01

Компьютерная технология определения электростатических полей и емкостных коэффициентов многоэлементных трехмерных систем экранов

© С.И. Сафронов, Р.П. Тарасов

Научно-исследовательский институт импульсной техники, 115304 Москва, Россия e-mail: doi@ript.in.ru

(Поступило в Редакцию 19 октябра 2001 г. В окончательной редакции 24 января 2002 г.)

Описываются структурные компоненты компьютерного справочника электростатических полей и емкостных коэффициентов многоэлементных трехмерных систем экранов. Основу рассматриваемой компьютерной технологии составляют граничные интегральные уравнения трехмерной теории гармонических потенциалов и быстрые алгоритмы метода конечных групп, реализованные на ПК с процессором Pentium-Pro 200 MHz и оперативной памятью 128 MB.

Введение

Создание радиофизических устройств во многих случаях связано с определением электростатических полей и емкостных коэффициентов многоэлементных систем экранов. Известно, что решение этих двух основных задач электростатики в трехмерном случае сопряжено с существенными трудностями уже для конкретной системы экранов заданной конфигурации. Последнее, а также значительное разнообразие электростатических систем, требующих анализа при проектировании радиофизических устройств, приводят к тому, что от трехмерных моделей обычно отказываются и переходят к менее точным качественным двумерным моделям. В то же время задача анализа многоэлементных трехмерных электростатических систем достаточно общего вида может быть решена на основе соответствующего компьютерного справочника, использующего быстрые алгоритмы численного решения граничных интегральных уравнений I рода трехмерной теории гармонических потенциалов.

Компьютерный справочник электростатических полей и емкостных коэффициентов должен позволять из ограниченного, но достаточно представительного набора базовых элементов конструировать системы, близкие или совпадающие с исходной. Представляется естественным такой начальный набор базовых элементов: плоские экраны с симметриями (треугольник, прямоугольник, круг), поверхности вращения, параллелепипед, правильные многогранники. Предполагается, что все перечисленные элементы могут иметь отверстия определенной формы, а начальный набор базовых элементов может пополняться в соответствии с требованиями практики конструирования радиофизических устройств. Выходной информацией в компьютерном справочнике служат электростатическое поле, собственные и взаимные емкости для заданным образом составленной из базовых элементов трехмерной системы экранов.

Ниже показывается, что рассматриваемый компьютерный справочник может быть реализован на основе быстрых алгоритмов метода конечных групп (МКГ), в рамках которых были решены задачи компьютерного моделирования электронно-оптических систем трехмерной структуры [1,2] и рассеяния электростатических полей ТЕМ-камеры на локальных неоднородностях [3].

Исходные соотношения метода гармонических потенциалов

Рассмотрим систему $\{S_i\}$ из N проводящих экранов S_i в предположении, что $\{S_i\}$ образуют многосвязную поверхность S в трехмерном пространстве R^3

$$S = \bigcup_{i=1}^{N} S_i, \quad S_i \cap S_j = \emptyset, \quad i \neq j, \tag{1}$$

а каждый экран S_j находится под заданным потенциалом V_j ; $j=1,2,\ldots,N$. Если $E=\{E_i\}(i=1,2,3)$ — вектор электрического поля, индуцированного системой экранов S, то $E_i(x)=-\partial\varphi(x)/\partial x_i$, где $x=\{x_i\}$ — декартовые координаты точки x в R^3 и $\varphi(x)$ — потенциал поля E, удовлетворяющий уравнению Лапласа с условиями Дирихле на S

$$\Delta \varphi(x) = 0, \quad \Delta \equiv \partial^2/\partial x_1^2 + \partial^2/\partial x_2^2 + \partial^2/\partial x_3^2, \quad x \in R^3 \setminus S,$$

$$\varphi(x) = \sum_{i=1}^{N} \chi s_i(x) V_i, \quad x \in S,$$
 (2)

где $\chi_{S_i}(x)$ — характеристическая функция множества точек поверхности S_i .

Решение краевой задачи (2) допускает представление в виде потенциала простого слоя

$$\varphi(x) = \int_{S} \frac{u(x_1)}{|x - x_1|} d\mu(x_1), \quad x_1 \in \mathbb{R}^3 \setminus S,$$

1 1

с плотностью $u(x), x \in S$, удовлетворяющей граничному интегральному уравнению І рода

$$[Au](x) = f(x), \quad [Au](x) = \int_{S} \frac{u(x_1)}{|x - x_1|} d\mu(x_1),$$

$$f(x) = \sum_{i=1}^{N} \chi_{S_i}(x) V_i, \tag{3}$$

где $d\mu(x)$ — сужение элемента евклидова объема на поверхность S, а $|x-x_1|$ является евклидовым расстоянием между точками x и x_1 .

Следовательно, электростатическое поле системы S экранов будет определено, если построено решение граничного интегрального уравнения (3). Далее, если Q_i — заряд экрана S_i

$$Q_i = \int_{S} \chi_{S_i}(x) u(x) d\mu(x), \tag{4}$$

то, рассматривая $Q=(Q_1,Q_2,\ldots,Q_N)$ и $V=(V_1,V_2,\ldots,V_N)$ как матрицы-столбцы, можно, согласно [4], записать равенство

$$Q = cV, (5)$$

где $c = \|c_{mn}\|$; m, n = 1, 2, ..., N — матрица емкостных коэффициентов системы S.

Полагая $V_q=1$ и $V_i=0$ при $i \neq q$, из (4), (5) имеем

$$c_{iq} = \int_{S} \chi_{S_i}(x)u(x)d\mu(x), \quad i = 1, 2, \dots, N.$$
 (6)

Поэтому построение матрицы $\|c_{mn}\|$ емкостных коэффициентов может быть сведено к решению семейства краевых задач

$$\Delta \varphi^{(q)}(x) = 0, \quad x \in \mathbb{R}^3 \setminus S,$$

$$\varphi^{(q)}(x) = \sum_{i=1}^{N} \chi_{S_i}(x) \delta_{iq}, \quad x \in S, \quad q = 1, 2, \dots, N, \quad (7)$$

где δ_{iq} — символ Кронекера

$$\delta_{iq} = \begin{cases} 1, & i = q \\ 0, & i \neq q \end{cases}$$

при условии, что решение (7) получено на основе граничных интегральных уравнений вида

$$Au^{(q)}(x) = \sum_{i=1}^{N} \chi_{S_i}(x)\delta_{iq}, \quad x \in S, \quad q = 1, 2, ..., N.$$
 (8)

Действительно, из соотношений (6)–(8) для элементов матрицы $\|c_{mn}\|$ можно получить представление

$$c_{iq} = \int_{S} \chi_{S_i}(x) u^{(q)}(x) d\mu(x), \quad i, q = 1, 2, \dots, N.$$
 (9)

Более того, поскольку

$$\varphi(x) = \sum_{q=1}^{N} V_q \varphi^{(q)}(x), \quad x \in \mathbb{R}^3,$$

то решение двух основных задач электростатики — определение электростатического поля при заданных потенциалов и матрицы емкостных коэффициентов — для трехмерной системы S экранов редуцируется к семейству граничных интегральных уравнений (8).

