly to [3]
(see also [4–6]), that the spin dynamics of electrons in the
presence of elastic scattering is described by the following
equations

Ṡi (t) = −
1

2~2

∞∑
n=−∞

∞∫
0

dε(F+ − F−)τnAji
n

∞∫
0

dε(F+ − F−)

Sj (t), (1)

Aji
n = Tr

{[
H−n, [Hn, σ j ]

]
σi

}
.

It should be noted that this is true only for times longer
than the momentum relaxation time but shorter than the
spin relaxation times. In Eq. (1), Si are the spin density
components (i = x, y, z), the integration is performed over
energy ε = ~2k2/2m, where m is the electron effective mass,
F±(ε) are distribution functions of electrons with the spin
projection equal to ±1/2, σi are the Pauli matrices; Hn are
the harmonics of the spin-orbit Hamiltonian:

Hn =

∮
dϕk

2π
HSO(k) exp(−inϕk), (2)

where ϕk is the angular coordinate of k, and the scattering
times are given by

1
τn

=

∮
dθW(ε, θ)(1 − cos nθ), (3)

where W(ε, θ) is the probability of elastic scattering by an
angle θ for an electron with energy ε.

Equation (1) is valid for 2D electrons with any spin-
orbit interaction HSO(k). Now we consider an asymmetrical
zinc-blende heterostructure. There are two contributions
to HSO(k). The first, the so-called bulk inversion asym-
metry (BIA) term, is due to lack of inversion symmetry
in the bulk material of which the heterostructure is made.
To calculate this term, one has average the corresponding
bulk expression over the size-quantized motion [6]. We in-
vestigate a heterostructure with the growth direction [001]
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coinciding with the z-axis and assume that only the first
elecrton subband is populated. The BIA-term has the form

HBIA(k) = γ
[
σxkx(k2

y − 〈k
2
z〉) + σyky(〈k2

z〉 − k2
x)
]
, (4)

where we choose x- and y-directions to be aligned with
the principal axes in the heterostructure plane. Here 〈k2

z〉
is squared the operator (−i∂/∂z) averaged over the ground
state, and γ is the bulk spin-orbit interaction constant. It is
seen that HBIA contains terms both linear and cubic in k.

In asymmetrical heterostructures, there is an additional
contribution to the spin-orbit Hamiltonian, which is absent
in the bulk. It is caused by structure inversion asymmet-
ry (SIA) and can be written as [7–9]

HSIA(k) = α(σxky − σykx), (5)

where α is proportional to the electric field E, acting on an
electron:

α = α0eE. (6)

Here e is the elementary charge and α0 is a second spin-
orbit constant determined by both bulk spin-orbit interaction
parameters and properties of heterointerfaces. It should be
stressed that, in asymmetrical heterostructures, E is caused
mainly by the difference of the wavefunction and band
parameters at the interfaces, rather than by average electric
field [10].

HSIA also contains terms linear in k. From Eq. (1) follows
that the harmonics with the same n are coupled in the spin
dynamics equations. This leads to interference of linear in
wavevector BIA- and SIA-terms in spin relaxation [3].

For HSO = HBIA + HSIA, the system has C2v-symmetry.
Therefore Eqs. (1) can be rewritten as follows:

Ṡz = −
Sz

τz
, Ṡx ± Ṡy = −

Sx ± Sy

τ±
. (7)

The times τz, τ+, and τ− are the relaxation times of the spin
parallel to the axes [001], [110] and [11̄0], respectively.

If both spin subsystems come to equilibrium before the
onset of spin relaxation, then

F±(ε) = F0(µ± − ε), (8)

where F0 is the Fermi–Dirac distribution function and µ± are
chemical potentials of the electron spin subsystems. If the
spin splitting is small, i. e.∣∣µ+ − µ−

∣∣� ∣∣µ+

∣∣ , ∣∣µ−∣∣
then the expressions for the spin relaxation rates 1/τi
(i = z,+,−) have the form

1
τi

=

∞∫
0

dε(∂F0/∂ε)Γi (k)

∞∫
0

dε(∂F0/∂ε)

, (9)

where

Γz(k) =
4τ1

~2

[(
γ2〈k2

z〉
2 + α2

)
k2 −

1
2
γ2〈k2

z〉k
4

+
1 + τ3/τ1

16
γ2k6

]
,

Γ+(k) =
2τ1

~2

[(
α − γ〈k2

z〉
)2

k2 +
1
2
γ
(
α − γ〈k2

z〉
)
k4

+
1 + τ3/τ1

16
γ2k6

]
, (10)

Γ−(k) =
2τ1

~2

[(
α + γ〈k2

z〉
)2

k2 −
1
2
γ
(
α + γ〈k2

z〉
)
k4

+
1 + τ3/τ1

16
γ2k6

]
.

