01;10

Двухрежимная зондоформирующая система для современного ядерного нанозонда

© С.А. Лебедь

Институт прикладной физики НАН Украины, 44030 Сумы, Украина e-mail: salmp1@yahoo.com

(Поступило в Редакцию 10 мая 2001 г.)

Описана длинная версия оптимизированной зондоформирующей системы, основанной на разделенном "русском" квадруплете магнитных квадрупольных линз. При вычислениях учитывались основные внутренние и паразитические линзовые аберрации. Два режима работы — особенность данной системы. Показана перспективность использования этой гибкой системы в современном ядерном нанозонде. Представлены ожидаемые разрешения этой установки.

Введение

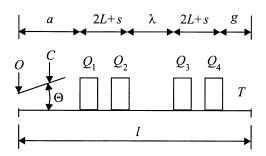
В настоящее время в мире насчитывается около 60 работающих ядерных микро/нанозондов. Более чем в 20 из них зондоформирующие системы (3ФС) базируются на так называемом "русском" квадруплете магнитных квадрупольных линз [1-8]. В плоскости изображения эта система ведет себя как аксиально-симметричная линза [1]. Это означает, что "русский" квадруплет позволяет формировать точечное изображение точечного объекта и обеспечивать равное по величине уменьшение в двух взаимно перпендикулярных направлениях. Как было показано в работах [2,3], разделенный "русский" квадруплет обладает этим свойством в двух режимах линзовых возбуждений. Эта особенность квадруплета наблюдалась автором экспериментально на Краковском ядерном микрозонде с короткой (полная длина $l = 2.3 \,\mathrm{m}$) $3\Phi\mathrm{C}$ [4]. В первом режиме линзовых возбуждений данная ЗФС имеет положительное уменьшение D. Этот режим (с $D\cong 17$) используется в качестве рабочего режима в Краковском микрозонде [2–5]. В случае короткой ЗФС второй режим линзовых возбуждений (c |D| < 2) не имеет перспективы практического применения. Однако, как показывают расчеты, этот режим также может быть использован в качестве второго рабочего режима зонда с длинной $(l \ge 8 \,\mathrm{m}) \, \, 3\Phi\mathrm{C}.$

Цель данной работы — показать перспективность использования в современном ядерном нанозонде оптимизированной длинной двухрежимной ЗФС, базирующейся на разделенном "русском" квадруплете.

Постановка задачи

Пространственное положение и траектория частицы в ЗФС могут быть определены заданием ее координат (x, y, z, θ, ϕ) , где θ и ϕ — мгновенные значения углов наклона траектории частицы, спроецированные на x0z и y0z плоскости соответственно. Координаты частицы в плоскости изображения могут быть представлены в виде

полиномиальных функций [6]


$$x_i = A_0 + A_1 x_0 + A_2 y_0 + A_3 \theta_0 + \dots + A_n v_1^j v_2^k v_3^m + \dots, (1)$$

где индекс 0 соответствует координатам объекта, ν_n — переменные величины 3 Φ C.

В таком случае j+k+m есть порядок величины A_n . Коэффициенты A_n могут быть представлены в виде основных внутренних и паразитических линзовых аберрационных коэффициентов (табл. 1). Для идеальной ЗФС изображение есть уменьшенная версия объекта $x_i = x_0/D_x$, $y_i = y_0/D_y$ для всех значений величин θ_0 и ϕ_0 . Дополнительные члены в выражении (1) деградируют изображение. Поэтому в лучшем случае их влияние должно быть сведено к минимуму.

Данная работа посвящена второму оптимизационному подходу к ЗФС [3]. Это означает, что необходимо минимизировать размер пятна от микропучка протонов на мишени при заданном эмиттансе (E) входящего в ЗФС пучка $E=4(d_a\cdot\Theta)^2$, где d_a — диаметр объективной апертуры, Θ — расходимость пучка (половина полного угла) после углового коллиматора (рис. 1). Предполагается, что мишень расположена в плоскости изображения.

Заданными параметрами в задаче являются (табл. 1, рис. 1) размеры линз, расстояние (s) между линзами в

Рис. 1. Схема расположения элементов в зондоформирующей системе, базирующейся на разделенном "русском" квадруплете: O — объектная диафрагма, C — угловой коллиматор, T — мишень, Q_1 — квадрупольные линзы.

