07,10

Упругие постоянные второго и третьего порядков керамики B₄C

© В.Д. Бланк, В.М. Прохоров, Б.П. Сорокин, Г.М. Квашнин, А.В. Теличко, Г.И. Гордеев

Технологический институт сверхтвердых и новых углеродных материалов,

Москва, Троицк, Россия

E-mail: pvm@tisnum.ru

(Поступила в Редакцию 23 января 2014 г.)

Исследованы линейные и нелинейные упругие характеристики керамики карбида бора B₄C. По экспериментально измеренным значениям плотности и скоростей продольных и сдвиговых объемных акустических волн в образцах рассчитаны упругие постоянные второго порядка и другие параметры теории упругости в линейном приближении. Методом Терстона—Брагтера определены упругие постоянные третьего порядка для B₄C. Для этого измерены относительные изменения скоростей продольных и сдвиговых объемных акустических волн в зависимости от величины приложенного к образцу одноосного сжатия.

Измерения проведены на оборудовании Центра коллективного пользования "Исследования наноструктурных углеродных и сверхтвердых материалов" ФГБНУ ТИСНУМ.

1. Введение

Карбид бора (B₄C) находит широкое применение благодаря своим великолепным физическим и прежде всего механическим характеристикам. Это третий по твердости (после алмаза и кубического нитрида бора) материал. Высокие значения твердости, модулей упругости, прочности, износостойкости, химической стабильности в сочетании с малой плотностью и высокой теплопроводностью обусловили широкое использование этого материала в качестве шлифовальных порошков, защитных и износостойких покрытий режущего инструмента, сопел для водоабразивной резки. При применении В₄С в качестве модифицирующего наполнителя наличие бора в композите предполагает использование этого материала для защиты от рентгеновского, гамма- и нейтронного излучений.

Путем химических реакций B₄C производится в виде порошка и для промышленного применения консолидируется в основном методами горячего прессования [1,2] и спекания в искровой плазме [3]. Один из последних обзоров по методам синтеза, спекания, физическим свойствам и применению B₄C представлен Сури и др. [4]. Большой и полный обзор физических свойств B₄C дан в работе Зевенота [5] и в сравнительно недавнем обзоре Домнича и др. [6].

Твердость, предел прочности, модули упругости, скорости упругих волн, нелинейные механические характеристики керамики B_4C исследовались достаточно интенсивно динамическими методами (ударно-волнового сжатия и анализа ударной адиабаты Гюгонио) [7–10]. Это связано с применением материала в качестве бронезащиты, где важны такие характеристики, как ударные вязкость, пластичность и предел упругости.

Измерения скоростей ультразвуковых волн и связанных с ними модулей упругости B_4C также проводились многими исследователями [11-15], в том числе и в условиях гидростатического сжатия [16,17]. В последнее время появились работы по измерению твердости и

модуля Юнга монокристаллов и пленок B_4C методом наноиндентирования [18,19].

Исследования (теоретические или экспериментальные) модулей упругости и упругих постоянных третьего порядка для B_4C нам неизвестны. Повышенный интерес к изучению нелинейных свойств конструкционных материалов вызван тем, что в работе [20] была установлена заметная корреляция между нелинейностью и прочностью таких материалов. Поэтому исследование нелинейных упругих свойств материалов имеет не только фундаментальное, но и прикладное значение.

2. Нелинейная теория упругости и упругие волны

Линейные упругие свойства изотропных твердых тел характеризуются модулями упругости (K — объемный модуль, G — модуль сдвига, E — модуль Юнга, σ — коэффициент Пуассона), а кристаллических — упругими постоянными второго порядка (УПВП).

Для описания нелинейных упругих свойств твердых тел используют упругие постоянные третьего порядка (УПТП). Они характеризуют ангармонизм кристаллической решетки и используются в построении уравнения состояния материала и для количественного анализа взаимодействия акустических волн в твердых телах [21].

