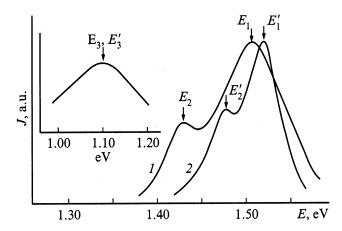
04:06:07

Излучательные и фотоэлектрические свойства монокристаллов CulnS₂

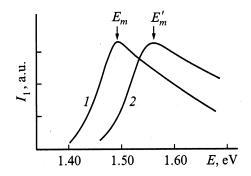
© В.А. Иванов, И.А. Викторов, В.Ф. Гременок

Институт физики твердого тела и полупроводников НАН Белоруссии, 220072 Минск, Белоруссия e-mail: gremenok@ifttp.bas-net.by

(Поступило в Редакцию 20 ноября 2001 г.)


Исследованы спектры фотолюминесценции и фотопроводимости при температурах 80 и 300 К монокристаллов CuInS₂, полученных методом Бриджмена. Установлено, что спектр фоточувствительности находится в области коротковолновой спектральной полосы фотолюминесценции. Из ватт-амперных характеристик фотопроводимости установлен линейный механизм рекомбинации неосновных носителей заряда в температурном интервале 80–300 К при уровне освещения до 100 mW/cm².

Полупроводниковое соединение CuInS $_2$ относится к группе соединений с общей формулой I–III–VI $_2$ и имеет структуру халькопирита [1]. Это соединение является прямозонным полупроводником с шириной запрещенной зоны $E_g=1.55\,\mathrm{eV}$, имеет большой коэффициент оптического поглощения ($\alpha>10^5\,\mathrm{cm}^{-1}$), интенсивную излучательную рекомбинацию и является перспективным материалом для изготовления на его основе различных приборов оптоэлектроники для ближней ИК и видимой областей спектра, в частности солнечных элементов [2].


В настоящей работе приведены результаты исследований при температурх 80 и 300 К излучательных и фотоэлектрических свойств специально нелегированных монокристаллов CuInS2, полученных методом Бриджмена. Монокристаллы имели удельное сопротивление $ho = 10^{-1} - 10^0 \, \Omega \cdot \text{cm}$ и были p-типа проводимости. Тип проводимости определялся термоэлектрическим методом. Образцы для исследований выкалывались из исходного слитка и поверхность скола имела вид блестящий плоскости. Известно [3], что данное соединение раскалывается по кристаллографической плоскости (112), поэтому предполагалось, что рабочей плоскостью в данном случае являлась именно эта плоскость. На свежесколотую поверхность наносились графитовые контакты для электрических измерений. Проведенные исследования вольт-амперных характеристик показали, что эти контакты являются омическими при температурах 80 и 300 К. Для выращенных кристаллов была характерна структура халькопирита с параметрами, совпадающими в пределах точности с данными [4,5].

Исследования излучательных и фотоэлектрических свойств проводились на установке, описанной в работе [6]. Источником возбуждения при исследовании излучательных свойств являлся He–Ne лазер ($\lambda_0=0.633\,\mu\mathrm{m}$) с плотностью мощности возбуждения $0.1–1.0\,\mathrm{W/cm^2}$. В качестве фотоприемника использовался охлаждаемый парами азота фотоумножитель ФЭУ-112 со спектральной характеристикой фотокатода C-1.

На рис. 1 представлены спектры фотолюминесценции монокристаллов CuInS2. Видно, что спектры излучения состоят из трех полос с энергетическими максимумами $E_1 = 1.52 \,\mathrm{eV}, \, E_2 = 1.43 \,\mathrm{eV}, \, E_3 = 1.11 \,\mathrm{eV}$ при $T = 300 \,\mathrm{K}$ и $E'_1 = 1.52 \,\text{eV}, \, E'_2 = 1.48 \,\text{eV}, \, E'_3 = 1.11 \,\text{eV}$ при $T = 80 \,\text{K}.$ Полоса с максимумом Е₁ обусловлена оптическими переходами мелкий донор (D_1) -валентная зона. Различные значения E_1 при 300 и 80 K связаны с температурным изменением ширины запрещенной зоны E_{g} для кристаллов $CuInS_2$. В качестве донора D_1 с энергией ионизации $\Delta E_{D1} = 35 \,\mathrm{meV}$, согласно [2,7], выступает вакансия серы (V_S) . Ответственными за энергетическую полосу E_2 являются оптические переходы D_1 - A_1 , где A_1 — акцепторный уровень с энергией ионизации $\Delta E_{A1} = 100 \, \text{meV}$, обусловленный, согласно [2], вакансиями меди (V_{Cu}) . При температуре $T = 80 \, \mathrm{K}$ вместо полосы с максимумом E_2 в спектре регистрируется полоса с максимумом E_2' , ответственными за которую являются оптические переходы донорный уровень D_2 -валентная зона. Энергия ионизации этого уровня $\Delta E_{D2} = 72 \,\mathrm{meV}$. Ответственными за этот уровень являются также вакансии серы (V_S) , которые образуют в запрещенной

Рис. 1. Спектры фотолюминесценции монокристаллов $CuInS_2$ при температурах 300 и 80 К (2).