Таблица 1. Физические параметры оптимизированной двухрежимной зондоформирующей системы

Режимы	Первый	Второй 950.0	
Полная длина системы <i>l</i> , cm	950.0		
Эффективная длина квадруполя L, cm	6.4	6.4	
Радиус полюсного зазора квадруполя, ст	0.635	0.635	
Объектное расстояние а, ст	867.6	867.6	
Расстояние между дублетами λ, ст	35.2	35.2	
Рабочее расстояние g, cm	15.0	15.0	
Поле квадруполя B_1 , T	0.338	-0.087	
Поле квадруполя B_2 , Т	-0.241	0.113	
Поле квадруполя B_3 , Т	0.241	-0.113	
Поле квадруполя B_4 , T	-0.338	0.087	
Уменьшение (безразмерное):			
D_x	99.	−15 .	
$\stackrel{}{D_{_{f y}}}$	99.	-15.	
Ротационные аберрации, μm/mrad ² :			
$\langle x/\varphi \rho_1 \rangle$	22.	-39.	
$\langle x/\varphi \rho_2 \rangle$	10.	46.	
$\langle x/\varphi \rho_3 \rangle$	64.	-11.	
$\langle x/\varphi \rho_4 \rangle$	−96 .	4.	
Хроматические аберрации, μm/mrad/%:			
$\langle x/\theta\delta\rangle$	-2172.	120.	
$\langle y/\varphi\delta\rangle$	-623.	212.	
Сферические аберрации, µm/mrad ³ :			
$\langle x/\theta^3 \rangle$	50750.	-43.	
$\langle x/\theta \varphi^2 \rangle$	5100.	-220.	
$\langle y/\theta^2 \varphi \rangle$	5100.	-220.	
$\langle y/\varphi^3 \rangle$	2310.	-203.	
Чувствительность к паразитическим аберрациям	2310.	203.	
Максимальный секступольный член, μ m/mrad ² /%	$\langle x/\theta^2 S3 \rangle$	$\langle y/\varphi\theta S2\rangle$	
Transmission Concernionalistic Storic Military 70	-30590.	-878.	
Максимальный октупольный член, μ m/mrad $^3/\%$	$\langle x/\theta^3O3\rangle$	$\langle y/\varphi^3O2\rangle$	
ivianceminarionidii Oktynonionidiii Anien, μ iii/Iliiau //0	-243960.	-2110.	

Примечание. S1, O3 и т.д. определяеют процентное содержание паразитических секступольных и октупольных компонент в поле полюсного наконечника соответственно в квадрупольной линзе 1 и т.д. [7,11].

дублете, рабочее расстояние (g), яркость источника протонов (b), эмиттанс микропучка (E), энергия протонов (W) и их разброс (δ) в пучке по импульсам.

Новый ультрастабильный Singletron ($\delta=0.001\%$) [7] и традиционный VdG HVEC ($\delta=0.05\%$) [2,4] ускорители ионов позволяют работать в зондовом режиме с параксиальным ($\Theta\leq0.2\,\mathrm{mrad}$) высокояркостным ($b\approx18\,\mathrm{u}$ 10 $\mathrm{Am}^{-2}\mathrm{rad}^{-2}\mathrm{eV}^{-1}$ соответственно) протонным пучком.

Следующие параметры варьировались в задаче: полная длина $3\Phi C$ ($5 \le l \le 10\,\mathrm{m}$), расстояние (λ) между дублетами, диаметр объектной диафрагмы ($1 \le d_a \le 25\,\mu\mathrm{m}$), возбуждения квадрупольных линз ($0.1 \le k_i \le 1.0$, где $i=1,\ldots,4$). Величина тока I пучка ионов на мишени может быть определена по формуле I=EbW. Размер пятна на мишени $d=\max\{d_x,d_y\}$ определялся как функция параметров l и λ . В отличие от [3] в данной работе эти вычисления проводились одновременно в двух точках стигматической фокусировки пучка протонов и для двух различных токовых мод. Такой подход позволил найти двухрежимную $3\Phi C$, в которой

один рабочий режим был оптимизирован для работы в слаботочной $(I \leq 1\,\mathrm{pA})$ моде с рекордным пространственным разрешением, а другой режим — для работы в сильноточной $(I \geq 100\,\mathrm{pA})$ моде с субмикронным разрешением нанозонда. Примерами слаботочных мод могут служить моды сканирующей трансмиссионной ионной микроскопии, ионно-пучкового возбуждения зарядов, а сильноточных — моды характеристического рентгеновского излучения, прямого и обратного резерфордовского рассеивания ионов.

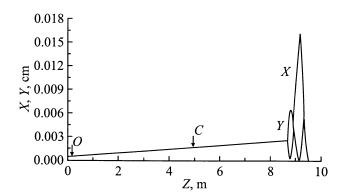
Результаты

Численное моделировние ЗФС было выполнено с помощью следующих компьютерных программ: SFS [8], PRAM [9] и TRANSPORT [10]. В расчетах учитывались вседоминирующие внутренние (хроматические и сферические) и паразитические (ротационные, секступольные и октупольные) линзовые аберрации.