УПВП и УПТП являются коэффициентами разложения внутренней энергии U по степеням деформации u_{kl} при квадратичных и кубических членах этого разложения. Определения тензоров УПВП и УПТП даны в классических работах [22,23]:

$$C_{ijkl} = \left(\frac{\partial^2 U}{\partial u_{ij}\partial u_{kl}}\right)$$
 — УПВП, $C_{ijklgr} = \left(\frac{\partial^3 U}{\partial u_{ij}\partial u_{kl}\partial u_{gr}}\right)$ — УПТП. (1)

Скорости V объемных акустических волн (OAB) малой амплитуды и их изменения при действии механических

5* 1523

Элемент	Элемент Концентрация, wt.%		Интенсивность спектральной линии	Концентрация, at.%
Ni	0.051	0.070	0.7566	0.010
Fe	0.276	0.043	0.7603	0.055
Si	0.324	0.022	0.8834	0.129
Al	0.451	0.016	1.0677	0.187
C	26.674	0.562	0.0547	24.854
В	72.224	0.558	0.7008	74.765
Всего	100.000			100.000

Таблица 1. Химический состав исследуемых образцов

 Π римечание. Все элементы анализировались по линии K_{α} .

напряжений в твердых телах произвольной симметрии выражаются через комбинации коэффициентов УПВП и УПТП. В изотропном твердом теле отличны от нуля 12 констант УПВП, из которых линейно независимыми являются только две, например C_{11} и C_{44} (здесь и далее коэффициенты УПВП или УПТП будут записываться в матричном представлении). Остальные упругие постоянные можно выразить через линейную комбинацию этих двух УПВП.

Наиболее распространенный метод определения УПВП основан на измерениях скоростей V ОАВ малой амплитуды в твердых телах произвольной симметрии. Для изотропного твердого тела выполняются соотношения $\rho_0 V_L^2 = C_{11}, \; \rho_0 V_S^2 = C_{44}, \; \text{где} \; \rho_0 \; - \; \text{плотность}, V_L \; и \; V_S \; - \;$ фазовые скорости продольной и сдвиговой акустических волн.

Определение УПТП кристаллических тел (1) дает метод их измерения, разработанный Терстоном и Браггером [22]. Метод заключается в измерении зависимости скорости ОАВ в твердом теле от величины приложенного к нему гидростатического и/или одноосного давления P

$$\left(\frac{\partial(\rho_0 W^2)}{\partial P}\right)_{P=0} = (2\rho_0 W^2 F + G),\tag{2}$$

где ρ_0 — плотность среды при P=0, W — "естественная скорость" акустической волны (в невозмущенном состоянии), $G=S_{ipab}C_{jrksip}u_ju_kN_rN_sM_aM_b, \\ \rho_0W^2=C_{jrks}^SU_jU_kN_rN_s, F=S_{jkab}^TM_aM_bU_jU_k, S_{ipab}$ — компоненты тензора изотермической упругой податливости, U_i, N_r — компоненты единичных векторов смещения U и волнового вектора $\mathbf N$ ОАВ соответственно, M_i — компоненты единичного вектора $\mathbf M$ в направлении одноосного сжатия.

В изотропном твердом теле отличны от нуля 18 компонент тензора УПТП. При этом три компоненты УПТП, например C_{111} , C_{112} , C_{123} , считаются независимыми, а остальные являются их линейными комбинаниями.

Традиционно для описания нелинейных свойств изотропного твердого тела используется пятиконстантная теория упругости [21], в которой помимо двух модулей

второго порядка (например, модулей K и G или модулей Ламе λ и μ) вводятся еще три модуля третьего порядка (так называемые нелинейные модули). Как и в случае модулей второго порядка, модули третьего порядка могут быть выбраны различными путями. Наиболее часто используются константы третьего порядка Ламе l, m и n и нелинейные модули Мурнагана A, B и C, связь между которыми, а также с независимыми компонентами УПТП дается соотношениями [23]

$$l = B + C$$
, $m = 0.5A + B$, $n = A$,
 $A = n$, $B = m - 0.5n$, $C = l - m + 0.5n$,
 $C_{111} = l + 6m + 8n$, $C_{112} = l + 2m$, $C_{123} = l$.

