06:12

Вольт-амперная характеристика и параметры области шнура тока в барьерной негисторной гетероструктуре аморфный теллурид галлия–кристаллический кремний

© А. Чеснис, С.-А. Карпинскас, А. Урбялис

Вильнюсский технический университет, 2040 Вильнюс, Литва e-mail: fizkat@fm.vtu.lt

(Поступило в Редакцию 4 декабря 2001 г.)

Приведены результате исследования переходной вольт-амперной характеристики негисторной барьерной гетероструктуры аморфный GaTe₃–кристаллический *n*-Si в условиях проявления отрицательного дифференциального сопротивления. Определены основные параметры (радиус поперечного сечения, плотность тока и удельное сопротивление) области повышенной плотности (шнура) тока в аморфном слое данной структуры. Они сопоставлены с соответствующими параметрами токового шнура в контрольной безбарьерной структуре С-аморфный GaTe₃–С. Показано, что электропроводность области шнурования тока исследованной гетероструктуры в указанных выше условиях определяется в основном процессами, происходящими в ее кристаллическом компоненте.

Введение

Интересой и практически важной представляется идея, высказанная еще в [1,2], использовать аморфный халькогенидный полупроводник для изготовления эмиттера в биполярном транзисторе. В зависимости от отношения напряжений, приложенных к коллектору и базе такой транзистор мог бы находиться в двух (слабо или сильно усиливающих) состояниях, что значительно расширило бы возможности его применения [2]. В этой связи актуальными являются исследования гетерогенных барьерных структур аморфный-кристаллический полупроводник, обладающих S-образными вольт-амперными характеристиками (ВАХ) (негисторные структуры).

Причиной отрицательного дифференциального сопротивления, обусловливающего S-образность BAX этих структур, являются процессы в слое аморфного полупроводника, в котором в условиях электрической неустойчивости перпендикулярно токовым электродам образуется своеобразный канал повышенной проводимости. Этот канал является последовательной частью области повышенной плотности (шнура) тока гетероструктуры. Остальная же часть шнура (положение этого канала) находится в кристаллическом компоненте. От характера физических процессов в указанном канале зависят в первую очередь такие важные технические характеристики, как стабильность и долговечность работы данных структур. Поэтому информация о физической ситуации в канале представляется важной не только при исследовании механизма электрической неустойчивости негисторной структуры, но и при определении оптимального режима ее работы.

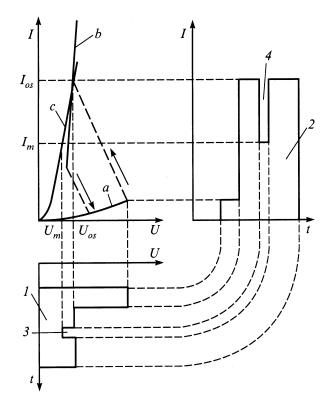
Основным источником этой информации, разумеется, являются электрические характеристики и параметры указанного канала. Однако их исследование с методической точки зрения является довольно сложным в первую

очередь из-за малых (микронных) размеров области шнура тока. Кроме того, сопротивления обоих частей шнура (в аморфном и кристаллическом полупроводнике) могут быть соизмеримы. Поэтому использование известных методов исследования безбарьерных негисторных структур [3–5] для определения параметров канала в данном случае может привести к большим погрешностям.

Целью данной работы, во-первых, было определение ВАХ гетеропереходов в области шнура тока указанной негисторной структуры и выявление относительной роли электронных процессов, происходящих в аморфном и кристаллическом слоях, в проводимости этой области; во-вторых, выяснение возможностей оценки нетепловых параметров (радиуса поперечного сечения r_c , плотности тока j_c и удельного сопротивления ρ_c) упомянутого выше канала в аморфном полупроводнике.