В случае односвязной поверхности *S* простой формы численное решение уравнения (3) может быть получено в рамках метода граничных элементов с высокой точностью. В то же время если поверхность *S* имеет сложную форму и многосвязна, то обычный метод граничных элементов приводит к необходимости обращения плотно заполненных матриц очень большого размера (несколько десятков тысяч и более), для которых трудно построить быстрые и достаточно точные процедуры обращения в рамках стандартных методов.

Для электростатических систем в значительной мере общего вида (см., например, [1,2]) быстрые и высокоточные алгоритмы численного решения уравнения (3) могут быть построены на основе МКГ, использующего в существенном локальные симметрии подсистем исходной системы.

Базовые конструкции метода конечных групп в задачах электростатики

В основе МКГ лежит инвариантность уравнений Лапласа, Гельмгольца и Максвелла относительно движений евклидова пространства [5,6] и структурные соотношения геометрического анализа Фурье инвариантных граничных операторов на поверхности с разрывно действующей группой [7-9]. В случае когда рассеивающее тело обладает группой симметрий порядка N, можно, используя представление граничных уравнений в виде операторной свертки на группе симметрий тела, построить быстрый алгоритм с коэффициентом сокращения операций $\sim N^2$ [8]. В свою очередь задачу без симметрий при определенных условиях можно включить в задачу с симметриями, используя конструкцию заклеивания, при котором граничная поверхность Ѕ исходной краевой задачи без симметрий погружается в поверхность \bar{S} $(S \subset \bar{S})$ с симметриями конечной группы. В этом случае исходная краевая задача может быть переформулирована в виде двух задач, одна из которых обладает симметриями конечной группы, а другая допускает достаточно простое численное решение [10,11]. К тому же процедура разбиения исходной поверхности S, не обладающей симметриями, на составляющие элементы с конечной группой симметрий и последующая итерационная сшивка на основе треугольных схем позволяют распространить МКГ на большой класс сложных трехмерных краевых задач, представляющий интерес в приложениях [12–14].

1. Пусть

$$Au = f$$
, $[A\Psi](x) = \int A(x, x_1)\Psi(x_1)d\mu(x_1)$, $x, x_1 \in S$ (10)

является граничным интегральным уравнением I рода задачи Дирихле для уравнения Лапласа и для поверхности S справедливо представление (1). Используя (1) функции $\varphi(x)$, определенной на многосвязной поверхности S, сопоставим функциию $\varphi_i(x)$, принимающую при каждом фиксированном i $(i=1,2,\ldots,N)$ значение в пространстве функций, определенных на S_i ,

$$\varphi(x) \to \varphi_i(x) = \chi_{S_i}(x)\varphi(x),$$
 (11)

а граничному оператору A на многосвязной поверхности S — операторную матрицу $\|A_{ij}\|$

$$A \to ||A_{ij}||, \quad A_{ij} = \chi_{S_i}(x)A\chi_{S_j}(x),$$

 $x \in S, \quad i, j = 1, 2, \dots N,$ (12)

при этом оператор A_{ij} при фиксированных i и j действует из пространства функций, определенных на S_j , в пространство функций, определенных на S_i . Тогда на основе представлений (11), (12) граничное интегральное уравнение (10) можно записать в виде

$$\sum_{j=1}^{N} A_{ij} u_j(x) = f_i(x), \quad x \in S_i, \quad i = 1, 2, \dots, N. \quad (13)$$

Решение уравнения (13) будем строить по итерационной схеме, отвечающей одному из матричных треугольных методов,

$$\begin{split} A_{ii}u_i^{(k+1)} &= (1-\omega)A_{ii}u_i^{(k)} \\ &+ \omega \bigg[f_i - \sum_{j < i} A^{ij}u_j^{(k+1)} - \sum_{j > 1} A_{ij}u_j^{(k)} \bigg], \end{split}$$

$$i = 1, 2, ..., N;$$
 $k = 0, 1, 2, ...;$ $\omega \in (0, 2),$ (14)

поскольку итерационный метод вида (14) при определенном фиксированном значении параметра ω , $\omega \in (0,2)$ на задачах соответствующего класса обладает достаточно высокой скоростью сходимости (в задачах электростатики при $\omega=1$) и допускает эффективное для компьютерной реализации представление

$$u_i^{(k+1)} = (1 - \omega)u_i^{(k)} + \omega A_{ii}^{-1} \left[f_i - \sum_{j<1} A_{ij} u_j^{(k+1)} - \sum_{j>1} A_{ij} u_j^{(k)} \right],$$

$$i = 1, 2, \dots, N; \quad k = 0, 1, 2 \dots$$
(15)

В этом случае основные вычислительные затраты приходятся на построение операторов A_{ii}^{-1} , обратных $A_{ii}(i=1,2,\ldots,N)$, при этом построение обратных

операторов проводится один раз и является предыитерационным.

2. Многосвязная поверхность S составлена из базовых элементов S_i ($i=1,2,\ldots,N$), каждый из которых изначально либо после соответствующей процедуры заклеивания описывается симметриями определенной конечной группы. Данное свойство симметрии можно непосредственно реализовать в счетном алгоритме обращения оператора A_{ii} при любом фиксированном i ($i=1,2,\ldots,N$). Вводя обозначение

$$F_i^{(k)} = \omega \left[f_i - \sum_{j < 1} A_{ij} u_j^{(k+1)} - \sum_{j > i} A_{ij} u_j^{(k)} \right],$$

$$i = 1, 2, \ldots, N; \quad k = 0, 1, 2, \ldots,$$

i-е уравнение итерационного процесса (15) можно переписать в виде

$$u_i^{(k+1)} = (1 - \omega)u_i^{(k)} + z_i^{(k)},$$

где $z_i^{(k)}$ является решением уравнения

$$[A_{ii}z_i^{(k)}](x) = F_i^{(k)}(x), \quad x \in S_i.$$
 (16)

Пусть $\{\tau_M\}$ — группа симметрий элемента S_i поверхности S, M — порядок группы. Тогда S_i допускает представление

$$S_i = \bigcup_{\tau_m \in \{\tau_M\}} \tau_m s_0, \quad \operatorname{int}(\tau_m s_0 \cap \tau_n s_0) = 0, \quad m \neq n, \quad (17)$$

где s_0 — фундаментальная область группы $\{\tau_M\}$, разрывно действующей на S.