Equations (9), (10) are valid for any electron energy
distribution. If the electron gas is degenerate, then the spin
relaxation times are given by

1
τi

= Γi (kF), (11)

where kF is the Fermi wavevector determined by the total 2D
electron concentration N:

kF =
√

2πN. (12)

In this case, the scattering time τ1 in Eqs. (10) coincides with
the transport relaxation time, τtr, which can be determined
from the electron mobility.

For nondegenerate electrons, the spin relaxation times
are determined, in particular, by the energy dependences
of the scattering times τ1 and τ3. If τ1, τ3 ∝ εν , then
τ3/τ1 = const and

1
τz

=
4τtr

~2

[(
γ2〈k2

z〉
2 + α2

) 2mkBT
~2

−
ν + 2

2
γ2〈k2

z〉
(2mkBT

~2

)2

+ (ν + 2)(ν + 3)
1 + τ3/τ1

16
γ2
(2mkBT

~2

)3
]
, (13)

1
τ±

=
2τtr

~2

[(
±α − γ〈k2

z〉
2
) 2mkBT

~2

+
ν + 2

2
γ(±α − γ〈k2

z〉)
(2mkBT

~2

)2

+ (ν + 2)(ν + 3)
1 + τ3/τ1

16
γ2
(2mkBT

~2

)3
]
.

Here T is electron temperature and kB is the Boltzmann
constant. In the particular case of short-range scattering,
ν = 0, and τ1 = τ3 are equal to τtr, which is independent
of temperature.

Физика и техника полупроводников, 2002, том 36, вып. 1



Spin relaxation in asymmetrical heterostructures 99

Spin relaxation times are very sensitive to the relationship
between two spin-orbit interaction strengths, γ〈k2

z〉 and α.
From Eqs. (11), (13) follows that at low concentration
or temperature, 1/τz, 1/τ−, and 1/τ+ are determined by
the sum of squared γ〈k2

z〉 and α, by their squared sum,
and squared difference, respectively. This may lead to a
considerable difference between the three times, i. e. to a
total spin relaxation anisotropy, if γ〈k2

z〉 and α are close in
magnitude.

In real AIIIBV systems, the relations between HBIA
and HSIA may be different. HBIA or HSIA may be domi-
nant [11,12], or they may be comparable [13].

The value of 〈k2
z〉 depends on the shape of the heteropo-

tential and will be calculated for the given asymmetrical
heterostructures below. The constant γ is known for GaAs
from optical orientation experiments [5]. Correct theoretical
expressions for γ and α0 have been derived in terms of the
three-band k · p model [13,14]. The heterointerfaces give a
contribution to α0 in addition to that from the bulk [15].
At large wavevectors, α0 starts to depend on k [16,17].
Here we assume concentrations and temperatures to be
sufficiently low, allowing us to ignore this effect.

The spin relaxation rates for two types of asymmetrical
structures — a heterojunction and a triangilar QW — are
calculated below. The scattering is assumed to be short-
range (ν = 0, τ3 = τ1 = τtr). All parameters are chosen to
correspond to GaAs/AlAs heterostructure: γ = 27 eV · Å3,
m = 0.067m0, where m0 is the free electron mass and
α0 = 5.33 Å2. The time τtr is taken equal to 0.1 ps and
assumed to be independent of the electron concentration.

3. Spin relaxation in a heterojunction

In a heterojunction, the extent of the spin-orbit interaction
is governed by the 2D carrier concentration N; 〈k2

z〉 can be
estimated as follows [18]:

〈k2
z〉 =

1
4

(
16.5πNe2m

κ~2

)2/3

, (14)

where κ is the dielectric constant. The mean electric
field acting on an electron can be taken equal to half the
maximum field in the junction:

E =
2πNe
κ

. (15)

Figure 1 shows the concentration dependence of the
reciprocal spin relaxation times for degenerate electrons in
a GaAs/AlAs heterojunction (κ = 12.55). The inset shows
the spin-orbit interaction strengths, γ〈k2

z〉 and α, and the
absolute value of their difference, as functions of electron
concentration.

