Температурная зависимость оптической энергетической щели квантовых точек CdS_XSe_{1-X}

© В.П. Кунец[¶], Н.Р. Кулиш, Вас.П. Кунец, М.П. Лисица, Н.И. Малыш

Институт полупроводников Национальной академии наук Украины, 03028 Киев, Украина

(Получена 14 мая 2001 г. Принята к печати 20 июня 2001 г.)

В диапазоне $4.2-500\,\mathrm{K}$ исследована температурная зависимость оптической энергетической щели $E_g(T)$ квантовых точек $\mathrm{CdS}_X\mathrm{Se}_{1-X}$, синтезированных в боросиликатной стеклянной матрице. Показано, что при $\bar{r}>a_\mathrm{B}$ (\bar{r} — средний радиус точек, a_B — радиус боровской орбиты экситона в массивном кристалле) она повторяет зависимость $E_g(T)$ массивных кристаллов и описывается формулой Варшни во всем исследованном диапазоне температур. При переходе к точкам с $\bar{r}<a_\mathrm{B}$ наблюдается уменьшение коэффициента температурного изменения ширины запрещенной зоны и отклонение от зависимости Варшни в интервале температур $4.2-100\,\mathrm{K}$. Наблюдаемые особенности объясняются уменьшением результирующего макроскопического потенциала электрон-фононного взаимодействия и модификацией колебательного спектра точек при уменьшении их объема.

Ширина запрещенной зоны (E_g) большинства массивных полупроводников уменьшается с ростом температуры, что обусловлено: а) взаимным отталкиванием уровней в зонах при увеличении электрон-фононного взаимодействия (слагаемые Фэна 2-го порядка в теории возмущений); б) тепловым расширением решетки (ангармонизм колебаний) и соответствующей зависимостью энергетической щели от постоянной решетки; в) сглаживанием периодического потенциала, описываемого фактором Дебая—Уоллера; г) взаимодействием межзонных состояний (слагаемые Фэна для межзонной связи) [1–4]. Зависимость $E_g(T)$ массивных полупроводников детально исследована. Установлено, что наибольший вклад в изменение E_g вносят первые два механизма.

Данные об энергетической щели полупроводниковых квантовых точек в литературе разрознены, а по ее температурной зависимости — практически отсутствуют. Так, для описания $E_g(T)$ самоорганизованных квантовых точек InAs в работе [5] использовалась эмпирическая формула Варшни [6], а точек InAs/GaAs — подобное соотношение [7]. Величина E_g квантовых точек $\mathrm{CdS}_X\mathrm{Se}_{1-X}$, синтезированных в стеклянной боросиликатной матрице, определялась лишь при нескольких фиксированных температурах: 4.2, 77 и 300 К [8]. В то же время температурные исследования несут информацию о процессах электрон-фононного взаимодействия, которые в квантовых точках имеют свои особенности из-за малых размеров и, следовательно, малого числа атомов, влияния границ раздела, механических напряжений и т.д.

Цель работы состояла в исследовании особенностей температурной зависимости оптической энергетической щели квантовых точек $\mathrm{CdS}_X\mathrm{Se}_{1-X}$ с $\bar{r}>a_\mathrm{B}$ (\bar{r} — средний радиус точек, a_B — радиус боровской орбиты экситона в массивном кристалле), близких по свойствам к массивным кристаллам, и точек с $\bar{r}<a_\mathrm{B}$, в которых имеют место квантово-размерные эффекты.