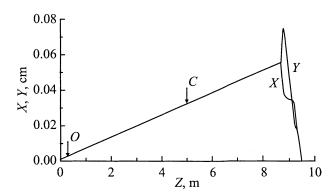
94 С.А. Лебедь

Таблица 2. Расчетные разрешения нанозондов, базирующихся на оптимизированной двухрежимной зондоформирующей системе

Тип ускорителя	Слаботочная линза		Сильноточная линза	
	VdG HVEC	Singletron	VdG HVEC	Singletron
Диаметр объектной диафрагмы d_a , μ m	1.0	1.0	10.0	10.0
Расходимость пучка протонов Θ , mrad	0.0006	0.0006	0.05	0.037
Размер пучка на мишени $d_x \times d_y$, μ m, в первом режиме	0.03×0.02	0.012×0.011	\sim 25. \times 4.	\sim 14. \times 2.
Размер пучка на мишени $d_x \times d_y$, μ m, во втором режиме	0.07×0.07	0.07×0.07	0.85×0.95	0.70×0.73


Современные одиночные зондовые квадрупольные линзы имеют достаточно низкий уровень содержания секступольных и октупольных паразитических компонент поля (0.05-0.3%) [11,12].

В табл. 1 приведены параметры оптимизированной двухрежимной ЗФС. Эту систему планируется использовать в качестве новой длинной (9.5 m) версии ЗФС Краковского ядерного нанозонда. Поэтому в качестве исходных данных в расчеты были заложены геометрические параметры квадрупольных дублетов магнитных квадрупольных линз, изготовленных в Микроаналитическом центре (Мельбурнский университет, Австралия) [4]. В этих дублетах (рис. 1, Q_1-Q_2 , Q_3-Q_4) соседние в Z-направлении пары полюсных наконечников и их общие ярма вырезаны с помощью электроэрозионного станка из одного куска технически чистого железа с допуском $\sim 5\,\mu\mathrm{m}$. Все эти части стянуты болтами вместе в дублет с допусками $10-15\,\mu{\rm m}$ в X-, Y-, Z-направлениях. Эти особенности конструкции позволяют устранить такие погрешности в относительном расположении полюсных наконечников в квадрупольных линзах и в дублете, как сдвиги, перекосы и повороты [6]. В дополнение к этому оба дублета установлены в ЗФС на специальных 3-D-юстированных механических устройствах, которые позволяют точно выставить оба дублета по пятну пучка ионов на кварцевой пластинке [4]. Таким образом, удается значительно уменьшить уширение пятна, обусловленного паразитными линзовыми аберрациями первого и второго порядка.


Новая послелинзовая система сканирования пучка ионов [4,13] дает важное преимущество Краковскому ядерному микрозонду. Эта короткая в Z-направлении электромагнитная система с ферритовыми сердечниками позволяет осуществлять высококачественное сканирование MeV пучка с коротким рабочим наконечником (15 cm).

В табл. 2 представлены ожидаемые размеры пучкового пятна на мишени, посчитанные для двухрежимной оптимизированной $3\Phi C$ в обеих токовых модах при условиях, характерных для традиционного и нового (ультрастабильного) ускорителей. Огибающие пучка вдоль траектории протонов для этих режимов и мод показаны на рис. 2, 3. Расчеты выполнены для протонов с энергией $W=2.5\,\mathrm{MeV}$ и с включением 0.3% секступольных и октупольных паразитных компонент поля во все квадрупольные линзы.

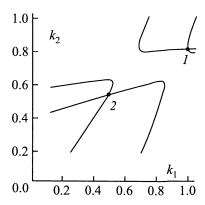

Автором были также выполнены численные оптимизационные расчеты для альтернативных зондирующих систем, базирующихся на магнитных квадрупольных дублетах или триплетах в подобных лабораторных условиях. В результате этих расчетов было установлено, что система, использующая оптимизированный разделенный "русский" квадруплет, обеспечивает современный ядерный нанозонд самым высоким коэффициентом уменьшения в обоих направлениях ($|D| = |D_x| = |D_y| > 90$). Это ее преимущество перед альтернативными системами наиболее проявляется при работе зонда в слаботочной моде.

Рис. 2. Огибающие пучка вдоль траектории протона, рассчитанные в слаботочной моде первого рабочего режима системы.

Рис. 3. Огибающие пучка вдоль траектории протона, рассчитанные в сильноточной моде второго рабочего режима системы.