Объект исследования

Объектом исследования была выбрана барьерная негисторная структура аморфный GaTe₃—кристаллический *n*-Si. Структурам данного типа свойственно то, что в их BAX в прямом направлении вплоть до самого начала области отрицательного дифференциального сопротивления (т.е. в состоянии до возникновения электрической неустойчивости и образования шнура тока¹) отсутствует обычная омическая часть характеристики, а их электропроводность в сильных электрических полях обусловлена монополярной инжекцией носителей заряда из кристаллического полупроводника в аморфный слой (режим токов, ограниченных пространственным зарядом) [6]. Проводимость аморфных пленок GaTe₃


¹ Состояния структуры до и после образования шнура тока в дальнейшем будем называть высокоомным и низкоомным соответственно.

в том же самом диапазоне сильного электрического поля обусловлена облегченной этим полем тепловой генерацией носителей заряда [7]. Выбранные гетероструктуры сохраняют асимметрию проводимости и чувствительность к полярности напряжения, обусловливающего электрическую неустойчивость, в широком диапазоне длительностей электрических импульсов, включая наносекундные, что связано с неодинаковыми условиями инжекции носителей заряда в слой GaTe₃ в прямом и обратном направлениях [6].

Методика

Образцы структур для исследований изготавливались методом термического дискретного испарения препарата $GaTe_3$ в вакууме (около 10^{-3} Pa) и конденсацией его паров на подложки, температура которых не превышала 330–340 К. GaTe₃ наносился на эпитаксиальный слой *n*кремния с удельным сопротивлением $(\rho_{\rm Si})$ 1.0 Ω · cm, выращенный на более низкоомной ($ho_{\rm Si} \approx 0.01\,\Omega\cdot{\rm cm}$) пластинке монокристаллического Si того же типа проводимости. Для сопоставления результатов измерения параметров токового шнура изготавливались также контрольные безбарьерные образцы С-аморфный GaTe₃-С, обладающие симметричными S-образными BAX. Подложками в данном случае служили стеклоуглеродные пластинки. В качестве электрода к аморфному слою в обоих типах образцов служил прижимной стеклоуглеродный зонд, а в исследованных гетероструктурах также и напыленная пленка молибдена площадью порядка 10^{-5} cm². Толщина аморфного слоя варьировалась в пределах от 0.6 до $1.0 \mu m$.

Измерялись переходные BAX гетероструктур в низкоомном состоянии (рис. 1), используя так называемый метод двойного импульса [8]. На исследуемый образец и последовательно к нему включенный резистор, ограничивающий ток при переключении в низкоомное состояние, подавались два прямоугольных импульса напряжения: сравнительно длинный основной и накладываемый на него короткий изменяемой амплитуды и полярности (формы импульсов напряжения, падающего в данном случае на образце, и тока в измерительной цепи схематически показаны на рис. 1). Амплитуда первого из них (импульс 1 на рис. 1) выбиралась достаточной для создания условия электрической неустойчивости в образце, а его длительность — достаточной для образования токового шнура и для поддержки образовавшегося низкоомного состояния во время измерений (U_{0s} и I_{0s} — напряжение и ток поддержки соответственно). Второй импульс (измерительный) (3 на рис. 1) использовался для измерения переходных ВАХ. Длительность его выбиралась не больше 10^{-7} s, чтобы при его воздействии не успевали заметно измениться параметры токового шнура. Таким образом полученная переходная ВАХ негисторной структуры отражает токо-

Рис. 1. Схема S-образной (a,b) и переходной (c) BAX негисторной структуры и электрических импульсов (1-4) в измерительной цепи. I и 2 — импульсы напряжения (U), падающего на структуру, и тока (I) через нее при ее переводе в низкоомное состояние; 3 и 4 — измерительные импульсы напряжения (U_m) и тока (I_m) ; U_{0s} и I_{0s} — напряжение и ток поддержки низкоомного состояния; t — время.

прохождение через упомянутый гетеропереход в области токового шнура.

