01;03

Дифференциальные характеристики потока за ударной волной

© А.В. Омельченко

Санкт-Петербургский государственный университет,

198904 Санкт-Петербург, Россия

e-mail: vmu@peterlink.ru

(Поступило в Редакцию 28 мая 2001 г.)

Выводится связь производных на движущейся с ускорением по одномерному вихревому потоку идеального совершенного газа нестационарной ударной волне. На основе полученных соотношений дается решение задач взаимодействия ударной волны со слабым разрывом.

Введение

Необходимость получения соотношений, связывающих такие характеристики сильных разрывов, как ускорение или кривизна ударной волны, с производными газодинамических переменных по обе стороны от сильного разрыва, была связана в основном с двумя задачами: изучением течений за искривленными ударными волнами и расчетом взаимодействия сильного и слабого разрывов. Первые результаты в этой области, полученные в [1,2] еще в конце 40-х годов, касались частного случая плоского или осесимметричного стационарного искривленного скачка уплотнения. Несколько позднее эти результаты были обобщены в работах [3,4] на случай задач с большей размерностью. Однако большинство соотношений, связывающих производные по обе стороны сильного разрыва, имело довольно громоздкий вид. Как следствие, задачи интерференции сильных разрывов со слабыми в газовой динамике либо решались методами малых возмущений, ибо получались как частный случай задач интерференции сильных разрывов [5].

В представленной работе выводится простая связь производных на нестационарной одномерной ударной волне. На основе полученных соотношений проводится подробный анализ задач взаимодействия ударной волны со встречными и догоняющими слабыми разрывами. В качестве примера использования полученных результатов в прикладных задачах газовой динамики рассматривается задача распространения ударной волны по каналу переменного сечения.

Постановка задачи

Рассматривается движение с ускорением нестационарной ударной волны по одномерному вихревому неизобарическому потоку совершенного невязкого газа. Система уравнений, описывающих рассматриваемое течение, в переменных Лагранжа имеет следующий вид [6]:

$$\frac{\partial \ln p}{\partial \tau} + \frac{\gamma^2 p x^{\delta}}{a^2} \frac{\partial v}{\partial a} = -\frac{\delta \gamma v}{x},$$

$$\frac{\partial v}{\partial \tau} + px^{\delta} \frac{\ln p}{\partial q} = 0,$$

$$\frac{\partial S}{\partial \tau} = 0.$$
(1)

Здесь p и a — давление и скорость звука в потоке; v — скорость потока; S — энтропия, связанная с давлением p и скоростью звука a соотношением

$$S = 2c_p \left(\ln a + \frac{\gamma - 1}{2\gamma} \ln p \right) + \text{const}, \tag{2}$$

 γ — показатель адиабаты; q, τ — Лагранжевы координаты; $\delta = 0, 1, 2$ для плоского, осесимметричного и сферически симметричного потоков.

Эйлерова координата x=x(q,t) рассматривается как решение дифференциального уравнения $\partial x/\partial t=v(q,t)$. Вводя вектор $u=[\ln p,v,S]$ и переходя к матричной форме записи, получаем систему вида

$$\frac{\partial u}{\partial \tau} + A \frac{\partial u}{\partial q} = b, \tag{3}$$

в которой матрица A имеет ранг, равный двум, и $A[1\dots 2,3]=0[1\dots 2,3]$. Эту же систему можно переписать и в характеристическом виде [6]

$$L^{(k)}U + \lambda_k L^{(k)}V = L^{(k)}b; \quad k = 1, \dots, 3.$$
 (4)

Здесь $L^{(1)} = [1, -\gamma/a, 0], L^{(2)} = [1, \gamma/a, 0],$ $L^{(3)} = [0, 0, 1],$

$$U = \left(\frac{\partial \ln p}{\partial \tau}, \frac{\partial v}{\partial \tau}, \frac{\partial S}{\partial \tau}\right), \quad V = \left(\frac{\partial \ln p}{\partial q}, \frac{\partial v}{\partial q}, \frac{\partial S}{\partial q}\right),$$

$$\lambda_{1,2} = \mp \frac{\gamma p x^{\delta}}{a}, \quad \lambda_3 = 0, \quad b = \left(-\frac{\delta \gamma v}{x}, 0, 0\right).$$

Разрыв $[f] = f_2 - f_1$ газодинамических переменных $f \in \{\ln p, v, \ln a, S\}$ на ударной волне связан со скоростью ударной волны D = dx/dt в неподвижной системе координат сотношениями Гюгонио

$$\Lambda = \ln p_2 - \ln p_1 = \ln \left[(1 + \varepsilon) \left(\frac{D - v_1}{a_1} \right)^2 - \varepsilon \right],$$

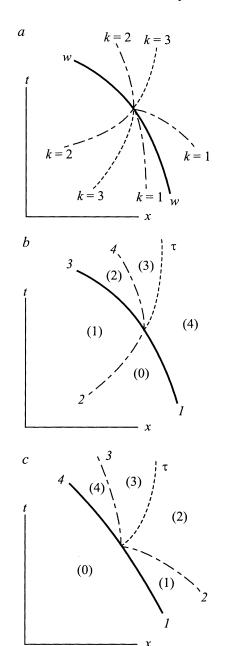
$$\varepsilon = \frac{\gamma - 1}{\gamma + 1},$$

$$v_2 - v_1 = (D - v_1) \frac{(1 - \varepsilon)(J - 1)}{(J + \varepsilon)}, \quad J = \frac{p_2}{p_1},$$

$$\frac{\ln a_2 - \ln a_1}{2} = \ln \frac{J(1 + \varepsilon J)}{(J + \varepsilon)},$$

$$\frac{\ln S_2 - \ln S_1}{c_p} = \ln \frac{J(1 + \varepsilon J)J^{1/\gamma}}{(J + \varepsilon)}.$$
(5)

При переходе через ударную волну рвутся не только газодинамические переменные, но и их производные $\partial f/\partial \tau$ и $\partial f/\partial q$. Основная задача первой части статьи — выразить производные от основных газодинамических переменных за волной через характеристики волны и основные газодинамические переменные до нее.



