03;07;12

Манипуляция газовым пузырьком в ячейке Хеле–Шоу с помощью пучка света

© Б.А. Безуглый, Н.А. Иванова

Тюменский государственный университет E-mail: bezuglyi@utmn.ru

Поступило в Редакцию 1 апреля 2002 г.

Исследовано взаимодействие пузырька в поглощающем растворе тензоактивного вещества в легколетучем растворителе с пучком света. Впервые продемонстрированы такие типы манипуляции пузырьками пучком света, как деление больших пузырьков и перемещение малых с использованием концентрационнокапиллярного механизма.

Известно, что газовый пузырек в жидкости с градиентом температуры ∇T перемещается в горячую область даже против силы плавучести [1]. Это движение, называемое термокапиллярным (ТК) [2], вызвано разностью в поверхностном натяжении σ между противоположными полюсами пузырька, через которые проходит ось, коллинеарная с ∇T , заданным в объеме жидкости.

Движение пузырьков в микроканалах или ячейках, индуцированное продольным ∇T , который создают путем кондуктивного подвода тепла, активно изучается с точки зрения применения в современных микрофлуидных и MEMS устройствах [3–5]. В [6] впервые показана возможность манипуляции газовым пузырьком с помощью пучка света.

Поскольку в работе [6] изучение движения пузырьков за пучком света не являлось основной задачей, то данная работа посвящена детальному исследованию механизмов этого эффекта и развитию предложенной ранее методики.

Экспериментальная установка представляла собой модернизированный микроскоп МУФ-1, где в качестве точечного источника света использовали лампу ДРШ-100 с оптической системой для фокусировки пучка. Диаметр перетяжки пучка в его фокусе был равен $d = 0.60 \pm 0.05$ mm, а полная мощность пучка P = 200 mW. Исследу-

71

емая жидкость находилась в сборной кювете типа ячейки Хеле-Шоу, которую помещали на предметный столик микроскопа.

С целью получения численной информации о размерах пузырьков и скорости их движения, а также времени деления фасолевидного пузырька, микроскоп был оснащен видеокамерой (25 pictures/s, 560 lines/mm), соединенной через TV тюнер Capture 98 w/VCR с компьютером.

Ячейка Хеле–Шоу состояла из двух кварцевых пластин, разделенных тефлоновой 10 μ m прокладкой с вырезанным в ней прямоугольным каналом 2 × 4 cm, в который пипеткой вносили несколько капель жидкости. В качестве исследуемой жидкости использовали раствор поглощающего излучение нелетучего или малолетучего тензоактивного вещества (TAB) в легколетучем растворителе, как например насыщенный при 20°С раствор CuBr₂ или I₂ в 96%-ном этиловом спирте или ацетоне. Поглощение 10 μ m жидкого слоя для этих растворов было близко к 90%. Заполненную раствором ячейку помещали между двумя кольцевыми прижимными дисками и стягивали винтами. Как правило, раствор распределялся так, что в канале оставалось несколько газовых пузырьков различного диаметра к диаметру светового пятна, $D/d = D^*$. При $D^* \leq 1$ пузырек считали малым, а при $D^* \geq 1$ — большим.

Ячейку размещали так, чтобы какой-либо из пузырьков оказался в области светового пятна. Далее, когда ее перемещали в произвольном направлении относительно пучка,¹ то пузырек следовал за пучком и межфазная граница (МФГ) в его носовой части находилась в области светового пятна. За счет нагрева на МФГ происходили два конкурирующих процесса: понижение поверхностного натяжения и его повышение вследствие испарения растворителя. При скорости пучка выше некоторого критического значения v^* , когда испарение с МФГ незначительно, механизм движения пузырька обусловлен лишь действием ТК сил. В этом случае поверхностные течения вдоль МФГ увлекают соседние слои жидкости и в точке стагнации возникает отрицательное давление, которое формирует возвратные потоки жидкости. Таким образом, в носовой части пузырька возникают два конвективных вихря (рис. 1, *a*). Значение v^* составляло 0.5–1 mm/s для раствора CuBr₂ в этаноле и около 1 cm/s для раствора I_2 в ацетоне.