Для расчета радиуса r_c поперечного сечения шнура тока (канала) в аморфном полупроводнике использовали формулу

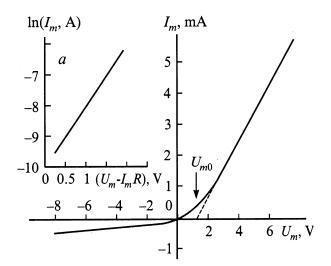
$$r_c = \frac{d_{\rm Si}}{2} \left[\left(1 + 4 \frac{\rho_{\rm Si}}{\pi d_{\rm Si} R_{\rm Si}} \right)^{1/2} - 1 \right],$$
 (1)

где d_{Si} — толщина эпитаксиального слоя Si.

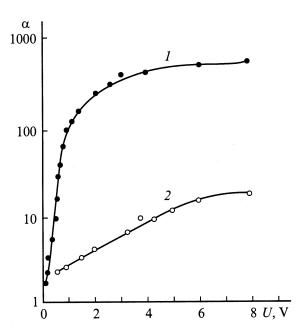
Эта формула получена из расчета сопротивления $R_{\rm Si}$ области шнурования тока в указанном эпитаксиальном слое, принимая, что электрический ток из канала повышенной проводимости в аморфном слое растекается в кристаллический полупроводник под углом 45° (по мнению авторов работы [9] такое предположение вполне оправдывается). В данном случае токовый шнур в эпитаксиальном слое Si имеет форму усеченного конуса, радиусы нижнего и верхнего оснований которого составляют $d_{\rm Si}+r_c$ и r_c соответственно.

При расчете плотности тока в канале пользовались выражением

$$j_c = \frac{I_{0s}}{\pi r_c} \left[1 + \frac{\rho_c}{\rho_a} \left(\frac{r_0}{r_c} - 1 \right)^2 \right]^{-1},$$
 (2)


где ρ_a — удельное сопротивление неканальной области аморфного полупроводника; r_0 — радиус рабочего контакта между аморфным и кристаллическим компонентами гетероструктуры.

Для реальных негисторных структур обычно имеет место $\rho_a/\rho_c\gg r_0/r_c$ и, следовательно, $(\rho_c/\rho_a)(r_0/r_c-1)^2\ll 1$, о чем можно судить по значительному различию (обычно на несколько порядков [3]) величины тока в низкоомном и исходном высокоомном состояниях.

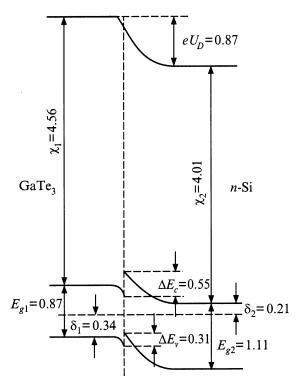

Параметры r_c и j_c в безбарьерных контрольных структурах С-аморфный GaTe₃–С определялись способом, основанным на измерениях СВЧ шумов [4,5].

Результаты и их обсуждение

Переходные ВАХ рассмотренных нами гетероструктур получены асимметричными относительно полярности измерительного импульса (рис. 2). Однако эта их асимметричность несколько слабее, чем в случае ВАХ в высокоомном состоянии (рис. 3). Их ветвь, соответствующая прямому направлению структур (потенциал *n*-Si отрицателен), в отличие от упомянутых ВАХ в высокоомном состоянии кроме экспоненциальной (при малых напряжениях) содержит также прямолинейную часть, что свойственно классической ВАХ барьерных

Рис. 2. Переходная ВАХ негисторной гетероструктуры аморфный $GaTe_3$ кристаллический n-Si в низкоомном состоянии, образовавшемся при воздействии электрического напряжения в пропускном направлении. Ток и продолжительность поддержки низкоомного состояния $6 \, \mathrm{mA}$ и $140 \, \mathrm{ns}$ соответственно; длительность измерительного импульса $20 \, \mathrm{ns}$, a — зависимость прямого тока от напряжения при $U_m \leq U_{m0}$.

Рис. 3. Зависимость асимметричности проводимости негисторной гетероструктуры аморфный $GaTe_3$ кристаллический $n ext{-}Si$ от напряжения смещения в исходном высокоомном (1) и низкоомном (2) состояниях. α — отношение прямого тока к обратному при одинаковой величине напряжения смещения. 2 рассчитана по данным измерения переходной BAX (рис. 2).