Схемы взаимодействия ударной волны со слабыми разрывами. Цифры в скобках — обозначение областей непрерывности производных.

Вторая часть работы посвящена анализу взаимодействия ударной волны со слабым разрывом. Как показано, например, в [6], эта линия обязательно совпадает с одной из характеристик системы (4), т.е. существует такое $k \in (1, \ldots, 3)$, что $dq/d\tau = \lambda_k$. В дальнейшем такую линию будем называть линией слабого разрыва индекса k.

Предположим для определенности, что направление ударной волны совпадает с направлением характеристики первого семейства (см. рисунок, а). В этом случае с волной может взаимодействовать встречный слабый разрыв индекса k ($k=1,\ldots,3$), либо слабый догоняющий разрыв индекса 1. В результате взаимодействия возникают два исходящих слабых разрыва индекса 2 и 3 (отраженные слабые разрывы индекса k, k = 2, 3;см. рисунок, a). Кроме того, скачкообразно изменяется ускорение W скачка уплотнения. Задача расчета взаимодействия сильного и слабого разрывов заключается в следующем: по заданным соотношениям (5) на сильном разрыве и известных величинах разрыва производных $\partial f/\partial \tau$ и $\partial f/\partial q$ на приходящем слабом разрыве определить величину скачка ускорения сильного разрыва, а также величины разрыва производных на исходящих из точки взаимодействия слабых разрывах.

Связь производных за ударной волной с производными вдоль траектории волны

Пусть $w(\tau)$ — траектория движения ударной волны. Производная газодинамической функции f_2 за ударной волной по τ в направлении траектории $w(\tau)$ ударной волны связана со скоростью D ударной волны, а также с производными $\partial f_2/\partial \tau_2$ и $\partial f_2/\partial q_2$ следующими соотношениями:

$$\frac{df_2}{d\tau} = \frac{\partial f_2}{\partial \tau_2} + (D - v_2) \frac{\gamma p_2 x^{\delta}}{a_2^2} \frac{\partial f_2}{\partial q_2}.$$
 (6)

Как уже отмечалось выше, матрица системы (3) имеет ранг, равный двум, т. е. треть строка системы есть линейная комбинация первых двух строк (3). Кроме того, в первые две строки системы входят только производные функций $\ln p$ и v, а в третью — только производная функции S. Указанные факты означают, что из системы (1) можно выделить подсистему вида

$$\frac{\partial \ln p}{\partial \tau} + \frac{\gamma^2 p x^{\delta}}{a^2} \frac{\partial v}{\partial q} = -\frac{\delta \gamma v}{x},$$

$$\frac{\partial v}{\partial \tau} + p x^{\delta} \frac{\partial \ln p}{\partial q} = 0,$$
(7)

а также уравнение

$$\frac{\partial S}{\partial s} = 0 \tag{8}$$

и, пользуясь формулами (5), решать подзадачу определения связи производных функций $\ln p$, v отдельно от аналогичной подзадачи для функции S.

Выразим производные функций $\ln p$ и v за ударной волной через производные $df_2/d\tau$ вдоль траектории волны. Для этого подставим в (7) $p=p_2$ и $v=v_2$. С учетом соотношений (6), записанных для $f_2=\ln p_2$ и $f_2=v_2$, имеем линейную систему для определения производных от функций $\ln p$ и v за скачком, решая которую, получим

$$\frac{\partial \ln p_{2}}{\partial q_{2}} = \frac{1}{z} \left[\frac{1}{\gamma} \frac{d \ln p_{2}}{d\tau} + \frac{1}{[D - v_{2}]} \frac{dv_{2}}{d\tau} + \frac{\delta v_{2}}{x} \right] \\
\times \left(-\frac{[D - v_{2}]}{p_{2}x^{\delta}} \right), \\
\frac{\partial v_{2}}{\partial q_{2}} = \frac{1}{z} \left[\frac{1}{\gamma} \frac{d \ln p_{2}}{d\tau} + \frac{[D - v_{2}]}{a_{2}^{2}} \frac{dv_{2}}{d\tau} + \frac{\delta v_{2}}{x} \right] \left(-\frac{a_{2}^{2}}{\gamma p_{2}x^{\delta}} \right), \\
\frac{\partial \ln p_{2}}{\partial \tau_{2}} = \frac{1}{z} \left[\frac{1}{\gamma} \frac{a_{2}^{2}}{[D - v_{2}]} \frac{d \ln p_{2}}{d\tau} + \frac{dv_{2}}{d\tau} + [D - v_{2}] \frac{\delta v_{2}}{x} \right] \\
\times \left(\frac{\gamma [D - v_{2}]}{a_{2}^{2}} \right), \\
\frac{\partial v_{2}}{\partial \tau_{2}} = \frac{1}{z} \left[\frac{1}{\gamma} [D - v_{2}] \frac{d \ln p_{2}}{d\tau} + \frac{dv_{2}}{d\tau} + [D - v_{2}] \frac{\delta v_{2}}{x} \right], \\
z = 1 - \frac{[D - v_{2}]^{2}}{a_{2}^{2}} = \frac{J - 1}{J(1 + \varepsilon)}. \tag{9}$$