One can see a spin relaxation anisotropy for all three
directions over a wide range of concentrations. 1/τ+ is
less than 1/τ− at small N and greater than 1/τ− at large
concentration. This is due to the fact that the first term

Figure 1. Concentration dependences of the reciprocal spin
relaxation times, 1/τz (solid line), 1/τ− (dashed line), and
1/τ+ (dotted line), for a GaAs/AlAs heterostructure at zero
temperature. The parameters are given in the text. The inset shows
the spin-orbit interaction strengths, γ〈k2

z〉 (solid line), α (dashed),
and |γ〈k2

z〉 − α| (dotted), in eV · Å, as functions of the electron
concentration N/(1012 cm−2).

in (10) is larger for 1/τ−, and the second, for 1/τ+ .
Therefore, at a certain concentration, the times τ+ and τ−
must be equal. From Eqs. (10) (11) follows that this takes
place when

k2
F = 4〈k2

z〉, (16)

which is fulfilled at N = 1.1 · 1013 cm−2 as illustrated in
Fig. 1. At larger concentrations, the spin relaxation is again
totally anisotropic.

Despite that γ〈k2
z〉 and α are close in magnitude over

a wide range of concentrations (see the inset of Fig. 1),
all three spin relaxation rates depend on N monotonically.
This happens because, as the concentration increases, kF in-
creases as well, and the terms in HSO which are cubic in the
wavevector, become important. The growth of these terms
with N dominates the change in (α−γ〈k2

z〉)
2 in (10), hence

the concentration dependence of 1/τ+ is monotonic.
The situation changes in the case of a Boltzmann gas.

For non-degenerate electrons, the mean wavevector and
the concentration are independent. For temperatures up
to 300 K, the characteristic k2 ∝ 2mkBT/~2 is much less
than 〈k2

z〉, and the spin relaxation rates are determined by
the first terms in (13). As a result, all three spin relaxation
times are different up to 300 K at a given concentration. The
results of relevant calculations are presented in Fig. 2.
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The times τ+ and τ− are equal to each other at a certain
temperature only. According to (13), the corresponding
condition is

T =
~2〈k2

z〉

mkB(1 + ν/2)
. (17)

With the GaAs-parameters and ν = 0 in (14), it can be
seen that (17) is satisfied at T ≈ 100 K for N = 1011 cm−2

and at T ≈ 290 K for N = 5 · 1011 cm−2, in agreement with
Fig. 2.

At a fixed temperature, the spin relaxation rates are gov-
erned by the electron concentration. According to Eqs. (13),
the dependences of 1/τi on N are similar to the curves
in the inset of Fig. 1. In particular, form Eqs. (13)
follows that 1/τz and 1/τ− must be close in magnitude
and both greatly exceed 1/τ+. In addition, 1/τ+ depends
on concentration non-monotonically. This is confirmed
completely by the results presented in Fig. 3. One can
see that 1/τ+ � 1/τz ≈ 1/τ−, and the rate 1/τ+ has a
minimum when plotted as a function of concentration. This
minimum is at N = 1.4 · 1013 cm−2, when the terms in HSO
linear in the wavevector cancel out. The corresponding

Figure 2. Temperature dependences of spin relaxation rates,
1/τ− (solid line), 1/τz (dashed line) and 1/τ+ (dotted line), for
a GaAs/AlAs, heterostructure at different electron concentrations.

Figure 3. Concentration dependences of the reciprocal spin relaxa-
tion times, 1/τ+ (solid line), 1/τz (dashed line), and 1/τ− (dotted
line), for Boltzmann electron gas in GaAs/AlAs heterostructure at
temperatures T, K: 1 — 30, 2 — 77, 3 — 150, 4 — 300.

condition is
γ〈k2

z〉 = α. (18)

At this concentration, the spin relaxation time τ+ is very
large but remains finite owing to the terms cubic in k.
Therefore the difference in the spin relaxation times is more
pronounced at low temperature. At high T , the cubic in
the wavevector terms become significant in HSO, and the
minimum in 1/τ+ disappears. However 1/τ+ is still much
less than 1/τ−, i. e. huge spin relaxation anisotropy occurs
in the plane of the heterojunction even at room temperature.

4. Spin relaxation in a triangular
quantum well

In this Section, we investigate spin relaxation in the
following asymmetrical system. We consider a structure
with infinitely-high barrier at z < 0 and constant electric
field E at z > 0.

In the framework of this model,

〈k2
z〉 = a

(
2meE
~2

)2/3

, (19)

where

a =

∞∫
0

dx
[
Ai′ (x − β)

]2

∞∫
0

dx
[
Ai (x − β)

]2 ≈ 0.78. (20)

Here (−β) is the first root of the Airy function:

Ai (−β) = 0, β ≈ 2.338.
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Figure 4. Spin relaxation rates, 1/τz (solid line), 1/τ− (dashed line), and 1/τ+ (dotted line), in a triangular GaAs QW at different electric
field; a — degenerate electron gas, b — Boltzmann gas.