Введем соответствующее представлению (17) инвариантное разбиение единицы

$$I = \sum_{\tau_m \in \{\tau_M\}} \chi_{s_0}(\tau_m^{-1}\tau_n x) \quad \forall \tau_n \in \{\tau_M\},$$
 (18)

где $\chi_{s_0}(\cdot)$ — характеристическая функция фундаментальной области s_0 и равенство выполняется с точностью до множества меры нуль.

Используя разбиение единицы (18), сопоставим каждую функцию $\varphi_i(x)$, $x \in S_i$ с функцией $\hat{\varphi}(\tau_m)$, $\tau_m \in \{\tau_M\}$ на группе $\{\tau_M\}$ со значениями в пространстве $L(s_0)$ функций, определенных на s_0 ,

$$\varphi_i(x) \to \hat{\varphi}(\tau_m) = \chi_{s_0}(\tau_m^{-1}x)\varphi_i(x),$$

а оператор A_{ii} сопоставим с операторной функцией $\hat{\alpha}(\tau_m, \tau_n)$ на группе $\{\tau_M\}$ со значениями на множестве операторов, действующих в $L(s_0)$,

$$A_{ii} \to \hat{\alpha}(\tau_m, \tau_n) = \chi_{s_0}(\tau_m^{-1}x)A_{ii}\chi_{s_0}(\tau_n^{-1}x), \quad \tau_m, \tau_n \in \{\tau_M\}.$$

Из инвариантности оператора интегрального уравнения I рода краевой задачи Дирихле для уравнения

Лапласа к преобразованиям симметрии граничной поверхности и представления

$$A_{ii} = \chi_{S_i}(x)A\chi_{S_i}(x)$$

непосредственно следует инвариантность оператора A_{ii} к действиям группы $\{\tau_M\}$, поэтому соответствующая ему операторная функция $\hat{\alpha}(\tau_m, \tau_n)$ инвариантна к левым сдвигам на группе $\{\tau_M\}$

$$\hat{\alpha}(\tau_l \tau_m, \tau_l \tau_n) = \hat{\alpha}(\tau_m, \tau_n), \quad \forall \tau_l \in \{\tau_M\}$$

и можно записать равенство

$$\sum_{\tau_n \in \{\tau_M\}} \hat{\alpha}(\tau_n, \tau_n) \hat{\varphi}(\tau_n) = \sum_{\tau_n \in \{\tau_M\}} \hat{\alpha}(\tau_n^{-1} \tau_m) \hat{\varphi}(\tau_n),$$

$$\hat{\alpha}(\tau_m) \equiv \hat{\alpha}(\tau_m, e),$$

где e — единица группы $\{\tau_M\}$.

Поэтому в случае элемента S_i с группой симметрий $\{\tau_M\}$ поверхности S уравнение (16) приобретает вид уравнения свертки на группе [8]

$$\sum_{\tau_n \in \{\tau_M\}} \hat{\alpha}(\tau_n^{-1}\tau_m)\hat{z}(\tau_n) = \hat{F}(\tau_m), \quad \tau_m \in \{\tau_M\}.$$
 (19)

Пусть U_{λ} , $\lambda \in \{\lambda\}$ — неприводимые представления группы $\{\tau_M\}$; $d\lambda$ — степень представления U_{λ} . Введем операторные коэффициенты Фурье функций $\hat{\alpha}(\tau_n)$, $\hat{z}(\tau_n)$ и $\hat{F}(\tau_n)$ на группе $\{\tau_M\}$

$$ilde{lpha}(lpha) = \sum_{ au_n \in \{ au_M\}} \hat{lpha}(au_n) U_{\lambda}(au_n^{-1}), \quad \lambda \in \{\lambda\}$$

И

$$\tilde{z}(\lambda) = \sum_{\tau_n \in \{\tau_M\}} \hat{z}(\tau_n) U_{\lambda}(\tau_n^{-1}),$$

$$ilde{F}(\lambda) = \sum_{ au_n \in \{ au_M\}} \hat{F}(au_n) U_{\lambda}(au_n^{-1}), \quad \lambda \in \{\lambda\}.$$

В силу уравнения (19) можно записать равенства

$$\tilde{\alpha}(\lambda)z(\lambda) = \tilde{F}(\lambda), \quad \lambda \in {\lambda},$$
 (20)

причем если $z(\lambda)$ является решением уравнения (20), то функция $\hat{z}(\tau_n)$, $\tau_n \in \{\tau_M\}$ вычисляется по соотношению

$$\hat{z}(\tau_n) = \sum_{\lambda \in \{\lambda\}} d_{\lambda} tr(\hat{z}(\lambda)U_{\lambda}(\tau_n)), \quad \tau_n \in \{\tau_M\},$$

где запись $tr(\cdot)$ означает след.

Построение операторов A_{ii}^{-1} на основе вычисления операторов $\tilde{\alpha}^{-1}(\lambda)$, обратных $\tilde{\alpha}(\lambda)$, $\lambda \in \{\lambda\}$, по числу операций в $\sim M^2$ раз оптимальнее непосредственного обращения оператора A_{ii} известными процедурами.

Пусть теперь элемент S_i поверхности S обладает соответствующей симметрией только после процедуры заклеивания (базовые экраны с отверстиями), а именно

существует такая поверхность S_i с группой симметрий $\{\tau_M\}$, что

$$\bar{S}_i = \bigcup_{\tau_m \in \{\tau_M\}} \tau_m \bar{s}_0, \quad \operatorname{int}(\tau_m \bar{s}_0 \cap \tau_n \bar{s}_0) = 0, \quad m \neq n,$$