Параметры исследуемых точек и массивных кристаллов того же компонентного состава приведены в табли-

це. Ширина запрещенной зоны точек определялась из спектров поглощения, которые измерялись стандартным способом и обрабатывались по методике [8,10]. Температура образцов контролировалась медь-константановой и хромель-алюмелевой термопарами и на протяжении времени измерений поддерживалась постоянной с погрешностью $< 2 \, \mathrm{K}$. Для точек с $\bar{r} > a_{\mathrm{B}}$ за величину $E_{\rm g}$ принималось значение энергетической щели между дном зоны проводимости и потолком валентной зоны (рис. 1, a), а для точек с $\bar{r} < a_{\rm B}$ — расстояние между наинизшими дырочным и электронным квантоворазмерными уровнями E_{01}^h и E_{01}^e (рис. 1, b). В спектрах коэффициента поглощения К этим энергетическим щелям соответствуют: в первом случае — точка пересечения зависимости $K(\hbar\omega) \propto (\hbar\omega - E_{\sigma})^{1/2}$ с осью абсцисс, а во втором — первый квантово-размерный максимум поглощения [11], если не учитывать поправку на асимметрию распределения точек по размерам. Случайная

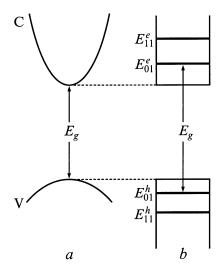


Рис. 1. Ширины: a — запрещенной зоны E_g массивного прямозонного кристалла и b — соответствующей энергетической щели квантовой точки с \bar{r} < $a_{\rm B}$ (b).

7*

[¶] E-mail: kunets@qdots.semicond.kiev.ua

Параметр	$CdS_{0.13}Se_{0.87}$		$CdS_{0.32}Se_{0.68}$	
	квантовые точки	массивный кристалл	квантовые точки	массивный кристалл
$ar{r}, ext{HM}$	7.63	_	2.90	_
a_{B} , HM	_	5.09	_	4.48
$\partial E_g/\partial T$, 10^{-4} $\mathrm{9B/K}$	-4.40 ± 0.10	-4.64^{*}	-2.80 ± 0.15	-4.73^{*}
β, K	143	143	_	163
θ, K	_	240* [9]	_	258* [9]

Параметры квантовых точек и массивных кристаллов CdS_XSe_{1-X}

Примечание. * Данные получены линейной интерполяцией между параметрами CdS и CdSe.

погрешность определения E_g по спектрам поглощения не превышала 0.01 эВ. В исследуемых структурах имеет место дисперсия размеров, поэтому приведенные в работе зависимости соответствуют квантовым точкам среднего размера.

Экспериментальная зависимость $E_g(T)$ для стекла КС-19 с квантовыми точками $\mathrm{CdS}_X\mathrm{Se}_{1-X}$ ($\bar{r}\approx 7.63\,\mathrm{mm}$) показана на рис. 2, a (точки). Там же штриховой линией приведена соответствующая расчетная зависимость для массивного кристалла. Для стекла КС-19 при $\bar{r}>a_\mathrm{B}$ (см. таблицу) энергетический спектр точек подобен спектру массивных кристаллов, а зависимость $E_g(T)$ описывается формулой Варшни [6]

$$E_g = E_0 - \alpha T^2 (T + \beta)^{-1} \tag{1}$$

во всем исследованном диапазоне температур (рис. 2). В (1) $E_0 = E_g$ при T = 0 K; α и β — константы, причем α обычно сопоставляется с температурным коэффициентом изменения ширины запрещенной зоны $\partial E_g/\partial T$, а β — с температурой Дебая θ . Из (1) видно, что при $T \ll \beta$ $\Delta E_g \propto T^2$, а при $T \gg \beta$ $\Delta E_g \propto T$. Эти особенности хорошо видны из рис. 2, а: при низких температурах зависимость $E_g(T)$ нелинейна, а при высоких — величина E_g линейно уменьшается с ростом T. На рис. 2, b та же зависимость представлена в виде $E_g = f[T^2/(T+\beta)]$, что позволяет определить коэффициенты $\alpha \approx \partial E_g/\partial T$ и β с относительной погрешностью < 6% и < 10% соответственно. Они оказались близкими к соответствующим значениям массивных кристаллов того же компонентного состава (см. таблицу и сплошную линию на рис. 2, a).