структур. Наклон $G = dI_m/dU_m$ (I_m и U_m — измерительный ток и напряжение) данной прямолинейной части переходной ВАХ зависит от тока поддержки, увеличиваясь с увеличением последнего. Прямолинейность данной характеристики свидетельствует об омичности суммарного сопротивления канала повышенной проводимости в аморфном слое и с ним контактирующей электрически активной части эпитаксиальной пленки кремния (области шнура тока в ней), а изменение ее наклона при изменении тока поддержки отражает изменение поперечных размеров токового шнура в аморфном полупроводнике. При повышении температуры переходная ВАХ сдвигается в сторону больших токов, однако наклон ее упомянутой экспоненциальной части в полулогарифмических координатах от температуры практически не зависит. Следовательно, она описывается выражением $I_m = I_0 \exp U_m/U_0$, где I_0 — от температуры зависящий множитель; $U_0(0.15\pm0.2)\,\mathrm{V}$ — величина, близкая соответствующему параметру в экспоненциальной зависимости барьерного сопротивления (R_h) от напряжения в прямом направлении в случае, когда гетероструктура находится в исходном высокоомном состоянии [6].

При оценке параметров канала повышенной проводимости необходимо было знать сопротивление $R_{\rm Si}$, входящее в формулу (1). Оно нами определялось по наклону G прямолинейной части переходной BAX ($R_{\rm Si}=G^{-1}-R_c$), считая, что сопротивление канала $R_c=U_{0s}'/I_{0s}$, где U_{0s}' — напряжение поддержки низкоомного состояния контрольной безбарьерной структу-

ры С-аморфный GaTe₃-С. Это предположение сделано исходя из того, что области шнура тока в низкоомном состоянии данных безбарьерных структур свойственна безактивационная проводимость, возникающая вследствие электрических процессов типа электроннофазового перехода [10]. Поскольку этот переход, судя по результатам исследования СВЧ шумов [10], вызван в основном лишь джоулевым разогревом, можно полагать, что режим поддержки низкоомного состояния в аморфном слое не должен зависеть от механизма электропереноса в исходном высокоомном состоянии негисторной структуры, т. е. он должен быть одинаковым для контрольных безбарьерных и исследованных барьерных структур. Согласно данной оценке, параметры r_c и j_c в рассмотренных гетероструктурах являются порядка единиц μ m и $10^4\,{\rm A\cdot cm^{-2}}$ соответственно. Так, в случае гетероструктуры, переходная ВАХ которой приведена на рис. 2 (в ней $d_a \approx 0.8 \,\mu\mathrm{m}$), при токе поддержки низкоомного состояния, равном $6\mu A$, r_c получен равным $(2.7\pm0.1)\,\mu\text{m}$, а j_c — $(2.6\pm0.2)\cdot10^4\,\text{A}\cdot\text{cm}^{-2}$. В данном случае соотношение r_0/r_c не превышало 10, в то время как соотношение ρ_a/ρ_c , судя по разнице тока через структуру в низкоомном и высокоомном состояниях при одинаковых напряжениях смещения, должно было достичь нескольких порядков. Величина ρ_c , оцененная при использовании полученных величин r_c и j_c , а также R_c , определенного указанным выше способом, составляла $(0.38 \pm 0.04) \Omega \cdot \text{cm}$.

Полученные нами величины r_c и j_c в пределах погрешностей совпадают с соответствующими параметрами токового шнура в контрольной безбарьерной структуре С-аморфный GaTe₃-C, а ρ_c по порядку величины согласуется с данными $(0.09-0.22~\Omega \cdot \text{cm})$, полученными в [10] при исследовании СВЧ шумов в этих структурах.