Для определения трех независимых УПТП $C_{111}, C_{112}, C_{123}$ в изотропном твердом теле необходимо проведение трех независимых измерений зависимостей скорости ОАВ от величины одноосного сжатия P при следующем взаимном расположении единичных векторов M, N и U: $N \parallel U \perp M$; $N \perp U \parallel M$; $N \perp U \perp M$.

3. Характеризация образцов

Образцы керамики B_4C были приготовлены методом горячего прессования из порошка со средним размером частиц $1.6\,\mu\text{m}$ с последующим спеканием под давлением $150\,\text{MPa}$ при температуре до 1950°C . Время выдержки при максимальной температуре составляло $40\,\text{min}$. Технологические детали описаны в работе [24].

В качестве материалов для исследования нами использовались два образца керамики B_4C с размером $40 \times 30 \times 30$ mm.

Плотность образцов измерялась с помощью электронных лабораторных весов "КЕRN-770-60" (Германия, класс точности по ГОСТ 24104-88-1) с приставкой для измерения плотности "Sartorius YDK 01 LP". Для различных образцов значения плотности находились в диапазоне от 2.51 до 2.55 (± 0.01) g/cm³.

Химический состав керамических образцов, определенный методом энергодисперсионной рентгеновской спектроскопии (сканирующий электронный микроскоп JSM-7600F), представлен в табл. 1.

Таблица 2. Компоненты УПВП C_{ij} , модули упругости: Юнга E, сдвига G, объемный K ($10^{11}\,\mathrm{Pa}$), упругие податливости S_{ij} ($10^{-13}\,\mathrm{Pa}^{-1}$) и коэффициент Пуассона σ

Параметр	Значение	Параметр	Значение	Параметр	Значение
C_{11}	4.863 ± 0.003	S_{11}	22.58 ± 0.14	Е	4.43 ± 0.03
C_{12}	1.141 ± 0.001	S_{12}	-4.3 ± 0.8	K	2.38 ± 0.02
$C_{44} = G$	1.861 ± 0.002	S_{44}	53.74 ± 0.04	σ	0.19 ± 0.02

Таблица 3. Сравнение скоростей ОАВ и упругих характеристик карбида бора с литературными данными

Параметр	Наши данные	[10]	[11]	[14]	[16]	[17]
V_L , km/s	13.930	13.42	14.3	14.07	14.08	14.08
V_S , km/s C_{11} , GPa	8.618 486	8.43 453.3	8.93 513	8.11 497	8.86 498	8.77 498
$C_{44} = G, \text{GPa}$	186	178.9	200	165	197	193
E, GPa	443	420.1	472	460	462	457
K, GPa	238	214.8	247	237	235	241
σ	0.19	0.174	0.18	0.18	0.17	0.184

Следует отметить, что концентрация углерода в образцах превышает верхний предел ~ 21.6 at.% для фазы B₄C, при этом возможно образование малых кластеров свободного углерода, и образец представляет собой композит, состоящий из карбида бора и углеродной фазы $(c\text{-B}_4\text{C}+\text{C})$. Большая ошибка в измеренной концентрации бора и углерода обусловлена измерениями на сколотой поверхности без предварительной обработки. Наличие в составе образцов кристаллической фазы B₄C было подтверждено данными рентгенофазового анализа, полученными с использованием порошкового дифрактометра для исследования структуры поликристаллических образцов ТЕТА ARL X'TRA с детектором Пельтье.

С помощью твердомера DuraScan 10/20 была измерена твердость образцов с использованием индентора Виккерса с нагрузкой 10 N за 15 s. Среднее значение твердости составило 34 GPa, что совпадает с литературными данными [10].