На рис. З приведены температурные зависимости энергетической щели стекол, содержащих точки $CdS_{0.32}Se_{0.68}$ с $\bar{r} < a_{\rm B}$. Их энергетический спектр состоит из набора дискретных уровней, а энергия размерного квантования составляет ~ 0.25 эВ [11]. Зависимость $E_g(T)$ в этом случае линейна во всем исследованном интервале температур и не описывается формулой (1) в диапазоне $4.2{-}100\,{\rm K}$ (рис. 3,b). При этом коэффициент $\lambda \approx \partial E_g/\partial T$ оказывается значительно меньше, чем в массивном кристалле и в стекле с точками $\bar{r} > a_{\rm B}$ (см. таблицу). Это также хорошо видно из рис. 3,a, где штриховой линией показана соответствующая зависимость $E_g(T)$, рассчитанная для массивного кристалла по формуле (1).

Для полярных полупроводников CdS и CdSe основными механизмами уменьшения E_g с ростом T считаются электрон-фононное взаимодействие и дисторсия кристаллической решетки. Вместе с тем известно [12], что температурная зависимость термического коэффициента объемного расширения $\gamma(T)$ этих кристаллов носит

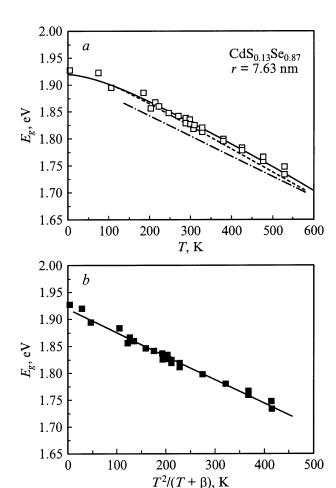


Рис. 2. Температурные зависимости оптической ширины запрещенной зоны квантовых точек $CdS_{0.13}Se_{0.87}$ с $\bar{r}>a_B$. Точки (a,b) — эксперимент, сплошные линии (a,b) — расчет по формуле Варшни (1) при $\alpha=-4.40\cdot 10^{-4}$ эВ · K^{-1} , $\beta=143$ K, штриховая линия (a) — расчет по формуле (1) для монокристалла, штрихпунктирная (a) — та же зависимость после учета гидростатического давления матрицы стекла.

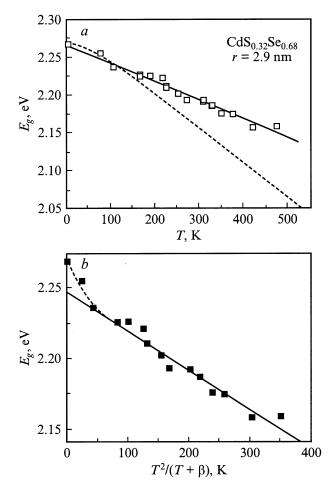


Рис. 3. Температурные зависимости оптической ширины запрещенной зоны квантовых точек $\mathrm{CdS}_{0.32}\mathrm{Se}_{0.68}$ с $\bar{r} < a_{\mathrm{B}}$. Точки (a,b) — эксперимент, сплошная линия на рис. a — усреднение по методу наименьших квадратов; штриховая линия на рис. a — расчет по формуле Варшни (1) для массивного кристалла, сплошная линия на рис. b — расчет по формуле Варшни для квантовых точек.

ярко выраженный нелинейный характер. В интервале температур $4.2-200\,\mathrm{K}$ коэффициент γ становится отрицательным, а зависимость $\gamma(T)$ имеет экстремум. В то же время зависимость $E_g(T)$ в этом интервале температур монотонно изменяется, что свидетельствует о незначительном вкладе дисторсии решетки в уменьшение E_g с ростом T. По данным различных источников, доля ангармонизма колебаний в изменении E_g с температурой составляет от 1 до 25% [6,13,14].