¹ В дальнейшем будем говорить просто о смещении пучка света относительно ячейки.

Рис. 1. ТК и КК механизмы перемещения пузырьков с помощью пучка света. Стрелкой показано направление движения пучка света. a — движение пузырька вызвано действием только ТК сил (1) — раствор йода в ацетоне; b — движение только за счет КК сил (2) — CuBr₂ в этаноле; c — одновременное действие на пузырек КК и ТК сил — йод в этаноле; 3 — пар.

Из-за вязкого трения пузырек с $D^* \ge 1$ при движении деформируется и принимает овальную форму (рис. 1, *a*). В опытах с раствором CuBr₂ в этаноле, при скорости пучка выше 0.7 mm / s пузырек деформировался так сильно, что отношение его продольного диаметра к поперечному достигало 5. В случае малого пузырька деформация его формы не наблюдалась.

При $v < v^*$ малый пузырек движется впереди пучка света. Столь необычное поведение объясняется включением в облучаемой зоне концентрационно-капиллярного (КК) механизма, связанного с ростом концентрации *C* ТАВ за счет испарения растворителя, т.е. выполнением условия $\sigma'_C \nabla C > |\sigma'_T| \nabla T$, где σ'_C и σ'_T — концентрационный и температурный коэффициенты σ . При этом вблизи МФГ появляются два согласованных капиллярных вихря (рис. 1, *b*), поля скоростей которых генерируются встречными касательными напряжениями вдоль

Рис. 2. Стадии деления фасолевидного пузырька пучком света. Интервал между кадрами 0.5 s. Раствор CuBr₂ в ацетоне.

МФГ, направленными в область максимальной интенсивности пучка. Доказательством действия КК механизма является отчетливый след повышенной концентрации ТАВ за пузырьком (рис. 1, *b*). При $D^* = 0.4$ скорость пузырька в растворе I_2 в этаноле достигала 0.3 mm/s.

В случае больших пузырьков, где кривизна поверхности мала, скоростной напор $P_i = \rho v_s^2/2$ поверхностного КК течения может превысить капиллярное давление $P_c = \sigma/r$ пузырька и тогда МФГ в облучаемом участке прогибается внутрь в виде мыса и пузырек принимает вид фасолины (рис. 1, *c*). Здесь ρ — плотность жидкости, v_s — скорость течения на МФГ, а *r* — радиус кривизны мыса. Течения с диаметрально противоположной стороны пузырька вызваны конденсацией растворителя на холодной МФГ, что понижает ее поверхностное натяжение как вследствие разбавления раствора, так и за счет повышения его температуры.

С увеличением кривизны мыса скорость испарения растворителя с его поверхности возрастает, а конвективное перемешивание с маточным раствором из-за удлинения мыса затрудняется, что приводит к лавинообразному росту концентрации ТАВ и, следовательно, к росту σ в носовой части. Таким образом, вызванный увеличением градиента концентрации рост скоростного напора КК течения продвигает мыс до встречи с противоположной стенкой пузырька и после их соединения пузырек оказывается разделенным на две части (рис. 2).

75

Работа поддержана грантом РФФМ № 01-01-652а.

Авторы признательны О.А. Тарасову за полезные дискуссии и Ф.Х. Чаппарову за техническую помощь.

Список литературы

- [1] Young N.O., Goldstein J.S., Block M.J. // J. Fluid. Mech. 1959. V. 6(3). P. 350-356.
- [2] Федосов А.И. // ЖФХ. 1956. V. 3(2). С. 366-373.
- [3] Hasan M., Balasubramaniam R. // J. Thermophys. Heat Transfer. 1989. V. 3. P. 87.
- [4] Jun T.K., Kim C.-J. // J. Applied Physics. 1998. V. 83(11). P. 5658-5664.
- [5] Mazouchi A., Homsy G.M. // Phys. Fluids. 2000. V. 12. P. 542-549.
- [6] Безуглый Б.А. Канд. дис. М.: МГУ, 1983. 270 с.
- [7] Sato M. et al. // Hitachi Cable Review. 2001. N 20. P. 19-24.