Пользуясь соотношениями на скачке (5), выразим производные $df_2/d\tau$ через производные $df_1/d\tau$ от газодинамических переменных до скачка

$$\frac{d \ln p_2}{d\tau} = \frac{d \ln p_1}{d\tau} + 2 \frac{(J+\varepsilon)}{J} \left[\frac{1}{D-v_1} \frac{d(D-v_1)}{d\tau} - \frac{d \ln a_1}{d\tau} \right],$$

$$\frac{dv_2}{d\tau} = \frac{dv_1}{d\tau} + \frac{(1-\varepsilon)}{(J+\varepsilon)} \frac{d(D-v_1)}{d\tau} [(J+\varepsilon) + (1+\varepsilon)]$$

$$-2(D-v_1) \frac{(1-\varepsilon^2)}{(J+\varepsilon)} \frac{d \ln a_1}{d\tau}.$$

Вводя обозначения

$$N_p = \frac{d \ln p_1}{d\tau}, N_u = \frac{dv_1}{d\tau}, N_a = \frac{d \ln a_1}{d\tau}, N_\delta = \frac{\delta}{x}, N_D = \frac{dD}{d\tau}$$

и учитывая выражения для производных вдоль скачка, несложно получить искомые соотношения для функций $\ln p$ и ϑ

$$\begin{split} T_i^{(2)} &= \frac{-1}{z} \left[\psi_p^{(i)} N_p + \psi_v^{(i)} N_v + \psi_a^{(i)} N_a + \psi_\delta^{(i)} N_\delta + \psi_D^{(i)} N_D \right], \\ N_i^{(2)} &= \frac{1}{z} \left[\varphi_p^{(i)} N_p + \varphi_v^{(i)} N_v + \varphi_a^{(i)} N_a + \varphi_\delta^{(i)} N_\delta + \varphi_D^{(i)} N_D \right], \end{split}$$
 где $i = 1, 2,$

$$\begin{split} T_1^{(2)} &= \frac{\partial \ln p_2}{\partial q_2}, \ T_2^{(2)} = \frac{\partial v_2}{\partial q_2}, \ N_1^{(2)} = \frac{\partial \ln p_2}{\partial \tau_2}, \ N_2^{(2)} = \frac{\partial v_2}{\partial \tau_2}, \\ \psi_p^{(1)} &= \tilde{\psi}_v^{(2)} = \frac{D - v_2}{v_{D2} x^{\delta}}, \\ \tilde{\psi}_v^{(1)} &= \frac{1}{p_2 x^d}, \\ \psi_2^{(2)} &= \frac{a_2^2}{v_2^2 p_2 x^d}, \end{split}$$

$$\begin{split} \varphi_p^{(1)} &= \tilde{\varphi}_v^{(2)} = 1, \, \tilde{\varphi}_v^{(1)} = \frac{(D-v_2)\gamma}{a_2^2}, \, \varphi_p^{(2)} = \frac{D-v_2}{\gamma}, \\ \psi_a^{(i)} &= -d_1(D-v_1)(\psi_p^{(i)} + \tilde{\psi}_v^{(i)}g_2), \\ \varphi_a^{(i)} &= -d_1(D-v_1)(\varphi_p^{(i)} + \tilde{\varphi}_v^{(i)}g_2), \\ \psi_D^{(i)} &= d_1(\psi_p^{(i)} + g_2\tilde{\psi}_v^{(i)}) + \tilde{\psi}_v^{(i)}d_2, \\ \varphi_D^{(i)} &= d_1(\varphi_p^{(i)} + g_2\tilde{\varphi}_v^{(i)}) + \tilde{\varphi}_v^{(i)}d_2, \\ \psi_\delta^{(i)} &= \psi_p^{(i)}v_2\gamma, \ \ \varphi_\delta^{(1)} = \varphi_p^{(1)}v_2\gamma, \ \ \varphi_\delta^{(2)} = (\varphi_p^{(2)} - 1)v_2\gamma, \\ \psi_v^{(i)} &= \tilde{\psi}_v^{(i)} - \psi_D^{(i)}, \ \ \varphi_v^{(i)} = \tilde{\varphi}_v^{(i)} - \varphi_D^{(i)}. \end{split}$$

Злесь

$$d_1 = \frac{\partial \Lambda}{\partial D} = \frac{2(J+\varepsilon)}{J(D-v_1)}, \quad d_2 = \frac{\partial [v]}{\partial D} = \frac{(1-\varepsilon)(J-1)}{(J+\varepsilon)},$$
$$g_2 = \frac{\partial [v]}{\partial \Lambda} = (D-v_1)\frac{(1-\varepsilon^2)J}{(J+\varepsilon)^2}.$$

На практике вместо N_a иногда удобно использовать функцию $N_S = dS/d\tau$, характеризующую завихренность течения и связанную с N_a и N_p следующим образом (2):

$$N_a = \frac{d \ln a}{d\tau} = \frac{\gamma - 1}{2\gamma} \frac{d \ln p}{d\tau} + \frac{1}{2c_p} \frac{dS}{d\tau} = \frac{\gamma - 1}{2\gamma} N_p + \frac{1}{2c_p} N_S.$$

Ясно, что коэффициенты при N_S отличаются от соответствующих коэффициентов при N_a множителем $1/(2c_p)$

$$\tilde{\psi}_{S}^{(i)} = \psi_{a}^{(i)}/(2c_{p}), \quad \tilde{\varphi}_{S}^{(i)} = \varphi_{a}^{(i)}/(2c_{p}),$$