где $\bar{s_0}$ — фундаментальная область группы $\{\tau_M\}$, такая что

$$S_i \subset S_i, \quad S_i^{(0)} = S_i \setminus S_i$$

и мера множества $S_i^{(0)}$ меньше меры множества S_i

$$\mu(S_i^{(0)}) < \mu(S_i). \tag{21}$$

В этом случае от уравнения (16) перейдем к задаче

$$\chi_{S_i}(x)Bv(x) = \chi_{S_i}(x)\eta(x), \quad x \in S_i,$$

$$\chi_{S_i^{(0)}}(x)v(x) = 0, \quad x \in S_i^{(0)},$$

где

$$[B\Psi](x) = \int A(x, x_1)\Psi(x_1)d\mu(x_1),$$

$$x, x_1 \in \bar{S}_i, \quad \chi_{S_i}(x)B\chi_{S_i}(x) = A_{ii}$$

И

$$\eta(x) = \chi_{S_i}(x)\eta(x) + \chi_{S_i^{(0)}}(x)\eta(x), \quad x \in \bar{S}_i,$$

$$\chi_{S_i}(x)\eta(x) = F_i^{(k)}(x), \quad x \in S_i.$$

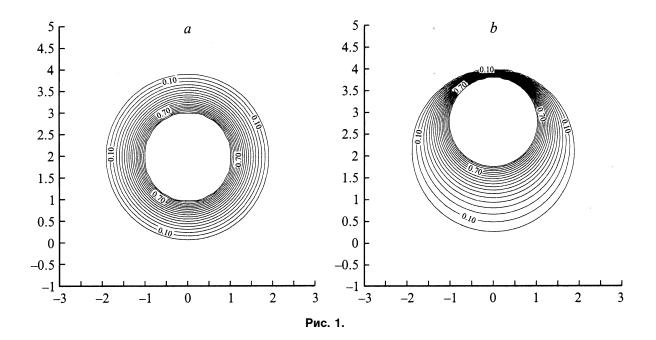
Переход от (16) к (22) обусловлен двумя основными фактами: след от решения задачи (22) на S_i является решением уравнения (16)

$$\chi_{S_i}(x)v(x) = z_i^{(k)}(x), \quad x \in S_i,$$

и оператор B инвариантен к действиям конечной группы $\{\tau_M\}$. Последнее позволило [10,11] разработать оптимальный по числу операций алгоритм решения задачи (22), который в условиях (21) сокращает число операций при обращении оператора A_{ii} в $\sim M^2$ раз в сравнении с непосредственным построением оператора A_{ii}^{-1} , обратного к A_{ii} . Более подробно численное решение краевых задач для уравнения Лапласа в рамках МКГ рассмотрено в [15].

Компьютерное определение электростатического поля и емкостных коэффициентов трехмерных систем экранов

На основе быстрых алгоритмов МКГ был создан комплекс программ для определения электростатических полей и емкостных коэффициентов трехмерных систем экранов, составленных из перечисленных во введении базовых элементов. Состав базовых элементов и их взаимная ориентация для искомой системы экранов задаются произвольным образом; максимальное число составляющих систему экранов определяется только



ресурсами используемого компьютера и требованиями к точности расчета.

1. Рассмотрим систему из двух сфер: сферы S_R радиуса R и сферы S_r радиуса r, R > r, полагая, что центр сферы S_r смещен относительно центра S_R на расстояние H = h(R-r), $0 \leqslant h \leqslant 1$. Таким образом, при h=0 центры S_R и S_r совпадают (сферический конденсатор), а при h=1 сферы соприкасаются в одной точке. Согласно [4], нормированная безразмерная емкость C(h) для различных h, $h \in [0,1]$ рассматриваемой системы может быть вычислена по формуле

$$C(h) = rac{Q_r(h)}{4\pi\varepsilon r(V_r - V_R)},$$

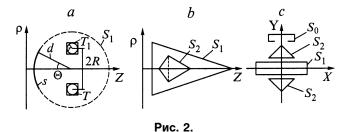
где V_R и V_r — потенциалы сфер S_R и S_r соответственно, $Q_r(h)$ — заряд сферы S_r , ε — диэлектрическая проницаемость среды.

Для R/r=2 и некоторых $h\in[0,1]$ расчетные значения C(h) приведены в табл. 1.

Таблица 1.

h	C(h)		
0	1.998		
0.2	2.0202		
0.4	2.1022		
0.6	2.2734		
0.8	2.6739		

При этом поверхность S, $S=S_R\cup S_r$ покрывалась $2\cdot 10^3$ граничными элементами. В свою очередь точное значение C(h) при h=0 определяется по формуле [4]; $C_0=R/(R-r)=2$. Таким образом, значение C(0) в рассматриваемом случае получено с точностью 0.1%.



Отметим, что для получения C(0) с машинной точностью число покрывающих поверхность S граничных элементов должно быть увеличено до $\sim 5 \cdot 10^3$.

Линии уровня потенциала электрического поля рассматриваемой системы при $V_R=0,\ V_r=1V,\ R=2m$ и r=1m в плоскости, содержащей центры сфер S_R и S_r , для h=0 приведены на рис. 1,a, а для h=0.8 — на рис. 1,b соответственно.

2. В работе [16] рассмотрена осесимметричная электростатическая задача для тонкой незамкнутой сферической оболочки S и тора T с малым радиусом r и большим R. Оболочка S расположена на сфере S_1 радиуса d. Будем рассматривать систему, состоящую из той же оболочки s и тора T_1 с квадратным сечением. Осевое сечение этих двух систем показано на рис. 2, a.

Если $c=\|c_{ij}\|$ (i,j=1,2) — матрица емкостных коэффициентов двухэлектродной системы, то конденсаторная емкость C такой системы вычисляется по формуле

$$C = \frac{c_{11}c_{22} - c_{12}c_{21}}{c_{11} + c_{12} + c_{21} + c_{22}}.$$

Значения нормированной конденсаторной емкости $\tilde{C} = C/(4\pi \varepsilon d)$ для R/r = 2 и некоторых значений

Таблица 2.

	Значения конденсаторной емкости				
	R/d = 0.5		R/d = 0.1		
Θ , deg	T	T_1	T	T_1	
10	0.111	0.117	0.653	0.678	
30	0.334	0.359	0.108	0.115	
60	0.754	0.837	0.128	0.138	
90	1.291	1.548	0.135	0.146	
120	1.592	1.977	0.138	0.150	
150	1.612	2.042	0.139	0.151	
170	1.615	2.048	0.139	0.151	

R/d и угла раствора Θ тонкой незамкнутой сферической оболочки s описанных выше систем приведены в табл. 2.

При этом столбцы значений \tilde{C} для первой системы $(S^{(1)} = s \cup T)$ в таблице имеют буквенное обозначение T и соответственно T_1 для второй системы $(S^{(2)} = s \cup T_1)$.

Сравнение приведенных в таблице значений нормированной конденсаторной емкости \tilde{C} для $S^{(1)}$ системы с аналогичными, полученными в [16], показывает, что их расхождение не превышает 1.8%. С другой стороны, анализ значений конденсаторной емкости $S^{(1)}$ и $S^{(2)}$ систем в зависимости от угла раствора Θ и отношения R/r показывает, что значение \tilde{C} в большей степени определяется взаимным расположением и размерами экранов и в меньшей — формой экрана. Последнее служит определенным основанием для перехода от реальных систем экранов к аппроксимирующих их системам базовых элементов.