Рис. 2. Спектральные зависимости фототока при температурах 300 (I) и 80 K (2).

зоне CuInS₂, согласно [8], два энергетических уровня. Эти уровни обнаруживалсь также в исследованных нами спектрах оптического поглощения. В спектре фотолюминесценции также присутствует не изменяющаяся с температурой интенсивная длинноволновая полоса с энергетическим максимумом E_3 , обусловленная переходами D_1 – A_2 , где A_2 — глубокий акцепторный уровень с энергией ионизации $\Delta E_{A2}=370$ meV, обусловленный или атомами кислорода, внедряющимися в кристалл при его росте, или вакансиями меди $(V_{\rm Cu})$ [8].

При исследовании фотоэлектрических свойств полученных кристаллов регистрировались спектры фотопроводимости. На рис. 2 приведено спектральное распределение фоточувствительности образцов при различных температурах. Полученные спектры были пересчитаны с учетом спектрального распределения источника излучения, в качестве которого использовалась галогенная лампа типа КГМ с цветовой температурой рабочей области $T = 1400 \, \text{K}$. Спектры фотопроводимости имели вид одной полосы с резким коротковолновым и плавным длинноволновым краями. Спектральные энергетические максимумы полос составляли $E_m = 1.49\,\mathrm{eV}$ при $300\,\mathrm{K}$ и $E'_m = 1.55 \,\mathrm{eV}$ при 80 К. Крутизна коротковолнового края слабо зависела от температуры образца. При охлаждении образца коротковолновый край полосы смещался в высокоэнергетическую область со скоростью $2.27 \cdot 10^{-3} \, \text{eV/K}$, что согласуется со скоростью температурного изменения ширины запрещенной зоны для CuInS₂ [2]. Плавный длинноволновый край спектров фотопроводимости свидетельствует о малой скорости поверхностной рекомбинации неравновесных носителей заряда.

Для определения механизма рекомбинации неравновесных носителей заряда были исследованы зависимости фототока $I_1 = I_2 - I_3$ (I_2 — ток через образец при освещении, I_3 — темновой ток) от уровня освещения образца при различных температурах. Величина уровня освещения контролировалась измерителем оптической мощности ИМО-2H. Полученные зависимости фототока от уровня освещения образца являются линейными при интенсивностях освещения вплоть до $100 \, \mathrm{mW/cm^2}$ как при $T = 300 \, \mathrm{K}$, так и при $T = 80 \, \mathrm{K}$. Вид этих

зависимостей свидетельствует о линейном механизме ракомбинации неравновесных носителей заряда в исследуемых кристаллах $CuInS_2$, т.е. произведение $\mu\tau$ (μ — подвижность носителей заряда, τ — время жизни) не зависит от концентрации носителей заряда [9].

В результате проведенных исследований установлено, что спектр фоточувствительности находится в области коротковолновой спектральной полосы фотолюминесценции, а пологий длинноволновый край фотопроводимости свидетельствует о малой скорости поверхностной рекомбинации неосновных носителей заряда на свежесколотой поверхности монокристалла $CuInS_2$. Из ваттамперных характеристик фотопроводимости установлен линейный механизм рекомбинации неосновных носителей заряда в температурном интервале $80-300 \, \mathrm{K}$ при уровне освещения до $100 \, \mathrm{mW/cm^2}$.

Работа поддержана Фондом фундаментальных исследований Белоруссии.

Список литературы

- [1] Shay J.L., Wernick J.H. Ternary Chalcopyrite Semiconductors. New York, 1975. 244 p.
- [2] Коутс Т., Микин Д. Современные проблемы полупроводиковой фотоэнергетики. М., 1988. 307 с.
- [3] Wagner S. // Top. Appl. Phys. 1997. Vol. 17. P. 171-176.
- [4] Bodnar I.V., Bodnar I.T., Vaipolin A.A. // Cryst. Res. Technol. 1984. Vol. 19. P. 1533–1557.
- [5] Бондарь И.В. // Изв. АН СССР. Неорган. материалы. 1991.Т. 22. № 7. С. 1369–1374.
- [6] Корень Н.Н., Иванов В.А. // ПТЭ. 1981. С. 161-162.
- [7] Masse G., Lahlou N., Butti C. // J. Phys. Chem. Sol. 1981. Vol. 12. P. 449–454.
- [8] Masse G., Redjal E. // J. Phys. Chem. Sol. 1986. Vol. 47. P. 99– 104.
- [9] Багиров М.Я. Полупроводниковые приемники излучения. Баку, 1983. 107 с.