а новые коэффициенты при N_p связаны со старыми так:

$$\tilde{\psi}_p^{(i)} = \psi_p^{(i)} - \frac{\gamma - 1}{2\gamma} \, \psi_a^{(i)}, \quad \tilde{\varphi}_p^{(i)} = \varphi_p^{(i)} - \frac{\gamma - 1}{2\gamma} \, \varphi_a^{(i)}.$$

Для установления связи производных функции S заметим, что в силу (8) производные $\partial S/\partial \tau$ равны нулю по обе стороны скачка. Следовательно,

$$N_3^{(2)} = \frac{\partial \ln S_2}{\partial q_2} = \frac{a_2^2}{\gamma p_2 x^d (D - v_2)} \left[\frac{d \ln S}{d\tau} + \frac{d[S]}{d\tau} \right].$$

Выражая стоящую в правой части производную с помощью последнего из соотношений (5), получим с учетом ранее введенных обозначений

$$N_3^{(2)} = \frac{a_2^2}{\gamma p_2 x^d (D - v_2)} \left[N_S - \frac{2c_p (1 - \varepsilon)\varepsilon (J - 1)^2}{(1 + \varepsilon)J(1 + \varepsilon J)} \times \left(N_a + \frac{1}{D - v_1} (N_v - N_D) \right) \right]. \tag{11}$$

Связь производных за ударной волной с основными неравномерностями потока до волны

Выразим теперь производные за ударной волной через ускорение N_D скачка, а также через функции

$$N_1 = \frac{\partial \ln p_1}{\partial \tau_1}, \quad N_2 = \frac{\partial v_1}{\partial \tau_1}, \quad N_3 = \frac{\partial S_1}{\partial q_1},$$

характеризующие ускорение (N_2) , неизобаричность (N_1) и завихренность (N_3) потока до волны и называемые иногда основными неравномерностями потока.

Производная $df_1/d\tau$ газодинамической функции f_1 до волны связана с производными $\partial f_1/\partial \tau_1$ и $\partial f_1/\partial q_1$ соотношениями

$$\frac{df_1}{d\tau} = \frac{\partial f_1}{\partial \tau_1} + (D - v_1) \frac{\gamma p_1 x^{\delta}}{a_1^2} \frac{\partial f_1}{\partial q_1}.$$
 (12)

Используя систему (1), записанную для $f=f_1$, а также соотношения (12), несложно выразить функции N_p , N_v и N_S через основные неравномерности потока

$$N_p = N_1 - (D - v_1) \frac{\gamma}{a_1^2} N_2, \quad N_S = (D - v_1) \frac{\gamma p_1 x^{\delta}}{a_1^2} N_3,$$

$$N_v = N_2 = \frac{1}{\gamma} (D - v_1) [N_1 + \gamma v_1 N_{\delta}].$$

Подставляя в формулы (10) и (11) вместо N_p , N_v и N_S указанные соотношения и вводя обозначения $N_4=N_\delta$, $N_5=N_D$, можно получить искомую связь производных за волной с основными неравномерностями потока до нее

$$N_{1}^{(2)} = \frac{\Gamma(a_{2})}{z} \sum_{k=1}^{5} A_{1k} N_{k}, \quad T_{1}^{(2)} = \frac{-1}{z p_{2} x^{\delta}} \sum_{k=1}^{5} A_{2k} N_{k},$$

$$N_{2}^{(2)} = \frac{1}{z} \sum_{k=1}^{5} A_{2k} N_{k}, \quad T_{2}^{(2)} = \frac{-a_{2}}{z p_{2} x^{\delta} \gamma} \sum_{k=1}^{5} A_{1k} N_{k} - \frac{a_{2}^{2} v_{2}}{p_{2} x^{\delta}} N_{4},$$

$$N_{3}^{(2)} = N_{3} - \sigma (J - 1)^{2} \sum_{k=1}^{5} A_{3k} N_{k}.$$
(13)

Здесь

$$A_{15} = d_1 f_1 + d_2 \tilde{s}_2, \ A_{25} = d_1 f_2 + d_2 \tilde{c}_2, \ A_{35} = f_3 / (D - v_1),$$

$$f_1 = g_1 \tilde{c}_2 + g_2 \tilde{s}_2, \ f_2 = g_1 \tilde{s}_2 + g_2 \tilde{c}_2, \ f_3 = 1,$$

$$g_1 = \Gamma^{-1}(a_2), \ \Gamma(a) = \frac{\gamma}{a}, \ \tilde{c}_2 = 1, \ \tilde{s}_2 = \frac{D - u_2}{a_2},$$

$$A_{14} = A_{15} v_1 (D - v_1) + \tilde{s}_2 \left(v_2 (D - v_2) - v_1 (D - v_1) \right),$$

$$A_{24} = A_{25} v_1 (D - v_1) + \tilde{c}_2 \left(v_2 (D - v_2) - v_1 (D - v_1) \right),$$

$$A_{34} = A_{35} v_1 (D - v_1),$$

$$A_{13} = \alpha d_1 (D - v_1) f_1, \ A_{23} = \alpha d_1 (D - v_1) f_2, \ A_{33} = \alpha f_3,$$