Замечание. Экраны каждой из трех систем, рассмотренных выше, образуют многосвязную поверхность вращения. В этом случае оптимальный по числу операций счетный алгоритм решения граничного уравнения (10) строится по методике, описанной в [17]. Если же правая часть уравнения (10) инвариантна к сдвигам на группе вращений C_{∞} (например, уравнение (3), семейство уравнений (8)), то (10) можно переформулировать в виде одномерного уравнения по образующей поверхности вращения. Методы решения таких одномерных уравнений были предложены в [18]. В настоящее время решение осесимметричных задач электростатистики в рамках метода граничных интегральных уравнений строится с очень высокой точностью при минимальных машинных затратах практически для произвольной поверхности вращения.

Рассмотрим изменение емкостных характеристик $S^{(2)}$ системы с параметрами $\Theta=90^\circ$, R/r=2 и R/d=0.5 в зависимости от угла α между осями полусферы s и тора T_1 . Для значений нормированной конденсаторной емкости $\tilde{C}(\alpha)$ имеем

$$\tilde{C}(0^{\circ}) = 1.548, \quad \tilde{C}(45^{\circ}) = 1.517, \quad \tilde{C}(90^{\circ}) = 1.493$$

и соответственно для матрицы емкостных коэффициентов $c(\alpha)$

$$c(0^{\circ}) = \begin{bmatrix} 8.10071 & -5.52312 \\ -5.52312 & 6.42901 \end{bmatrix},$$

$$c(45^{\circ}) = \begin{bmatrix} 8.06476 & -5.40814 \\ -5.40814 & 6.28437 \end{bmatrix},$$

$$c(90^{\circ}) = \begin{bmatrix} 7.99781 & -5.31049 \\ -5.31049 & 6.19082 \end{bmatrix}.$$

Отметим, что все элементы c_{ij} (ij=1,2) матриц $c(\alpha)$ являются расчетными величинами и, следовательно, соотношение $c_{12}=c_{21}$ служит одним из критериев точности вычислений.

Линии уровня потенциала электростатического поля рассматриваемой $S^{(2)}$ системы при $V_s=0$ и $V_{T_1}=1V$, где V_s — потенциал полусферы и V_{T_1} — потенциал тора, в плоскости, содержащей оси вращения полусферы и тора, приведены на рис. 3, a–c, при этом $\alpha=0$ (a), 45 (b) и 90° (c). Кроме того, на рис. 3, d для $\alpha=90^\circ$ показаны линии уровня потенциала в плоскости, содержащей ось вращения полусферы и ортогональной оси вращения тора V_{T_1} . Данный рисунок наглядно демонстрирует свойство эквипотенциальности экранов (поле вблизи экрана воспроизводит форму экрана) и скорость затухания возмущений в электростатическом поле (форма экрана быстро размывается при удалении от него).

3. Рассмотрим несколько двухэлементных S систем, составленных из канонических тел вращения — сферы, цилиндра и конуса, а также тела, представляющего собой два конуса с общим основанием и разными, направленными в противоположные стороны высотами. Конденсаторную емкость и емкостные коэффициенты S системы будем нормировать на $4\pi\varepsilon r$, потенциал тела V будем задавать в вольтах, линейные размеры тела — в безразмерных величинах, нормируя их на единичный радиус r.

Пусть S система состоит из сферы S_1 единичнго радиуса $R_1=1$ и цилиндра S_2 с радиусом основания $R_2=2$ и высотой h=2. Класс всевозможных взаимных расположений S_1 и S_2 тел можно разбить на два: $S=S_1\cup S_2$ — поверхность вращения и S не является таковой. Если S — поверхность вращения, то центр сферы S_1 лежит на оси вращения цилиндра S_2 . В этом случае для H=2, H — расстояние между S_1 и S_2 , расчетные значения конденсаторной емкости \tilde{C} и емкостных коэффициентов $c=\|c_{ij}\|$, i,j=1, 2 соответственно равны

$$\tilde{C} = 0.974219, \quad c = \begin{bmatrix} 1.14477 & -0.521235 \\ -0.521236 & 2.17735 \end{bmatrix}.$$

Потенциал электрического поля рассматриваемой системы при $V_1 = V_2 = 1$ (V_1 и V_2 — потенциалы экранов S_1 и S_2 соответственно) в плоскости, содержащей ось вращения S, на рис. 4, a принимает максимальное значение, равное 0.99. Поэтому, поскольку тела S_1

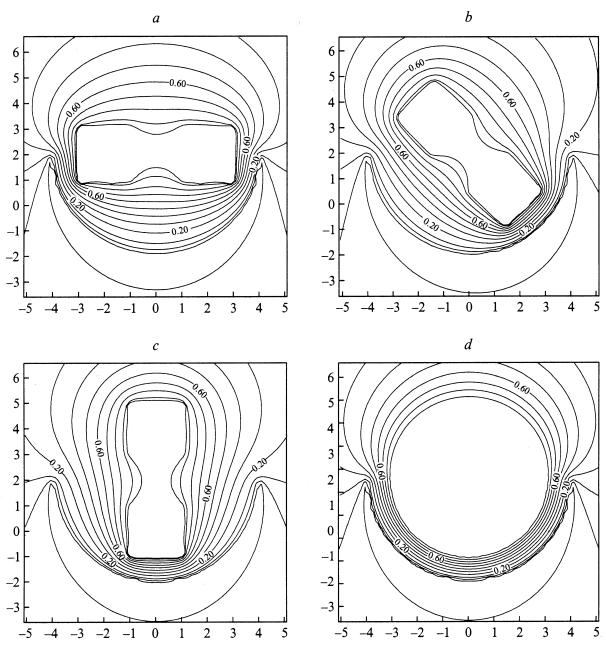


Рис. 3.

и S_2 занимают эквипотенциальные объемы, согласно критерию внутреннего поля, погрешность вычисления электростатического поля S системы не превышает 1%.