В отличие от массивных кристаллов в квантовых точках необходимо учитывать влияние ангармонизма на величину энергии размерного квантования, которая зависит от радиуса точки, и изменение ширины запрещенной зоны, связанное с изменением давления матрицы [15]. Так, например, для квантовых точек CdSe с $r=3.00\,\mathrm{hm}$ увеличение температуры от 200 до 300 К (в интервале, где коэффициент γ большой) вызывает увеличение радиуса вдоль C-оси на 0.02%. Если учесть зависимость

наинизших энергетических уровней $E^e_{01}(E^h_{01})$ от размера, то это приведет к уменьшению E_g примерно на 0.0001 эВ. В действительности, в указанном диапазоне температур $\Delta E_g \approx 0.03$ эВ, т.е. относительный вклад дисторсии решетки составляет 0.33%, что коррелирует с данными для массивных кристаллов [13,14]. Таким образом, можно считать, что основной вклад в зависимость $E_g(T)$ квантовых точек $\mathrm{CdS}_X\mathrm{Se}_{1-X}$ в боросиликатной стеклянной матрице, как и в случае массивных кристаллов, вносит электрон-фононное взаимодействие.

На рис. 2, a штрихпунктирной линией показана также зависимость $E_g(T)$, рассчитанная с учетом гидростатического сжатия точек матрицей стекла [15]. Значение $\partial E_g/\partial T$ в этом случае оказывается несколько меньшим $(-4.35\cdot 10^{-4}\, {\rm 3B/K})$ в сравнении со значением, полученным без учета давления $(-4.40\cdot 10^{-4}\, {\rm 3B/K})$, т.е. относительный вклад этого эффекта составляет $\sim 1.5\%$.

Таким образом, как видно из рис. 2 и 3, при переходе от точек с $\bar{r} > a_{\rm B}$ к точкам с $\bar{r} < a_{\rm B}$ коэффициент $\partial E_g/\partial T$ уменьшается, а зависимость $E_g(T)$ становится линейной в широком диапазоне температур, в том числе и при низких температурах $(4.2{-}100\,{\rm K})$.

Уменьшение коэффициента $\partial E_g/\partial T$ в принципе могло бы быть вызвано уменьшением величины электронфононного взаимодействия. Однако с уменьшением радиуса точек до радиуса полярона в массивном кристалле константа электрон-фононного взаимодействия возрастает [16], что противоречит высказанному предположению. Вместе с тем очевидно, что уменьшение объема точки уменьшает полное число атомов (элементарных ячеек или осцилляторов), принимающих участие в колебаниях (фактор I), и ведет к пространственному ограничению периодичности упругих свойств кристаллической решетки (фактор II).

При достаточно больших размерах кристалла граничные условия (фактор II) слабо влияют на спектр колебаний и могут не учитываться при анализе процессов рассеяния. Такие условия легко реализуются уже для макрокристаллов с диаметром ~ 1 мкм, колебательный спектр которых идентичен спектру массивных кристаллов. В квантовой точке с $r \approx a_{\rm B}$ граничные условия играют значительную роль. Если бы поверхностные атомы противположных граней точки в форме куба колебались в фазе, то это было бы эквивалентно выполнению циклических граничных условий Борна—Кармана и влияния границы раздела (размерных эффектов) на колебательный спектр не было бы. Однако даже в этом случае он модифицировался бы под влиянием фактора I, т.ё. за счет уменьшения числа элементарных осцилляторов.

В реальной ситуации условие цикличности граничных условий нарушается и волновой вектор фонона q ограничивается со стороны малых значений, т. е.

$$\frac{2\pi}{d} = \frac{\pi}{r} \le q \le \frac{\pi}{a},\tag{2}$$

где d — диаметр точки, a — постоянная решетки. Из (2) видно, что для массивного кристалла $(r \to \infty)$ $q_{\min} \to 0$,