$$\begin{split} \alpha &= -\frac{\gamma p_1 x^{\delta}}{2 c_p a_1^2} \left(D - u_1 \right), \ \sigma &= \frac{a_2^2}{\gamma^2 p_2 x^{\delta} (D - u_2)} \frac{2 c_p \varepsilon}{J (1 + \varepsilon J)}, \\ A_{12} &= -A_{15} \tilde{c}_1 + \frac{\varepsilon}{1 + \varepsilon} d_1 (D - v_1) f_1 \Gamma(a_1) \tilde{s}_1 \\ &+ \tilde{c}_1 \tilde{s}_2 - \frac{\Gamma(a_1)}{\Gamma(a_2)} \tilde{s}_1 \tilde{c}_2, \\ A_{22} &= -A_{25} \tilde{c}_1 + \frac{\varepsilon}{1 + \varepsilon} d_1 (D - v_1) f_2 \Gamma(a_1) \tilde{s}_1 \\ &+ \tilde{c}_1 \tilde{c}_2 - \frac{\Gamma(a_1)}{\Gamma(a_2)} \tilde{s}_1 \tilde{s}_2, \\ A_{32} &= -A_{35} \tilde{c}_1 + \frac{\varepsilon}{1 + \varepsilon} f_3 \Gamma(a_1) \tilde{s}_1, \ \tilde{c}_1 = 1, \ \tilde{s} = \frac{D - u_1}{a_1}, \\ A_{11} &= \frac{1}{\Gamma(a_1)} A_{15} \tilde{s}_1 - \frac{\varepsilon}{1 + \varepsilon} d_1 (D - v_1) f_1 \tilde{c}_1 \\ &- \frac{1}{\Gamma(a_1)} \tilde{s}_1 \tilde{s}_2 + \frac{1}{\Gamma(a_2)} \tilde{c}_1 \tilde{c}_2, \\ A_{21} &= \frac{1}{\Gamma(a_1)} A_{25} \tilde{s}_1 - \frac{\varepsilon}{1 + \varepsilon} d_1 (D - v_1) f_2 \tilde{c}_1 \\ &- \frac{1}{\Gamma(a_1)} \tilde{s}_1 \tilde{c}_2 + \frac{1}{\Gamma(a_2)} \tilde{c}_1 \tilde{s}_2, \\ A_{31} &= \frac{1}{\Gamma(a_1)} A_{25} \tilde{s}_1 - \frac{\varepsilon}{1 + \varepsilon} f_3 \tilde{c}_1. \end{split}$$

Соотношения на слабом разрыве

Прежде чем перейти к задаче расчета взаимодействия сильного и слабого разрывов, установим ряд полезных соотношений, выполняющихся на слабом разрыве индекса k. Пусть $q(\tau)$ — линия слабого разрыва индекса m, задаваемая уравнением $dq/d\tau=\lambda_m$. Из условия непрерывности газодинамических функций на слабом разрыве следует равенство производных векторфункций $u=(\ln p,v,S)$ в направлении $q(\tau)$ слабого разрыва

$$U_1 + \lambda_m V_1 = U_2 + \lambda_m V_2. \tag{14}$$

Индексы 1 и 2 соответствуют значениям производных по разные стороны от слабого разрыва. Так как u удовлетворяет характеристической системе (4), то в точках на этой линии

$$L^{(k)}U_1 + \lambda_k L^{(k)}V_1 = L^{(k)}b,$$

$$L^{(k)}U_2 + \lambda_k L^{(k)}V_2 = L^{(k)}b, \ k = 1, \dots, 3.$$
(15)

Вычитая из первой группы уравнений (15) вторую, получим

$$(L^{(k)}U_1 - L^{(k)}U_2) + \lambda_k(L^{(k)}V_1 - L^{(k)}V_2) = 0;$$

 $k = 1, \dots, 3.$ (16)

24 А.В. Омельченко

Исключая с помощью (14) разность производных по τ , можем окончательно записать

$$(\lambda_k - \lambda_m)(L^{(k)}V_1 - L^{(k)}V_2) = 0; \quad k = 1, \dots, 3.$$
 (17)

Из последнего уравнения следует, что на слабом разрыве индекса m для всех $k \neq m$ выполняются равенства

$$L^{(k)}V_1 - L^{(k)}V_2 = 0, \quad k \neq m.$$
 (18)

В силу (16) справедливы также равенства

$$L^{(k)}U_1 - L^{(k)}U_2 = 0, \quad k \neq m.$$
 (19)

В частности, вводя обозначение $[f] = f_2 - f_1$, можем из последних двух формул получить для слабого разрыва индекса k=1 соотношения вида

$$\left[\frac{\partial \ln p}{\partial q} + \frac{\gamma}{a} \frac{\partial u}{\partial q}\right] = 0, \quad \left[\frac{\partial S}{\partial q}\right] = 0, \quad (20)$$

$$\left[\frac{\partial \ln p}{\partial \tau} + \frac{\gamma}{a} \frac{\partial u}{\partial \tau}\right] = 0, \quad \left[\frac{\partial S}{\partial \tau}\right] = 0. \tag{21}$$

Аналогично на слабом разрыве индекса k=2 выполняются соотношения

$$\left[\frac{\partial \ln p}{\partial q} + \frac{\gamma}{a} \frac{\partial u}{\partial q}\right] = 0, \quad \left[\frac{\partial S}{\partial q}\right] = 0, \quad (22)$$

$$\left[\frac{\partial \ln p}{\partial \tau} + \frac{\gamma}{a} \frac{\partial u}{\partial \tau}\right] = 0, \quad \left[\frac{\partial S}{\partial \tau}\right] = 0. \tag{23}$$

Наконец, из (18) и (19) для слабого разрыва индекса k=3 (слабого контактного разрыва) следуют дифференциальные условия динамической совместности

$$\left[\frac{\partial \ln p}{\partial q}\right] = 0, \quad \left[\frac{\partial v}{\partial q}\right] = 0, \tag{24}$$

$$\left[\frac{\partial \ln p}{\partial \tau}\right] = 0, \quad \left[\frac{\partial v}{\partial \tau}\right] = 0. \tag{25}$$

Взаимодействие ударной волны со встречным слабым разрывом

Полученные в предыдущих разделах соотношения, связывающие производные основных газодинамических функций на сильном и слабом разрывах, позволяют эффективно решать задачи взаимодействия ударной волны со слабыми разрывами. В данном разделе подробно разберем задачу взаимодействия ударной волны I со встречным слабым разрывом 2 индекса k ($k=1,\ldots,3$) (см. рисунок, b).