Пусть точка M лежит на оси вращения системы S и делит высоту цилиндра S_2 пополам. Наклоним цилиндр таким образом, чтобы его ось пересекала ось вращения S системы в точке M под углом 45° . Полученная система S', $S' = S_1 \cup S_2$ уже не является поверхностью вращения. Для S' системы расчетные значения конденсаторной емкости \tilde{C} и емкостных коэффициентов c_{ij} следующие:

$$\tilde{C} = 1.01894, \quad c = \begin{bmatrix} 1.18618 & -0.571091 \\ -0.570945 & 2.21928 \end{bmatrix}.$$

Далее, на рис. 4, b показан потенциал электрического поля S' системы при $V_1=V_2=1$, в плоскости, содержащей ось вращения цилиндра S_2 и центр сферы S_1 ; максимальное визуализованное значение потенциала, как и ранее, равняется 0.99. Таким образом, для не осесимметричной S' системы погрешность вычисления поля остается в пределах 1%.

Рассмотрим S систему, состоящую из сферы S_1 радиуса $R_1=1$ и конуса S_2 с радиусом основания $R_2=2$ и высотой h=3, полагая, что S, $S=S_1\cup S_2$ поверхность вращения с расстоянием H=1 между S_1 и S_2 . Конденсаторная емкость C и матрица емкостных коэффициентов $c=\|c_{ij}\|$, i,j=1,2 для данной S систе-

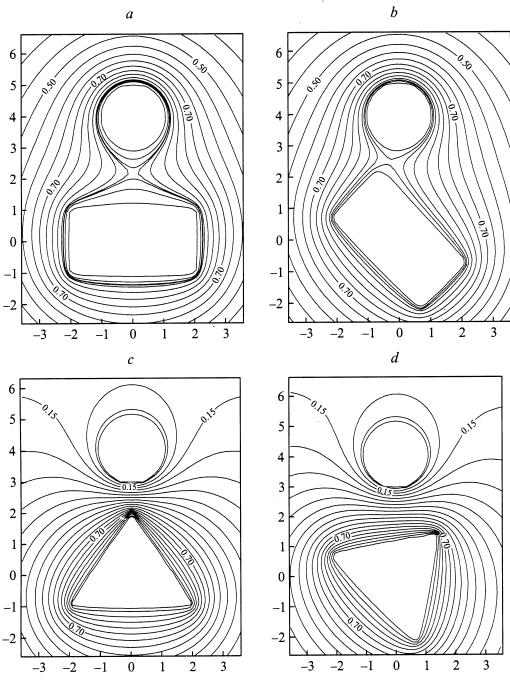


Рис. 4.

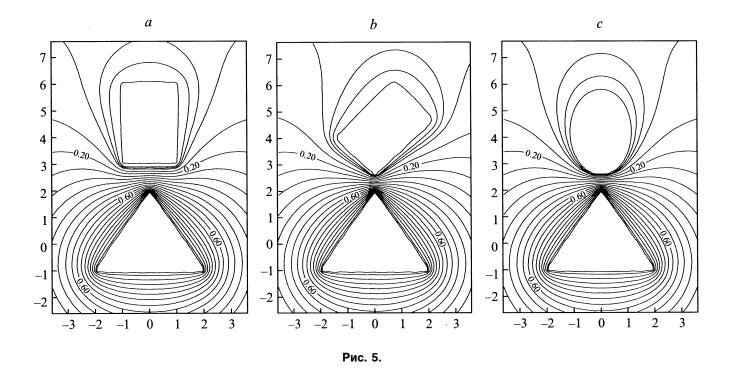
мы имеют вид

$$\tilde{C} = 0.881883, \quad c = \begin{bmatrix} 1.12213 & -0.419433 \\ -0.419433 & 1.77205 \end{bmatrix}.$$

При $V_1=0$ и $V_2=1$ экранов S_1 и S_2 эквипотенциал электростатического поля рассматриваемой S системы для значений потенциала φ , $\varphi\in[0.01,0.99]$, в плоскости, содержащей ось вращения S, приведены на рис. 4, c. Погрешность вычисления электростатического поля S системы и в этом случае не превышает 1% (рис. 4, c).

На расстоянии 1/3h от дна конуса на его высоте фиксируем точку M и поворачиваем конус таким образом, чтобы его ось пересекала ось вращения S системы в точке M под углом 45° , т.е. от исходной системы переходим к системе S', $S' = S_1 \cap S_2$, не обладающей симметрией вращения. Конденсаторная емкость и матрица емкостных коэффициентов изменятся в этом случае следующим образом:

$$\tilde{C} = 0.87989, \quad c = \begin{bmatrix} 1.11655 & -0.42029 \\ -0.420219 & 1.77272 \end{bmatrix}.$$



В свою очередь обусловленная наклоном конуса деформация изолиний электростатического поля S системы, приведенных на рис. 4, c, в плоскости, содержащей ось конуса и центр сферы, показана на рис. 4, d, при этом верхний предел погрешности вычисления (1%) электростатического поля при переходе от S к S' системе не изменился.

В качестве третьей двухэлементной системы рассмотрим систему S, состоящую из описанного выше конуса S_2 и цилиндра S_1 с радиусом основания $R_1=1$ и высотой $h_1=3$, в условии, что S, $S=S_1\cup S_2$ — поверхность вращения с расстоянием H между S_1 и S_2 , H=1. Конденсаторная емкость и емкостные коэффициенты такой системы соответственно равны

$$\tilde{C} = 1.12645, \quad c = \begin{bmatrix} 1.82498 & -0.557362 \\ -0.557362 & 1.59009 \end{bmatrix}.$$

В плоскости, содержащей ось вращения рассматриваемой S системы, на рис. 5,a при $V_1=0$ и $V_2=1$ на S_1 и S_2 показаны линии уровня потенциала ϕ электростатического поля системы, $\phi \in [0.005, 0.995]$, т.е. в данных расчетах критерий внутреннего поля выполняется с погрешностью, не превышающей 0.5% (рис. 5,a).

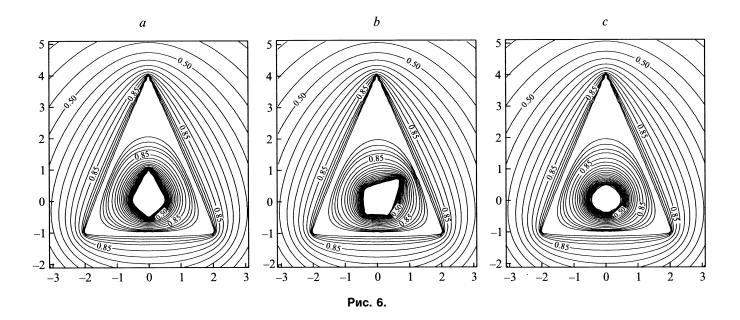
Зафиксировав на расстоянии 1/3h от ближнего к конусу дна цилиндра на его оси точку M, сместив цилиндр S_1 до положения, при котором угол между осями цилиндра и конуса, пересекающимися в точке M, составит 45° . Для этой системы S', $S' = S_1 \cup S_2$, получены следующие значения конденсаторной емкости и емкостных

коэффициентов:

$$\tilde{C} = 1.13217, \quad c = \begin{bmatrix} 1.82871 & -0.564409 \\ -0.564409 & 1.59497 \end{bmatrix}.$$

Изолинии потенциала электростатического поля S системы (рис. 5,a) при наклоне цилиндра S_1 соответствующим образом видоизменяются, что и показано на рис. 5,b, в плоскости, содержащей оси вращения цилиндра S_1 и конуса S_2 . Отметим, что верхний предел погрешности вычислений потенциала S' системы такой же, как и в случае осесимметричной системы S (0.5%; рис. 5,b).