т. е. в нем могут генерироваться упругие волны большой длины, которые обычно описываются в континуальном приближении, а $q_{\rm max} \to \pi/a$, т.е. со стороны коротких волн длина волны фонона в твердом теле ограничена постоянной кристаллической решетки. Ограничение колебательного спектра квантовых точек со стороны длинных волн $(q_{\min} > \pi/r)$ является причиной того, что звуковые волны с $\lambda \gg d$, для которых $q \to 0$, в них не возбуждаются. Возбуждение такой волны было бы эквивалентно простому смещению точек в пространстве как целого, так как при $\lambda\gg d$ смещением атомов, расположенных на расстоянии диаметра точки, можно пренебречь. Таким образом, пространственное ограничение периодичности упругих свойств кристаллической решетки квантовой точки (фактор II) ведет к ограничению колебательного спектра со стороны малых значений волнового вектора и связанному с этим уменьшению числа возможных колебательных состояний в данной колебательной моде. Необходимо помнить также, что число фононных состояний кристалла определяется числом элементарных ячеек N и числом атомов S на одну ячейку, т.е. равно 3SN. В кристаллах А^{II}В^{VI} элементарная ячейка содержит две молекулы (4 атома). Поэтому общее число фононных состояний равно 12N. При уменьшении радиуса точки от ~ 7.6 до ~ 3.0 нм ее объем V (число элементарных ячеек или осцилляторов) уменьшается на 94%, что ведет к существенному уменьшению плотности колебательных состояний ($\sim V/8\pi^3$).

Основным фононным механизмом рассеяния носителей заряда в точках CdS_XSe_{1-X} является рассеяние на объемных продольных оптических (LO) модах [16–18], которые легко регистрируются в спектрах комбинационного рассеяния света 1-го порядка в виде достаточно интенсивных пиков [19]. Менее эффективными являются процессы рассеяния на поверхностных оптических модах, а также на объемных и поверхностных акусти-Значительное уменьшение числа ческих модах [18]. элементарных осцилляторов (электрических диполей в случае LO-мод, фактор I) при переходе к точкам малых размеров ($\bar{r} < a_{\rm B}$) уменьшает величину суммарной электрической поляризации решетки. В итоге уменьшается величина результирующего макроскопического потенциала $V_i(\mathbf{r})$, который является дальнодействующим и входит в суммарный потенциал электрон-фононного взаимодействия наряду с компонентами, изменяющимися в масштабах постоянной решетки. Последнее ведет к изменению энергии носителя заряда. Уменьшение $V_i(\mathbf{r})$ по сути эквивалентно уменьшению поля Лоренца, пропорционального $P/3\varepsilon_0$, где P — суммарная поляризация. Величина поля в конкретной точке ${\bf r}_0$ определяется вкладом от всех остальных осцилляторов, ограниченных объемом квантовой точки. В то же время величина электрической поляризации решетки наибольшая для состояний с $q \to 0$, число которых также уменьшается за счет эффектов пространственного ограничения (фактор II).

Таким образом, можно предполагать, что основной причиной уменьшения коэффициента $\partial E_g/\partial T$ при пе-

реходе к квантовым точками малых размеров является уменьшение их объема и связанное с этим уменьшение числа элементарных ячеек (осцилляторов), а также изменения колебательного спектра точек при пространственном ограничении периодичности упругих свойств их кристаллической решетки. Оба фактора уменьшают результирующий макроскопический потенциал, через который электрон взаимодействует с решеткой.

Линейность зависимости $E_{\varrho}(T)$ для стекол, содержащих точки малого размера ($\bar{r} < a_{\rm B}$), в рамках модели, описываемой формулой Варшни, могла бы быть объяснена уменьшением температуры Дебая. Действительно, если в (1) положить $\beta = 0$, то расчетная зависимость $E_{\rho}(T)$ станет линейной. Предположение о возможности уменьшения температуры Дебая до нуля (heta o 0) высказывалось еще в работах [20,21], где теоретически исследовались случаи понижения мерности твердого тела и, в частности, цепочечные и слоистые кристаллы и было найдено, что при уменьшении или отсутствии взаимодействия между слоями вероятность распространения упругих волн перпендикулярно слоям уменьшалась и приближалась к нулю. Однако утверждение о стремлении θ к нулю может рассматриваться в данном случае лишь как предположение, требующее дальнейшей экспериментальной проверки.