4. Экспериментальные результаты и их обсуждение

Измерения скоростей ОАВ проводились эхо-импульсным методом двумя способами: с помощью лазерного оптико-акустического возбуждения ультразвуковых импульсов [25] и времяпролетным методом, где использовалась импульсная ультразвуковая установка с одним пьезоэлектрическим преобразователем. Для ультразвуковых измерений был выбран образец в виде прямоугольного параллелепипеда с размерами ребер $40 \times 30 \times 30$ mm и неплоскопараллельностью противоположных граней $\pm 1\,\mu$ m/cm. Акустические волны распространялись вдоль оси X_1 (направление [100]), дав-

ление прикладывалось вдоль X_3 -оси рабочей декартовой системы координат, связанной с образцом.

Последовательность коротких ($\sim 15\,\mathrm{ns}$) видеоимпульсов от мощного импульсного генератора AVTECH возбуждала кварцевый преобразователь продольных либо сдвиговых волн на его резонансной частоте ($30-37\,\mathrm{MHz}$). Последовательность переотраженных ультразвуковых импульсов наблюдалась на осциллографе DPO71254B с временным разрешением $\sim 20\,\mathrm{ps}$. Хорошую временную стабильность схемы обеспечивало применение измерителя временных интервалов И2-26. Измеряя время задержки (время пролета) между переотраженными импульсами и зная длину пути распространения, определяли скорость OAB.

Установленные с высокой точностью значения скоростей продольных V_L и сдвиговых V_S волн позволили в приближении изотропного твердого тела рассчитать компоненты УПВП C_{ij} , модули податливости второго порядка S_{ij} , модуль Юнга E, модуль объемного сжатия K и коэффициент Пуассона σ в образцах. Полученные численные значения этих коэффициентов приведены в табл. 2.

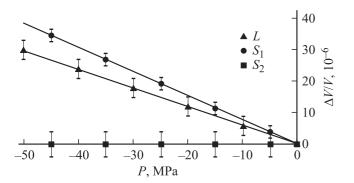
Сравнение полученных данных с литературными представлено в табл. 3. Измерение скоростей ОАВ в образцах при действии одноосного сжатия проводилось описанным выше времяпролетным методом. Давление одноосного сжатия (до 60 MPa) создавалось с помощью электромеханической испытательной машины INSTRON 5965 с погрешностью измерений до 5%. При воздействии одноосного давления в образце происходило изменение его упругих параметров и длины пути распространения, в результате отраженный импульс испытывал временной сдвиг, пропорциональный величине давления. Для получения наилучшей чувствительности временные сдвиги измерялись для отраженных импуль-

N	P	U	$ ho_0 V^2$	$lpha_V$	α_V , $10^{-12} \mathrm{Pa}^{-1}$
[100]	[001]	[100]	C_{11}	$\frac{1}{2C_{11}}\left[2S_{12}C_{11}+2S_{12}C_{111}+(S_{11}+S_{12})C_{112}\right]$	-0.6 ± 0.3
		[010]	C_{44}	$\frac{1}{4C_{44}} \left[4S_{12}C_{44} + S_{12}C_{111} + (S_{11} - S_{12})C_{112} - S_{11}C_{123} \right]$	-0.8 ± 0.2
		[001]	C_{44}	$\frac{1}{8C_{44}} \left[8S_{11}C_{44} + (S_{11} + S_{12})C_{111} + (S_{12} - S_{11})C_{112} - S_{12}C_{123} \right]$	0.0 ± 0.4

Таблица 4. Теоретические и экспериментальные значения коэффициентов α_V для карбида бора

сов, расположенных как можно дальше от зондирующего. Одноосное давление принималось отрицательным. Относительное изменение скорости рассчитывалось в соответствии с формулой

$$\Delta t/t = -\Delta V/V. \tag{3}$$


Полученные зависимости имели линейный характер для всех типов упругих волн в пределах использованных давлений (см. рисунок).

Для повышения точности определения трех независимых компонент УПТП нами было проведено семь измерений относительного изменения скорости на одном образце с последовательным возрастанием нагрузки. Поскольку полученные зависимости имели линейный характер, удобно использовать коэффициенты управления скоростью звука при одноосном давлении

$$\alpha_V = \frac{1}{V(0)} \left(\frac{\Delta V}{\Delta P}\right)_{\Delta P \to 0},$$
(4)

по которым и вычислялись компоненты УПТП (табл. 4).