Из точки взаимодействия исходит ударная волна 3, имеющая ускорение W_3 , слабые разрывы 4 и τ индексов 2 и 3 соответственно. Введем в рассмотрение векторы $[V]_w = V^{(4)} - V^{(2)}$ и $[U]_w = U^{(4)} - U^{(2)}$ разрыва производных за ударной волной.

Теорема 1. В случае, когда ударная волна, по направлению совпадающая с характеристикой первого семейства, взаимодействует со встречным слабым разрывом, векторы $[V]_w$ и $[U]_w$ разрыва производных за сильным разрывом ортогональны левому собственному вектору $L^{(1)}$

$$L^{(1)}[V]_w = 0, \quad L^{(1)}[U]_w = 0.$$
 (26)

Доказательство. Как видно из рисунка, b, разности производных $V^{(4)}$, $U^{(4)}$ и $V^{(2)}$, $U^{(2)}$ в областях до и за точкой взаимодействия связаны с векторами $[V]_m$ и $[U]_m$ разрыва производных на исходящих слабых разрывах τ и 4 следующими очевидными соотношениями:

$$[V]_w = V^{(4)} - V^{(2)} = (V^{(4)} - V^{(3)}) + (V^{(3)} - V^{(2)}),$$

$$[U]_w = U^{(4)} - U^{(2)} = (U^{(4)} - U^{(3)}) + (U^{(3)} - U^{(2)}).$$
(27)

Слабые разрывы 4 и τ имеют индексы 2 и 3 соответственно. Умножая (27) слева на левый собственный вектор $L^{(1)}$ и учитывая формулы (18) и (19), получим требуемый результат.

Следствие 1. Произведение левого собственного вектора $L^{(1)}$ на производную $du_2/d\tau$ вектор-функции u_2 в направлении траектории ударной волны не меняется в процессе взаимодействия волны со встречным слабым разрывом и равно

$$L^{(1)}\frac{du^4}{d\tau} = L^{(1)}\frac{du^{(2)}}{d\tau} =: L^{(1)}\frac{du_2}{d\tau} = L^{(1)}b.$$
 (28)

Доказательство. Рассмотрим линию $w(\tau)$ разрыва вектор-функции u(x,t). Производная произвольной газодинамической функции f_2 за волной по τ связана с производными $\partial f_2/\partial \tau_2$ и $\partial f_2/\partial q_2$ соотношением (6). Домножим второе равенство в (26) на $(D-v_2)\gamma p_2 x^\delta/a_2^2$ и сложим его с первым уравнением. Учитывая (6), получим

$$L^{(1)} \frac{du^{(4)}}{d\tau} - L^{(1)} \frac{du^{(2)}}{d\tau} = 0.$$

Последнее равенство означает, что производная u в направлении сильного разрыва, умноженная слева на $L^{(1)}$, не меняется при взаимодействии сильного разрыва с произвольным встречным слабым разрывом

$$L^{(1)}\frac{du^{(4)}}{d\tau} = L^{(1)}\frac{du^{(2)}}{d\tau} = \text{const} = C.$$
 (29)

Осталось найти стоящую в правой части константу. Для этого рассмотрим приходящую в точку взаимодействия характеристику индекса 1. Так как она лежит в области (4), то условия на этой характеристике имеют вил

$$L^{(1)}U^{(4)} + \lambda_1 L^{(1)}V^{(4)} = L^{(1)}b.$$
 (30)

Вычитая из (29) соотношение (30), получим в левой части

$$\left((D - v_2) \frac{\gamma p_2 x^{\delta}}{a_2^2} - \lambda_1 \right) (L^{(1)} V^{(4)} - L^{(1)} V^{(4)}) = 0.$$

Следовательно, $C = L^{(1)}b$, что и требовалось доказать,

Следствие 2. Разрыв $[W]=W_3-W_1$ ускорения ударной волны линейно связан с величинами $N_i^{(1)}-N_i^{(0)}$, $i=1,\ldots,3$ разрыва основных неравномерностей потока на встречном слабом разрыве индекса k.

Доказательство. Действительно, рассмотрим, к примеру, второе из соотношений (26). Его можно переписать в следующем виде:

$$(N_1^{(2)} - N_1^{(4)}) - \Gamma(a_2)(N_2^{(2)} - N_2^{(4)}) = 0.$$

Производные $N_1^{(2)}$, $N_2^{(2)}$ и $N_1^{(4)}$, $N_2^{(4)}$ относятся к областям, расположенным непосредственно за ударной волной. Выражая их через производные до волны с помощью соотношений (13), получим равенство, линейно связывающее разрыв [W] ускорения ударной волны с величинами разрыва $[N_i]$ основных неравномерностей потока на k-м встречном слабом разрыве

$$(A_{15} - A_{25})[W] + \sum_{k=1}^{3} (A_{1k} - A_{2k})(N_k^{(1)} - N_k^{(0)}) = 0.$$
 (31)

Разберем теперь частные случаи рассматриваемой задачи.