Рис. 4. Зависимость возбуждения k_2 второй и третьей линз от возбуждения k_1 первой и четвертой линз в разделенном "русском" квадруплете.

Обсуждение результатов

Как видно из табл. 1, оптимизированная двухрежимная 3Φ С имеет относительно короткое расстояние между дублетами в разделенном "русском" квадруплете ($\lambda=35.2\,\mathrm{cm}$). Этим объясняется то, что первый и второй режимы имеют ионно-оптические характеристики, подобные рабочему режиму разделенного и классического "русского" квадруплета соответственно.

Первый режим характеризуется наличием промежуточных кроссоверов на огибающих пучка протонов (рис. 3) и положительным симметрчным коэффициентом уменьшения ($D = D_x = D_y = 99$). Он реализуется при более высоких линзовых возбуждениях ($k_1 = 0.98$, $k_2 = 0.82$, точка 1 на рис. 4) в квадруплете, чем второй режим ($k_1 = 0.5$, $k_2 = 0.56$, точка 2 на рис. 4). Благодаря значительной величине D первый режим позволяет нанозонду работать в слаботочной моде с предельным пространственным разрешением (вплоть до 12 nm с ультрастабильным ускорителем, табл. 2). Однако первый режим в сильноточной моде неудобен из-за его сильной чувствительности к внутренним и паразитическим линзовым аберрациям (табл. 1). Это обусловливает значительное уширение размера пучкового пятна на мишени в этой моде (табл. 2).

Второй режим ЗФС не имеет кроссоверов на огибающих пучка протонов (рис. 3). Малая чувствительность к основным линзовым аберрациям — главное его достоинство (табл. 1). Этот режим с компромиссным по величине коэффициентом уменьшения ($D=D_x=D_y=-15$) позволяет нанозонду реализовать довольно высокое разрешение (70 nm) в слаботочной моде и субмикронные разрешения в сильноточной моде даже с применением традиционного ускорителя (табл. 2).

Как видно из рис. 4, для перехода из одного рабочего режима ЗФС в другой необходимо и достаточно точно подобрать соответствующую пару линзовых возбуждений. На практике контроль за качеством (стигматичностью) такого перехода легко осуществить, контролируя визуально форму микропучка на кварцевой мишени.

Заключение

Предложена новая оптимизированная двухрежимная зондоформирующая система для современного сканирующего ядерного нанозонда. Система базируется на разделенном "русском" квадруплете магнитных квадрупольных линз. Она обеспечивает нанозонд рекордным пространственным разрешением (до 12 nm) в слаботочных модах в режиме с промежуточным кроссовером пучка, субмикронным разрешением в сльноточных модах в режиме без промежуточного кроссовера пучка (даже с помощью традиционного ускорителя ионов), легким переходом с первого режима работы на второй (и обратно) без дорогостоящей переналадки оборудования зондового канала.

Список литературы

- [1] Дымников А.Д., Явор С.Я. // ЖТФ. 1963. Т. 33. Вып. 7. С. 851–858.
- [2] Lebed S. // Nucl. Instrum. and Meth. 1999. Vol. B. 155. P. 322–325.
- [3] Lebed S. // Nucl. Instrum. and Meth. 1999. Vol. B. 152. P. 145–149
- [4] Lebed S., Cholewa M., Chioch Z. et al. // Nucl. Instrum. and Meth. 1999. Vol. B. 158 (1–4). P. 44–47.
- [5] Brazhnik V., Lebed S., Kwiatek W. et al. // Nucl. Instrum. and Meth. 1997. Vol. B. 130. P. 104–108.
- [6] Grime G.W., Watt F. Beam Optics of Quadrupole Probe-Forming Systems. Bristol: Adam Hilger Ltd., 1984. P. 273.
- [7] Mous D.J.W., Haitsma R.G., Butz T. et al. // Nucl. Instrum. and Meth. 1997. Vol. B. 130. P. 31–36.
- [8] Brazhnik V., Lebed S., Miroshnichenko V.I. et al. // Nucl. Instrum. and Meth. 2000. Vol. B. 171. P. 558–564.
- [9] Breese M., Jamieson D., King P. Materials Analysis with a Nuclear Microprobe. New York: Wiley, 1996.
- [10] Brown K.SLAC-91. 1977.
- [11] Jamieson D., Legge G. // Nucl. Instrum. and Meth. 1988. Vol. B. 30. P. 235–241.
- [12] Jamieson D., Zhu J., Mao Y. et al. // Nucl. Instrum. and Meth. 1995. Vol. B. 104. P. 86–92.
- [13] Khomenko V., Lebed S., Mordik S. et al. // Nucl. Instrum. and Meth. 1997. Vol. B. 130. P. 86–89.