В соответствии с принципом симметрии Кюри первоначально упругоизотропный керамический образец в результате воздействия одноосного давления испытывает понижение симметрии до ∞/mm , что с точки зрения упругих свойств отвечает поперечно-изотропной среде. Поэтому происходит как изменение скорости продольной волны, так и снятие вырождения для сдвиговых волн, распространяющихся перпендикулярно оси давления. В результате скорости сдвиговых волн с

Зависимости относительных изменений скоростей ОАВ от давления $\Delta V/V = f(P)$ для различных типов волн. L — продольная волна ($\mathbf{U} \perp \mathbf{P}$), S_1 — сдвиговая ($\mathbf{U} \parallel \mathbf{P}$), S_2 — сдвиговая ($\mathbf{U} \perp \mathbf{P}$).

Таблица 5. Упругие постоянные третьего порядка C_{ijk} $(10^{11} \, \mathrm{Pa})$ для карбида бора

Параметр	Значение		
C_{111} C_{112} C_{123}	-35.6 ± 7.1 -9.3 ± 3.2 -5.7 ± 1.9		
$C_{144} = \frac{1}{2} \left(C_{112} - C_{123} \right)$	-1.8		
$C_{166} = \frac{1}{4} \left(C_{111} - C_{112} \right)$	-6.575		

Таблица 6. Константы Ламе третьего порядка l, m, n и модули третьего порядка $A, B, C (10^{11} \, \mathrm{Pa})$ для карбида бора

l	m	n	A	В	C
-5.7	-1.8	-2.4	-2.4	-0.6	-5.1

Таблица 7. Производные модулей упругости карбида бора по давлению

Параметр	Наши данные	[16]	[17]
$\frac{\partial C_{11}/\partial P}{\partial K/\partial P}$ $\frac{\partial G}{\partial P}$	5.9 4.8 0.83	5.73 4.26 1.10	5.7 ± 0.3 4.67 ± 0.3 0.78 ± 0.4

упругими смещениями параллельно и перпендикулярно оси давления становятся различными.

Результаты расчетов компонент УПТП приведены в табл. 5. Полученные численные значения УПТП для B_4C позволяют рассчитать константы Ламе третьего порядка l, m, n и модули третьего порядка A, B, C (табл. 6). Согласно [23], выполняются соотношения

$$\partial C_{11}/\partial P + 1 = -(3K)^{-1}(C_{11} + C_{111} + 2C_{112}),$$

 $\partial C/\partial P + 1 = -(3K)^{-1}(C_{44} + C_{144} + 2C_{166}).$ (5)

На основании соотношений (5) и данных табл. 2 и 5 были рассчитаны производные по давлению модулей второго порядка (табл. 7). Производные по давлению служат параметрами уравнения состояния, например уравнения Берча—Мурнагана, и с хорошей точностью измеряются в экспериментах по гидростатическому сжатию материала. Несмотря на значительную погрешность

в определении компонент УПТП, рассчитанные из их значений производные упругих модулей хорошо согласуются с данными, полученными из гидростатических измерений.

5. Заключение

Образцы керамики B_4C приготовлены спеканием под давлением 150 MPa при температуре 1950°C порошка с размером зерна $1.6\,\mu$ m. Фазовый и элементный состав образцов определен методами рентгенодифракционного анализа и спектроскопии характеристических потерь энергии электронов. Эти измерения показали, что спеченный образец представляет собой композит из кристаллической фазы B_4C и углеродных фаз $(c-B_4C+C)$.

Акустическим методом определены все независимые компоненты тензоров УПВП и впервые УПТП в образцах керамики B_4C . Следует отметить такую особенность распространения акустических волн, возникающую в результате действия давления, как эффект снятия вырождения для сдвиговых волн, распространяющихся перпендикулярно оси давления.