а) Случай k=1. Как видно из формул (21), на встречном слабом разрыве индекса k=1 не рвется функция N_3 , а разрыв $[N_1]$ производной $\partial \ln p/\partial \tau$ связан с величиной $[N_2]$ соотношением

$$N_1^{(1)} - N_1^{(0)} = -\Gamma(a_1)(N_2^{(1)} - N_2^{(0)}). \tag{32}$$

С учетом вышесказанного (31) можно переписать так:

$$\frac{W_3 - W_1}{N_2^{(1)} - N_2^{(0)}} = \frac{\Gamma(a_1)(A_{11} - A_{21}) - (A_{12} - A_{22})}{A_{15} - A_{25}}.$$

б) Случай k=2. Анализ (23) позволяет сказать, что, как и в предыдущем случае, величина $[N_3]$ равна нулю; при этом функции $[N_1]$ и $[N_2]$ связаны формулой

$$N_1^{(1)} - N_1^{(0)} = \Gamma(a_1)(N_2^{(1)} - N_2^{(0)}). \tag{33}$$

Подставляя данное выражение в (31), получим

$$\frac{W_3 - W_1}{N_2^{(1)} - N_2^{(0)}} = -\frac{\Gamma(a)(A_{11} - A_{21}) + (A_{12} - A_{22})}{A_{15} - A_{25}}.$$

в) Случай k=3. Из дифференциальных условий динамической совместности на слабом контактном разрыве (25) следует, что в данном случае $[N_1] = [N_2] = 0$ и формула (31) упрощается

$$\frac{W_3 - W_1}{N_3^{(1)} - N_3^{(0)}} = -\frac{A_{13} - A_{23}}{A_{15} - A_{25}}.$$

Теорема 2. Условием отсутствия слабого разрыва индекса m, исходящего из точки взаимодействия ударной

волны со слабым встречным разрывом индекса k, является ортогональность векторов $[V]_w$ и $[U]_w$ разрыва производных за волной левому собственному вектору $L^{(m)}$

$$L^{(m)}[V]_w = 0, \quad L^{(m)}[U]_w = 0; \quad m = 2, 3.$$
 (34)

Доказательство. Проведем его для случая m=2; вариант m=3 доказывается совершенно аналогично. Домножим равенства (27) на собственный вектор $L^{(2)}$. Учитывая формулы (18) и (19), получим

$$L^{(2)}[V]_w = L^{(2)}(V^{(4)} - V^{(3)}),$$

$$L^{(2)}[U]_w = L^{(2)}(U^{(4)} - U^{(3)}).$$
 (35)

Равенство нулю правых частей этих двух равенств означает, что векторы разрыва производных на слабом разрыве 4 ортогональны всем трем собственным векторам. В силу линейной независимости последних это возможно только в случае $V^{(4)}-V^{(3)}=U^{(4)}-U^{(3)}=0$, т. е. в случае отсутствия разрыва производных на характеристике 4.

Остановимся подробнее на критериях отсутствия исходящего слабого разрыва 4. Второе из соотношений (35) в этом случае можно переписать так:

$$(N_1^{(2)} - N_1^{(4)}) + \Gamma(a_2)(N_2^{(2)} - N_2^{(4)}) = 0.$$

Выражая производные $N_1^{(2)}$, $N_2^{(2)}$ и $N_1^{(4)}$, $N_2^{(4)}$ через производные до ударной волны с помощью соотношений (13), получим следующее равенство

$$(A_{15} + A_{25})[W] + \sum_{k=1}^{3} (A_{1k} + A_{2k})(N_k^{(1)} - N_k^{(0)}) = 0.$$

Указанное соотношение вместе с (31) образует линейную однородную систему уравнений относительно переменных [W] и $(N_k^{(1)}-N_k^{(0)})$, $k=1,\ldots,3$, которую удобно переписать так:

$$A_{15}[W] + \sum_{k=1}^{3} A_{1k} (N_k^{(1)} - N_k^{(0)}) = 0,$$

$$A_{25}[W] + \sum_{k=1}^{3} A_{2k} (N_k^{(1)} - N_k^{(0)}) = 0,$$
(36)

Пользуясь формулами (21), (23) и (25), можно выразить разрывы $(N_k^{(1)}-N_k^{(0)}), k=1,\ldots,3$ через разрыв одной из неравномерностей. Нетривиальные решения полученной таким образом линейной однородной системы и будут служить критериями отсутствия отраженного слабого разрыва 4.

а) Случай k=1, m=1. В этом случае $N_3^{(1)}=N_3^{(0)}$ и в силу (32) система (36) принимает вид

$$A_{15}[W] - (\Gamma(a_1)A_{11} - A_{12})(N_2^{(1)} - N_2^{(0)}) = 0,$$

$$A_{25}[W] - (\Gamma(a_1)A_{21} - A_{22})(N_2^{(1)} - N_2^{(0)}) = 0.$$

26 А.В. Омельченко

Нетривиальные решения этой системы возможны, когда

$$A_{15}(\Gamma(a_1)A_{21} - A_{22}) = A_{25}(\Gamma(a_1)A_{11} - A_{12}). \tag{37}$$

б) Случай $k=2,\ m=1.$ При таком k справедливы равенства (33) и $N_3^{(1)}=N_3^{(0)}$ и нетривиальные решения системы (36) реализуются при условии

$$A_{15}(\Gamma(a_1)A_{21} + A_{22}) = A_{25}(\Gamma(a_1)A_{11} + A_{12}). \tag{38}$$

С помощью (13) несложно показать, что уравнения (37) и (38) имеют одно и то же явное аналитическое решение

$$J = 2\varepsilon^{3/2} \left(\frac{1+\sqrt{\varepsilon}}{1-\varepsilon}\right)^2,\tag{39}$$

из которого следует, что взаимодействие без отраженного разрыва возможно лишь при $\varepsilon > 1/4, \ \gamma > 5/3$ и только в случае k=1.