До сих пор проводилось сравнение осесимметричных электростатических полей систем S с трехмерными полями S' систем в условии, что линии уровня потенциала последних визуализованы в плоскости зеркальной симметрии S' системы. В то же время более или менее полное описание объемного поля через изолинии его потенциала требует построения последних как минимум в трех ортогональных плоскостях (при практических расчетах число сечений искомой S' системы может составлять и несколько десятков). Для примера рассмотрим сечение S' системы плоскостью, проходящей через ось вращения конуса S_2 ортогонально оси вращения цилиндра S_1 , т.е. данная плоскость ортогональна рассмотренной выше (рис. 5, b). Отметим, что если в сечении указанной плоскостью конуса по-прежнему равнобедренный треугольник основания 4 и высоты 3, то сечением цилиндра S_1 будет не прямоугольник 2×3 , а эллипс. В рассматриваемой плоскости на рис. 5, c показаны изолинии электростатического поля S' системы для тех же значений потенциала, что и на рис. 5, b.



Нетрудно видеть, что верхний предел в 0.5% погрешности вычисления поля по используемому критерию не изменился, при этом изолиния со значением 0.005 является эллипсом.

Рассмотрение двухэлементных систем завершает поверхность вращения S, $S=S_1\cup S_2$, где S_2 — поверхность, образованная двумя конусами с общим основанием радиуса $R_2=0.5$ и высотами $h_2'=1$ и $h_2''=0.5$, и S_1 — конус с основанием радиуса $R_1=2$ и высотой $h_1=5$, при этом конус S_1 экранирует поверхность S_2 , расположенную на расстоянии H=1.5 от дна конуса. Радиальное сечение данной системы S приведено на рис. S_2 , конденсаторная емкость и емкостные коэффициенты данной системы соответственно равны

$$\tilde{C} = 0.696219, \quad c = \begin{bmatrix} 2.58405 & -0.696219 \\ -0.696219 & 0.696219 \end{bmatrix}.$$

Здесь следует обратить внимание на выполнение соотношения

$$\tilde{C} = -c_{12} - c_{21} = c_{22} \tag{23}$$

с машинной точностью.

Линии уровня потенциала электростатического поля, создаваемого системой S при потенциалах $V_1=1$ и $V_2=1$ экранов S_1 и S_2 , в радиальном сечении показаны на рис. 6, a, при этом верхний предел погрешности вычислений не превышает 0.5%.

Перейдем от осесимметричной S системы к системе S', $S'=S_1\cup S_2$, в которой ось вращения тела S_2 пересекает под углом 45° высоту конуса S_1 на расстоянии 1/5h от основания конуса. Расчетные значения конденсаторной емкости и емкостных коэффициентов для S' системы следующие:

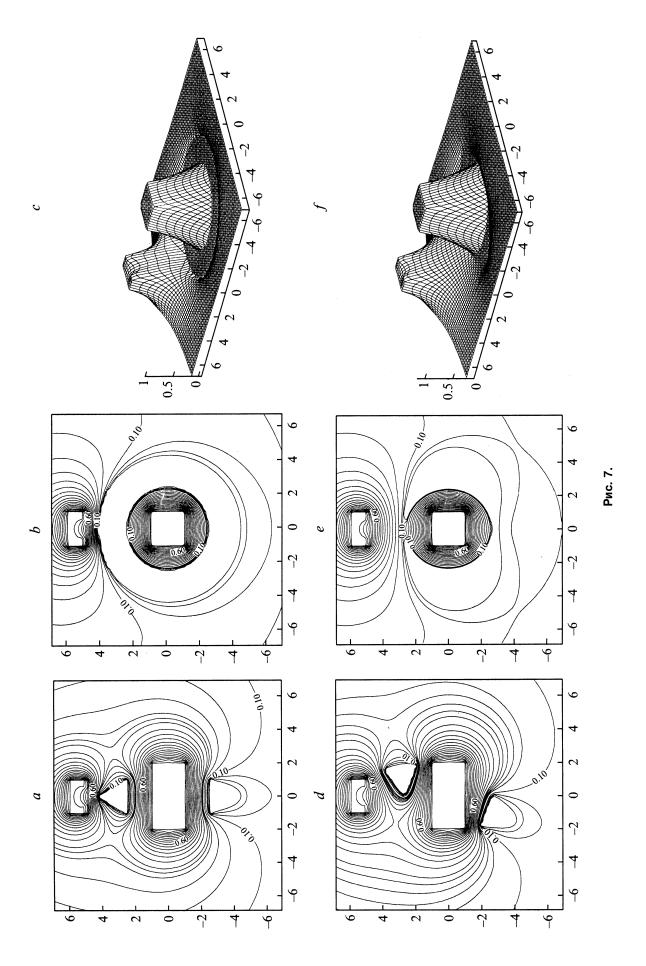
$$\tilde{C} = 0.707117, \quad c = \begin{bmatrix} 2.58854 & -0.707331 \\ -0.706919 & 0.0707117 \end{bmatrix}.$$

Здесь равенство (23) выполняется с точностью до нескольких единиц четвертого знака.

Изменение структуры электростатического поля (изолинии на рис. 6, a), вызванное переходом от S к S' системе, показано на рис. 6, b, c. Именно на рис. 6, b приведены эквипотенциали поля S' системы в плоскости, содержащей оси вращения поверхностней S_1 и S_2 , а на рис. 6, c — в плоскости, проходящей через ось вращения конуса S_1 ортогонально оси вращения тела S_2 . По критерию внутреннего поля погрешность вычислений потенциала для системы S', как и для S, не превышает 0.5%.

В заключение данного раздела отметим, что для достижения точности вычислений порядка 1% рассмотренные выше поверхности потребовалось аппроксимировать $\sim 10^4$ граничными элементами.