Значения УПВП хорошо совпадают с известными литературными данными (табл. 3). Отрицательный знак коэффициентов УПТП в этом материале соответствует нормальному поведению зависимости напряжение—деформация в приближении нелинейности закона Гука. На основе численных значений УПТП получена оценка параметров нелинейности изотропного твердого тела: констант Ламе третьего порядка l, m, n и модулей третьего порядка A, B, C, а также производных по давлению модулей второго порядка. Последние хорошо согласуются с экспериментальными данными, полученными из измерений при гидростатическом давлении [16,17].

Список литературы

- [1] H.W. Kim, Y.H. Koh, H.E. Kim. J. Mater. Res. **15**, 2431 (2000).
- [2] J. Deng, J. Zhou, Y. Feng, Z. Ding. Ceram. Int. 28, 425 (2002).
- [3] K.H. Kim, J.H. Chae, J.S. Park, J.P. Ahn, K.B. Shim. J. Ceram. Process. Res. **10**, 716 (2009).
- [4] A.R. Sury, C. Subramanian, J.K. Sonber, T.S.R.Ch. Murthy. Int. Mater. Rev. 55, 4 (2010).
- [5] F. Thévenot. J. Eur. Ceram. Soc. 6, 4, 205 (1990).
- [6] V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla. J. Am. Ceram. Soc. 94, 3605 (2011).
- [7] W.H. Goust, E.B. Royce. J. Appl. Phys. 42, 276 (1971).
- [8] W.H. Goust, A.C. Holt, E.B. Royce. J. Appl. Phys. 44, 550 (1973).
- [9] T.J. Vogler, W.D. Reinhart, L.C. Chhabildas. J. Appl. Phys. 95, 4173 (2004).
- [10] Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino. J. Appl. Phys. 100, 113 536 (2006).
- [11] J.H. Gieske, T.L. Aselageand, D. Emin. AIP Conf. Proc. 231, 376 (1991).
- [12] А.Ю. Долгобородов, К.М. Воскобойников. ЖТФ 63, 2, 203 (1993).

- [13] Г.С. Карумидзе, Ш.Ш. Шавелашвили, В.Б. Чхиквишвили. ФТП **28**, 2162 (1994).
- [14] K.J. McClellan, F. Chu, J.M. Roper, I. Shindo. J. Mater. Sci. 36, 3403 (2001).
- [15] S.B. Lee, D.M. Bylander, L. Kleinman. Phys. Rev. B 45, 3245 (1992).
- [16] M.H. Manghnani, Y. Wang, F. Li, P. Zinin, W. Rafaniello. In: Science and technology of high pressure / Eds M.H. Manghnani, W.J. Nekkis, M.F. Nicol. University Press, Hyderabad (2000). P. 945.
- [17] S.P. Dodd., G.A.Saunders, B. James. J. Mater. Sci. 37, 2731 (2002).
- [18] V. Domnich, Y. Gogotsi, M. Trenary, T. Tanaka. Appl. Phys. Lett. 81, 3783 (2002).
- [19] V. Kulikovsky, C. Bohac, D. Stranyanek, L. Jastrabik. Diamond Related Mater. 18, 27 (2009).
- [20] О.В. Руденко. УФН 176, 77 (2006).
- [21] Л.К. Зарембо, В.А.Красильников. Введение в нелинейную акустику. Наука, М. (1966). 519 с.
- [22] R.N. Thurston, K. Brugger. Phys. Rev A 133, 1604 (1964).
- [23] Р. Терстон. В кн.: Физическая акустика. Т. 1. Ч. А / Под ред. У. Мэзона. Мир, М. (1966). С. 13.
- [24] V. Prokhorov, S. Perfilov, A. Useinov, K. Veprincev, C. Gnidash, R. Kuftyrev. Machines, Technologies, Materials 12, 21 (2013).
- [25] В.Э. Гусев, А.А. Карабутов. Лазерная оптоакустика. Наука, М. (1991). 304 с.