Работа частично финансировалась Международной соросовской программой поддержки образования в области точных наук (ISSEP), грант № EPU 052023.

Список литературы

- [1] H.Y. Fan. Phys. Rev., 82, 900 (1951).
- [2] Ch. Keffer, T.M. Hayes, A. Bienenstock. Phys. Rev. Lett., 21, 1676 (1968).
- [3] Ph. Allen, V. Heine. J. Phys. C.: Sol. St. Phys., 9, 2305 (1976).
- [4] Б. Ридли. Квантовые процессы в полупроводниках (М., Мир, 1986).
- [5] L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi. Appl. Phys. Lett., 69, 3354 (1996).
- [6] Y.P. Varshni. Physica, **34**, 149 (1967).
- [7] F. Adler, M. Geiger, A. Bauknecht, D. Haase, P. Ernst, A. Dornen, F. Scholz, H. Schweizer. J. Appl. Phys., 83, 1631 (1998).
- [8] N.R. Kulish, V.P. Kunets, M.P. Lisitsa. Superlat. Microstruct., 22, 341 (1997).
- [9] Физико-химические свойства полупроводниковых веществ. Справочник под ред. С.А. Медведева (М., Наука, 1979) с. 48.
- [10] Н.Р. Кулиш, В.П. Кузнец, М.П. Лисица, Н.И. Малыш. Укр. физ. журн., 37, 1141 (1992).
- [11] V.P. Kunets. Semiconductor Physics, Quant. Electron. & Optoelectron., 2, 23 (1999).
- [12] В.С. Оскотский, И.Б. Кобяков, А.В. Солодухин. ФТТ, **22**, 1478 (1980).
- [13] Н.В. Фомин. ФТП, 15, 1625 (1981).
- [14] А.Ф. Ревинский. Изв. вузов. Физика, вып. 8, 3 (1996).
- [15] В.П. Кузнец. Укр. физ. журн., 43, 64 (1998).
- [16] J.S. Marini, B. Stebe, E. Kartheuser. Phys. Rev. B, 50, 14302 (1994).

- [17] E. Roca, C. Trallero-Giner, M. Cardona. Phys. Rev. B, 49, 13 704 (1994).
- [18] Kasunori Oshiro, Koji Akai, Mitsuru Matsuura. Phys. Rev B, 58, 7986 (1998).
- [19] V.P. Kunets, N.R. Kulish, M.P. Lisitsa, A. Mlayah, M.Ya. Valakh. Ukr. Phys. J., 45, 164 (2000).
- [20] В.В. Тарасов. ЖФХ, **24**, 11 (1950).
- [21] Л.М. Тарасова, В.В. Тарасов. ДАН СССР, 107, 719 (1956).

Редактор Т.А. Полянская

Temperature dependence of the energy gap in CdS_XSe_{1-X} quantum dots

V.P. Kunets, N.R. Kulish, Vas.P. Kunets, M.P. Lisitsa, N.I. Malysh

Institute of Semiconductor Physics National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine

Abstract The temperature dependence of the energy gap $E_g(T)$ in $\mathrm{CdS}_X\mathrm{Se}_{1-X}$ quantum dots synthesized in a borosilicate glass matrix has been investigated in the range of $4.2-500\,\mathrm{K}$. A dependence similar to that for bulk crystals is observed for dots with $\bar{r}>a_\mathrm{B}$ (\bar{r} being an average radius of the dot and a_B the Bohr exciton radius in the bulk), which is described by Varshni formula within the whole temperature range. Deviations from the Varshni dependence in the range $4.2-100\,\mathrm{K}$ and smaller band-gap temperature coefficient are obseved for dots with $\bar{r}< a_\mathrm{B}$. Results are explained in terms of the decrease of the macroscopic electron-phonon potential and the modification of the vibration spectrum peculiar to the dot volume shrinkage.