Одинаковый экспоненциальный вид полученной нами зависимости $I_m = f(U_m)$ и упомянутой выше зависимости $R_b = f(U)$ при малых прямых напряжениях, а также приблизительное равенство U_0 в их выражениях дает основание (с учетом результатов работы [6]) утверждать, что данная часть переходной ВАХ отражает лишь процессы в потенциальном барьере, сохранившимся в кристаллическом компоненте исследованной структуры в области шнура тока. Что представляет собой этот барьер, пока можно судить лишь по ориентировочной зонной диаграмме гетероструктуры в исходном высокоомном состоянии (рис. 4). При построении такой диаграммы предполагали, что длина экранирования и концентрация состояний в запрещенной зоне аморфного GaTe₃ по порядку величин близки соответствующим параметрам халькогенидных стеклообразных полупроводников [11]. В данном случае нескомпенсированный объемный заряд в кристаллическом компоненте исследованной нами гетероструктуры должен распространяться на значительно большую глубину, чем в аморфном слое. Кроме того, диффузионный потенциал U_D принимали равным напряжению отсечки вольт-фарадной характеристики, приведенному в [6]. Как видно из рис. 4, из-

Рис. 4. Ориентировочная зонная диаграмма гетероперехода в негисторной гетероструктуре аморфный $GaTe_3$ кристаллический n-Si в исходном высокоомном состоянии. $\delta_{1(2)}$ и $\chi_{1(2)}$ — расстояние уровня Ферми от края зоны и электронное сродство вещества соответственно; ΔE_c и ΔE_v — разрывы зон на границе раздела гетероперехода; $\Delta E_{g1(2)}$ — ширина запрещенной зоны; U_D — диффузионный потенциал; e — элементарный заряд. Энергетическая единица — электрон-вольт.

за разрыва края зоны проводимости в зонной диаграмме рассмотренной гетероструктуры имеется энергетический "пичок" шоттковского типа, который и определяет особенность электропереноса в структуре. Доминирующим механизмом прохождения тока через данный барьер при низких прямых напряжениях, согласно данным, приведенным в [6], является туннелирование носителей заряда, причем этот туннельный ток является тепловым по своей природе [12].

Для того чтобы упомянутый энергетический "пичок" сохранился в зонной диаграмме области шнурования тока после перехода гетероструктуры в низкоомное состояние и тем самым, чтобы при малых прямых смещениях не изменился механизм электропереноса в этой области, на что указывают вышеприведенные результаты исследований, местоположение уровня Ферми на поверхности раздела гетероперехода в указанной части структуры не может подвергаться значительному изменению. Такая ситуация независимо от местоположения уровня Ферми в канале повышенной проводимости может иметь место благодаря экранирующему действию поверхностных состояний кристаллического компонента. Это, согласно [13], именно и свойственно реальной поверхности

кремния, неподвергавшейся специальной обработке. Дополнительные примесные центры на поверхности кремния могут образоваться также и в процессе нанесения аморфного слоя GaTe₃. Кроме того, вполне возможно, что канал (особенно при малых токах поддержки низкоомного состояния) не является однородным по проводимости. Причиной этого может быть градиент температур, образующийся при теплоотводе через рабочие контакты, в том числе через контакт с кремнием. Наряду с безактивационной квазиметаллической проводимостью в центральной части канала, в приконтактной его области с кремнием может существовать тонкий (в крайнем случае даже туннельнопрозрачный) слой с остаточной полупроводниковой проводимостью. Этот слой способен фиксировать уровень Ферми в запрещенной зоне GaTe₃. На возможность существования такого приконтактного слоя указывают, в частности, данные, приведенные в [14].