в) Случай k=3, m=1. Подставляя дифференциальные условия динамической совместности на слабом контактном разрывае (25) в систему (36), несложно получить следующий критерий отсутствия слабого разрыва:

$$A_{15}A_{23} - A_{25}A_{13} = 0.$$

Используя выражения для соответствующих коэффициентов, несложно привести последнее равенство к виду

$$2(1+\varepsilon)(J+\varepsilon)p_1x^{\delta}/(D-v_1)=0,$$

из которого видно, что взаимодействие ударной волны со слабым контактным разрывом без образования отраженного слабого разрыва 4 невозможно.

Взаимодействие ударной волны с догоняющим слабым разрывом

Как было отмечно выше, в случае, когда волна 1 по направлению совпадает с характеристикой 2 второго семейства, возможно также ее взаимодействие с догоняющим слабым разрывом индекса 1 (см. рисунок, c). В результате взаимодействия возникает разрыв $[W] = W_4 - W_1$ ускорения волны, а также образуются исходящие из точки взаимодействия слабые разрывы 3 и τ индексов 2 и 3 соответственно.

Теорема 1. В случае взаимодействия скачка с догоняющим слабым разрывом индекса 1 собственный вектор $L^{(k)}$ $(k=1,\ldots,3)$ ортогонален разности векторов $[V]_w$, $[U]_w$ разрыва производных за сильным разрывом и векторов $[V]_k$, $[U]_k$ разрыва производных на слабом разрыве индекса k

$$L^{(k)}([V]_w-[V]_k)=0, \ L^{(k)}([U]_w-[U]_k)=0; \ l=1,\ldots,3.$$

Следствие 1. Разрыв $[W]=W_4-W_1$ ускорения ударной волны линейно связан с величиной $N_2^{(2)}-N_2^{(1)}$

разрыва кривизны траектории на приходящем слабом разрыве индекса 1

$$(A_{15} - A_{25})[W] = -2\Gamma(a_2)(N_2^{(2)} - N_2^{(1)}).$$

Следствие 2. Критерием отсутствия исходящего слабого разрыва *3* является равенство

$$A_{15} = A_{25}. (40)$$

Доказательства этих утверждений аналогичны доказательствам, проведенным в предыдущем разделе.

Используя выражения (13) для коэффициентов A_{ij} , можно показать, что равенство (40) выполняется, когда

$$J = \frac{4\varepsilon^2}{1 - 3\varepsilon}.$$

Из последнего соотношения следует, что взаимодействие без отраженного разрыва возможно при $\varepsilon > 1/4$, $\gamma > 5/3$.

Формула Честера-Уизема

Вернемся к задаче взаимодействия ударной волны со встречным слабым разрывом. В одном важном частном случае формула (28) впервые, по-видимому, была получена в работах Уизема [7,8]. Уизем получил ее, анализируя результаты работ [9–11], в которых рассматривалась задача распространения ударной волны по покоящемуся газу в канале с малым скачком сечения. Указанная задача представляет собой частный случай задачи о распаде разрыва в канале переменного сечения [6] и является по существу комбинацией двух различных задач: распространения ударной волны по каналу постоянного сечения и течения газа по каналу переменного сечения.

В работе [9] на основе линеаризации соотношений на скачке сечения получена связь между малым изменением относительной скорости M=D/a движения ударной волны и изменением площади A сечения трубы

$$d \ln A = f(M)dM$$
.

Уизем заметил, что этот же результат можно получить, записывая условие на характеристике второго семейства в потоке за ударной волной и подставляя вместо p_2 , u_2 , a_2 их выражения через M из условий на ударной волне (5), которые для случая распространения волны по покоящемуся газу с параметрами p_1 , u_1 , a_1 могут быть записаны так:

$$\frac{p_2}{p_1} = (1+\varepsilon)M^2 - \varepsilon, \quad \frac{u_2}{a_1} = (1-\varepsilon)\left(M - \frac{1}{M}\right),$$
$$\frac{a_2}{a_1} = \sqrt{\left[(1+\varepsilon) - \frac{\varepsilon}{M^2}\right]\left[(1-\varepsilon) + \varepsilon M^2\right]}.$$

Указанный прием Уизем назвал правилом характеристик и предположил, что он может оказаться справедлив

и в других случаях [7]. Доказанная в данной работе формула (28) обобщает указанное правило на случай взаимодействия ударной волны, распространяющейся в вихревом неизобарическом одномерном потоке, со встречным разрывом произвольного индекса, и позволяет строить приближенные аналитические решения таких, например, задач, как задача взаимодействия ударной волны с волной Римана, со сдвиговым слоем и пр.

Автор благодарен Э.А. Троппу и В.Н. Ускову за обсуждение работы.

Работа выполнена при финансовой поддержке INTAS (проект № 99-785).

Список литературы

- [1] Truesdell C. // J. Aeronaut. Sci. 1952. Vol. 19. P. 826-828.
- [2] Lighthill M.J. // Phil. Mag. 1949. Vol. 40. P. 214-220.
- [3] Lighthill M.J. // J. Fluid Mech. 1957. Vol. 2. P. 1–32.
- [4] *Русанов В.В.* Препринт Института прикладной математики АН СССР. М., 1973. № 18.
- [5] Адрианов А.Л., Старых А.Л., Усков В.Н. Новосибирск: Наука, 1995. 180 с.
- [6] *Рождественский Б.Л., Яненко Н.Н.* Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1968.
- [7] Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977.
- [8] Witham G.B. // J. Fluid Mech. 1958. Vol. 4. P. 337.
- [9] Честер Б. // Механика. 1954. Вып. 6. С. 76-87.
- [10] Chisnell R.F. // J. Fluid Mech. 1957. Vol. 2. P. 286.
- [11] Chisnell R.F. // Proc. Roy. Soc. 1955. Vol. 232. P. 350.