The value of α is determined by the difference of both
the wavefunction and band parameters at the interfaces [10].
This may lead to a more complicated dependence of α on E
than (6). However if E is not too high, we have a the linear
law and, therefore, we use Eq. (6) in our calculations.

In Fig. 4 the spin relaxation rates are plotted for the trian-
gular GaAs QW at different electric fields. It can be seen that
total spin relaxation anisotropy occurs for both degenerate
and Boltzmann gases in wide ranges of concentrations and
temperatures. The times τ+ and τ− coincide only at
a specific concentration or temperature. For degenerate
electrons, according to Eq. (16), the corresponding curves
intersect at N ≈ 3.4 · 1012 cm−2 for E = 105 V/cm and
at N ≈ 7 · 1012 cm−2 for E = 3·105 V/cm in agreement with
Fig. 4, a. For a Boltzmann gas, the intersection of τ+ and τ−
occurs according to (17), at T ≈ 150 K for E = 104 V/cm
and at T ≈ 240 K for E = 2 · 104 V/cm. This is also
confirmed by Fig. 4, b.

The behavior of the reciprocal spin relaxation times in
electric field is illustrated in Fig. 5 for both degenerate
and Boltzmann electron gas. The dependences of γ〈k2

z〉
and α on electric field are similar to those in the inset of
Fig. 1: their values are close in magnitude, so the difference

between them is very small. This leads to a minimum in the
dependence of 1/τ+ on E. The cancellation condition (18)
is fulfilled at E ≈ 1.9 · 106 V/cm. The electric field of this
strength can be created in heterostructures containing a gate,
allowing experimental observation of the non-monotonic
spin relaxation rate dependence shown in Fig. 5.

5. Conclusion

It has been shown [19–21] that inclusion of both the BIA
and SIA terms (4) and (5) into HSO leads to conduction band
spin-splitting anisotropy in k-space in AIIIBV semiconductor
heterojunctions. However, the spin relaxation analysis
performed in [20] ignored this effect.

The authors of [22] showed that the BIA and SIA
terms interfere in weak localization but are additive in spin
relaxation. In this paper, we demonstrate that the terms
in HSO linear in the wavevector cancel out in spin relaxation
as well.

In a recent experiment [23], the spin relaxation anisotropy
was observed for uncommonly used (110) GaAs QWs. In
this experiment, the spin relaxation in the growth direction
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Figure 5. Spin relaxation rates 1/τ+ (solid line), 1/τz (dashed
line), and 1/τ− (dotted line), in a triangular GaAs QW as
functions of the electric filed; a — degenerate electrons at
concentration N, cm−2: 1 — 1011, 2 — 3 · 1011, 3 — 5 · 1011,
4 — 1012; b — Boltzmann gas, at temperatures T, K: 1 — 30,
2 — 77, 3 – 150, 4 — 300.

was suppressed because of the ”built-in” anisotropy of
the sample resulting from the presence of heterointerfaces.
In the present paper, we predict spin relaxation suppression
in the plane of a heterostructure. Moreover, all three spin
relaxation times are different in out case, and this effect takes
place in ordinary (001) heterostructures.

To observe the predicted spin relaxation anisotropy, one
can perform time-resolved measurements similar to those
in [23]. In steady-state experiments, spin ralaxation can be
investigated by means of the Hanle effect. To obtain the spin

relaxation times, one has to take into account of the fact
that, in asymmetrical heterostructures, the Landé g-factor
has not only diagonal in-plane components (gxx) but also off-
diagonal ones (gxy) [24]. The degree of photoluminescence
polarization in a magnetic field B ⊥ z is described by the
following expression

P(B) =
P(0)

1 +
[
µB(gxx ± gxy)B/~2

]2
τzτ∓

, (21)

where the upper and lower signs correspond to the experi-
mental geometry B ‖ [110] and B ‖ [11̄0], respectively (µB is
the Bohr magneton).

We show that the linear in the wavevector terms in
the spin-orbit Hamiltonian interfere, which leads to a huge
anisotropy of the spin relaxation times. At a high concentra-
tion or temterature, this effect starts to disappear owing to
domination of the cubic in k terms in HSO which are present
only in HBIA. However the higher-order terms in HSIA are not
forbidden by symmetry either. These terms can also interfere
with these in HBIA, and cause adiitional non-monotonic
peculiarities in the dependences of the spin relaxation times
on the structure parameters.

In conclusion, we have calculated the spin relaxation times
for a AIIIBV heterojunction and triangular QW. The obser-
vance of spin relaxation anisotropy in all three directions
is predicted in a wide range of structure parameters and
temperatures.
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