Что касается различия в степени асимметрии переходной ВАХ в низкоомном и ВАХ в высокоомном состояниях исследованных гетероструктур, то его следует связывать с различной интенсивностью токопрохождения в этих состояниях в обратном направлении. Электроперенос барьерных p-n-структур в этом направлении, как известно, обусловлен дрейфом неосновных носителей заряда: в нашем случае дырками в кремнии и электронами, содержащимися в аморфном GaTe₃. Ввиду сравнительно малой концентрации последних плотность обратного тока в исходном высокоомном состоянии гетероструктуры является незначительной. После перехода структуры в низкоомное состояние она в области шнура тока должна резко увеличиваться из-за упомянутого выше значительного увеличения концентрации свободных электронов в проводящем канале аморфного полупроводника. Ввиду этого эффекта часть гетероперехода в области шнура тока после его образования можно рассматривать как некий аналог барьера Шоттки в структуре металл-полупроводник, в то время как гетеропереход в исходном высокоомном состоянии является аналогом p-n-перехода со слабо легированной р-областью. В случае, когда полупроводником в этих структурах служит кремний, плотность обратного тока в первой из них, согласно данным, приведенным в [13], является на несколько порядков большей, чем во второй. Это в основном и обусловливает упомянутую выше более низкую асимметрию проводимости области шнура в исследованной гетероструктуре.

Выводы

1. Потенциальный барьер в области формирования шнура тока в исследованной негисторной гетероструктуре аморфный $GaTe_3$ —кристаллический n-Si сохраняется при ее переходе в низкоомное состояние. Электропроводность этой области, отражаемая переходной BAX структуры в указанном низкоомном состоянии, обусловлена в основном электронными процессами, про-

исходящими в кремении. Уменьшение асимметрии проводимости области шнурования тока при упомянутом переходе объясняется увеличением дрейфового потока электронов через потенциальный барьер при обратных смещениях.

2. Параметры r_c , j_c и ρ_c токового шнура (канала) в аморфном слое ${\rm GaTe_3}$ рассмотренной барьерной гетероструктуры имеют значения порядка единиц μ m, $10^4\,{\rm A\cdot cm^{-2}}$ и $10^{-1}\,{\rm \Omega}\cdot{\rm cm}$ соответственно. Они практически совпадают с соответствующими параметрами безбарьерной контрольной структуры ${\rm C-amop}$ фный ${\rm GaTe_3-C}$, свидетельствуя в пользу предположения о независимости природы канала повышенной проводимости в слое ${\rm GaTe_3}$ от процессов, инициирующих электрическую неустойчивость в этих структурах.

Авторы выражают благодарность А.-К. Огинскису за помощь при проведении эксперимента.

Список литературы

- Petersen K.E., Adler D. // IEEE Trans. Electron. Devices. 1976. Vol. ED-23. N 4. P. 471–475.
- [2] Адлер Д. // УФН. 1978. Т. 125. № 4. С. 707–730.
- [3] *Костылев С.А., Шкут В.А.* Электронное переключение в аморфных полупроводниках. Киев: Наукова думка, 1978. 203 с.
- [4] Česnys A., Oginskas A., Gaška K., Lisauskas V. // J. Non-Cryst. Sol. 1987. Vol. 90. P. 609–612.
- [5] AC. СССР. № 1278624. Б.И. G01 K7/30. 1985.
- [6] Чеснис А., Огинскас А., Бутинавичюте Э. и др. // Литовский физ. сб. 1984. Т. 24. № 3. С. 83–89.
- [7] Чеснис А., Огинскас А., Лисаускас В. // Литовский физ. сб. 1992. Т. 32. № 5. С. 664–675.
- [8] Pryor R.W., Henisch H.K. // J. Non-Cryst. Sol. 1972. Vol. 7. N 2. P. 181–186.
- [9] Petersen K.E., Adler D. // J. Appl. Phys. 1976. Vol. 47. N 1. P. 256–259.
- [10] Чеснис А., Огинскис А.-К. // Литовский физ. журнал. 1998.Т. 38. № 4. С. 385–392.
- [11] *Мотт Н., Дэвис Э.* Электронные процессы в некристаллический веществах. М.: Мир, 1982. 663 с.
- [12] Шарма Б.Л., Порохит Р.К. Полупроводниковые гетеропереходы. М.: Сов. радио, 1979. 227 с.
- [13] Родерик Э.Х. Контакты металл-полупроводник. М.: Радио и связь, 1982. 209 с.
- [14] Чеснис А., Огинскис А.-К. // Литовский физ. журнал. 1994. Т. 34. № 3. С. 272–275.