4. Рассмотрим систему S, состоящую из трех базовых элементов S_1 , S_2 и S_3 ,– $S = S_1 \cup S_2 \cup S_3$, где S_1 — стержень длины $h_1 = 4$ с квадратным основанием 2×2 , S_2 тор, образующей которого как поверхности вращения является равнобедренный треугольник с основанием $\hat{h}_2 = 2$ и высотой $h_2 = 1.7$, при этом расстояние от оси вращения тора до образующей равно R_2 , $R_2 = 2.5$, S_3 — цилиндр высотой $h_3 = 1$, радиусом основания $R_3 = 1$ и с отверстием в основании радиуса $R_{3d} = 0.5$. Оси поверхностей вращения S_2 и S_3 пересекаются под прямым углом в центре квадратного стержня S_1 , при этом расстояние от S_1 до S_2 равно $H_1=1.5$ и соответственно от S_2 до S_3 — H_2 , $H_2 = 0.8$. Сечение плоскостью P_1 , содержащей оси поверхностей вращения S_2 и S_3 , системы S приведено на рис. 2, c; сечение P_1 стержня S_1 есть прямоугольник размера 2×4 , сечение P_1 поверхности S_2 дает два равновеликих равнобедренных треугольника основания $h_2 = 2$ и высоты $h_2 = 1.7$, расположенных зеркально симметрично относительно прямоугольника на расстоянии $H_1=1.5$, и, наконец,



Журнал технической физики, 2002, том 72, вып. 9

сечением цилиндра с отверстием S_3 плоскостью P_1 будет прямоугольник 1×2 с отверстием в ближней ко стержню стороне размера 1. В свою очередь сечение S системы плоскостью P_2 , проходящей через ось вращения цилиндра S_3 и центр стержня S_1 (P_2 ортогональна оси вращения тора S_2), дает квадрат 2×2 , кольцо с внутренним радиусом $R_2'=2.5$, внешним $R_2''=4.2$ и центром, совпадающим с центром квадрата, при этом сечение цилиндра S_3 плоскостью P_2 совпадает с его сечением плоскостью P_1 .

Расчетные значения матрицы емкостных коэффициентов $c = \|c_{ij}\|$ (i, j = 1, 2, 3) описанной S системы соответственно равны

$$c = \begin{bmatrix} 3.28571 & -2.69617 & -0.0682739 \\ -2.68915 & 5.60708 & -0.669322 \\ -0.0672863 & -0.669852 & 1.21556 \end{bmatrix}$$

Далее, линии уровня потенциала электростатического поля S системы при потенциалах $V_1=1,\ V_2=0$ и $V_3=1$ экранов $S_1,\ S_2$ и $S_3,$ в плоскости P_1 показаны на рис. 7,a, в плоскости P_2 — на рис. 7,b и соответственно на рис. 7,c приведено распределение потенциала в P_2 плоскости. Погрешность вычислений потенциала поля в рассматриваемом случае в пределах 1%, что и демонстрируют рис. 7,a–c.

Перейдем от S к S' системе, $S' = S_1 \cup S_2 \cup S_3$, в которой оси цилиндра с отверстием S_3 и тора S_2 пересекаются в центре стержня S_1 под углом 112° . Отметим, что плоскости P_1 и P_2 являются плоскостями зеркальной симметрии системы S; S' система имеет только одну плоскость зеркальной симметрии — P_1 .

Емкостные коэффициенты S' системы описываются матрицей

$$c = \begin{bmatrix} 3.41561 & -2.84179 & -0.0787125 \\ -2.85176 & 5.68682 & -0.563878 \\ -0.0777562 & -0.564894 & 1.13479 \end{bmatrix}.$$

Линии уровня потенциала электростатического поля S' системы при потенциалах $V_1=1,\ V_2=0$ и $V_3=1$ экранов $S_1,\ S_2$ и $S_3,$ в плоскостях P_1 и P_2 соответственно показаны на рис. 7,d и e, а распределение потенциала S' системы в плоскости P_2 — на рис. 7,f. Верхний предел погрешности вычисления потенциала поля при переходе от S к S' системе в рассматриваемом случае не изменился.

Отметим, что достижение точности вычислений в 1% потенциала поля S и S' систем потребовало аппроксимации соответствующих многосвязных поверхностей $\sim 2 \cdot 10^4$ граничными элементами.

Все расчеты, описанные в работе, были проведены по единой программе на ПК с процессором Pentium-Pro 200 MHz и оперативной памятью 128 MB; максимальные затраты процессорного времени одного расчета при заданных потенциалах экранов системы не превышали 10 min.

Список литературы

- [1] Демин С.К., Сафронов С.И., Тарасов Р.П. // ЖТФ. 1998. Т. 68. Вып. 2. С 97–103.
- [2] Демин С.К, Сафронов С.И., Тарасов Р.П. // ЖТФ. 1998.Т. 68. Вып. 7. С. 126–129.
- [3] Сафронов С.И., Тарасов Р.П. // ЖТФ. 1999. Т. 69. Вып. 6. С7 1–10.
- [4] Смайт В. Электростатика и электродинамика. М., 1954. С. 604.
- [5] Демин С.К., Тарасов Р.П. // ЖВМиМФ. 1989. Т. 29. № 9. С. 1308–1317.
- [6] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ДАН СССР. 1990. Т. 314. № 3. С. 589–593.
- [7] Тарасов Р.П. // ЖВМиМФ. 1992. Т. 31. № 9. С. 1515–1517.
- [8] Тарасов Р.П. // ЖВМиМФ. 1993. Т. 33. № 12. С. 1815– 1825.
- [9] Загороднов И.А., Тарасов Р.П. // ЖВМиМФ. 1998. Т. 38. No 8. C. 1303–1315.
- [10] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1992. Т. 31. № 1. С. 40–58.
- [11] Тарасов Р.П. // ЖВМиМФ. 1999. Т. 39. № 6. С. 943–969.
- [12] *Демин С.К., Тарасов Р.П.* // Матем. Модель. 1993. Т. 5. № 7. С. 113–123.
- [13] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1993. Т. 33. № 7. С. 1030–1042.
- [14] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1998. Т. 38. № 5. С. 734–739.
- [15] Сафронов С.И. Докт. дис. М.: ВМиК МГУ им. М.В. Ломоносова, 2000. 267 с.
- [16] Шушкевич Г.Ч. // ЖТФ. 1998. Т. 68. Вып. 7. С 1-6.
- [17] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ДАН. 1999. Т. 367. № 6. С. 457–460.
- [18] *Антоненко О.Ф.* Вычислительные системы. Новосибирск: Изд-во ИМ СО АН СССР, 1964, № 12. С. 39–47.