Моделирование методом теории функционала плотности зарядовых состояний Mn в разбавленных ферромагнитных полупроводниках состава Ga_{1-x}Mn_xAs: кластерный подход

© И.В. Крауклис, О.Ю. Подкопаева[¶], Ю.В. Чижов

Санкт-Петербургский государственный университет (физический факультет), 198504 Санкт-Петербург, Россия

(Получена 25 ноября 2013 г. Принята к печати 27 декабря 2013 г.)

Проведена серия квантово-химических кластерных расчетов методом теории функционала плотности по моделированию высокосимметричных нанокластеров $Ga_{15}MnAs_{16}H_{36}$ и $Ga_{12}MnAs_{16}H_{36}$, имитирующих объемную часть кристалла арсенида галлия с примесным магнитным центром Mn. Градиентно-подправленным методом PBEPBE/LanL2DZ изучены нейтральное Mn^0 и ионизированное Mn^- состояния атома Mn в исследуемых нанокластерах. Изменение зарядового состояния примесного центра с нейтрального на ионизированное приводит к заметной релаксации связей Mn-As в ближайшем окружении атома Mn и рекомбинации "p-дырки" вблизи валентной зоны, а также влияет на локализацию спиновой плотности. Методом градиентно-инвариантных атомных орбиталей (GIAO) с использованием гибридного функционала mPW1PW91 рассчитаны компоненты тензора g-фактора для нейтрального Mn^0 и ионизированного Mn^- состояний. Полученные значения g-фактора находятся в хорошем согласии с известными экспериментальными данными по электронному парамагнитному резонансу. Тем самым показана успешность использования кластерного подхода для описания зарядовых эффектов в разбавленных ферромагнитных полупроводниках.

1. Введение

За последнее десятилетие исследования так называемых разбавленных магнитных полупроводников (РМП) выделились в отдельную важную область науки о материалах [1]. Под РМП принято понимать полупроводниковые соединения, в которых часть атомов одной из подрешеток замещена примесями переходных или редкоземельных металлов. Было обнаружено [2,3], что наличие незначительных количеств допантов приводит к появлению ферромагнитного порядка в исходных полупроводниках. Существует несколько классов РМП, один из которых образуют соединения группы A^{III}B^V, в том числе InAs, InN, GaN и наиболее изученный GaAs [3]. Глубокое понимание механизмов взаимодействия между магнитными центрами и полупроводниковым материалом позволяет использовать зарядовые и спиновые свойства носителей, что является ключом к созданию новых спинтронных материалов и устройств [4].

Марганец оказался наиболее подходящей магнитной примесью благодаря своей высокой растворимости и диффузионной способности. Исследования магнитных состояний Мп $(3d^54s^2)$ в арсениде галлия показывают, что электронная $3d^5$ конфигурация атома марганца устойчива к воздействию электрических полей высокой симметрии, включая поля валентных электронов. Поэтому встраивание атома марганца на место элемента третьей группы в решетке соединения $A^{III}B^V$ приводит к появлению локального спинового момента S=5/2 и акцепторного состояния на 113 мэВ выше валентной зоны [5]. Химическая связь при этом не заселена электронами полностью, т.е. в непосредственной близости от атомного остова находится "p-дырка". Это

так называемое *нейтральное состояние* $\mathrm{Mn^0}$. В научной литературе также обсуждается альтернативная электронная конфигурация марганца для этой системы $\mathrm{Ga_{1-x}Mn_xAs}$ [6–8]: Mn $3d^4$ с полным спином S=2. Однако однозначных выводов до сих пор не сделано.

Кроме того, в образцах n-типа проводимости с избытком электронных носителей всегда обнаруживаются состояния с почти кубическим окружением, обладающие конфигурацией $3d^5$ и спином S=5/2. В соответствии с общепринятой терминологией эти состояния называют ионизированными и обозначают Mn^- . Наконец, в слабо легированных марганцем образцах арсенида галлия были обнаружены межузельные центры марганца $\mathrm{Mn}_{\mathrm{int}}$, обладающие электронной конфигурацией $3d^5$ [9].

Предсказание поведения магнитного центра определяется тем, насколько подробно изучена его электронная структура. Экспериментальное решение этой задачи возможно благодаря использованию локально чувствительных методов, таких как электронный парамагнитный резонанс (ЭПР) и внутрицентровая люминесценция [10]. В спектрах ЭПР регистрируются магнетодипольные переходы между зеемановскими уровнями основного состояния (терма) атома. Метод ЭПР дает информацию о симметрии окружения примесного атома по значению магнитного момента, т.е. по значению g-фактора или компонент g-тензора.

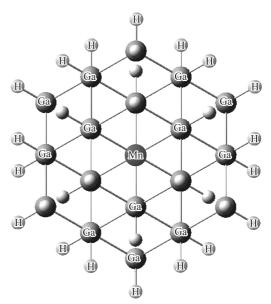
В работе [11] были подробно исследованы магнитные состояния марганца в арсениде галлия методом ЭПР. Так, ЭПР нейтрального состояния ${\rm Mn^0}$ характеризуется переходом с g-фактором 2.81 и надежно наблюдается лишь при отсутствии спектров конфигурации $3d^5$, обусловленной захватом электронов на уровень нейтрального центра марганца. Результаты исследований ЭПР в кристаллах n-типа проводимости свидетельствуют об

 $[\]P$ E-mail: opodkopaeva@yandex.ru

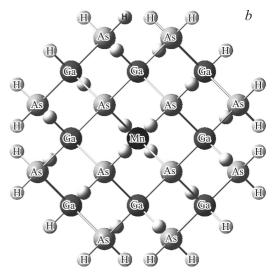
изменении зарядового состояния марганца, связанного с захватом электрона на уровень дырки и образованием ионизованного состояния Mn^- , характеризующегося значением g-фактора 2.002. Эти экспериментальные данные будут использованы нами в дальнейшем для сравнения с квантово-химическими расчетами компонент g-тензора для модельных нанокластеров $Ga_{1-x}Mn_xAs$. Современные квантово-химические методы исследования электронной структуры примесных центров обладают достаточно большим потенциалом и могут служить прекрасным дополнением к эксперименту.

2. Подходы и методы исследования

В данной работе мы последовательно развиваем кластерный подход [12,13] к описанию функциональных свойств полупроводниковых гетероструктур, который подразумевает поиск и моделирование наиболее энергетически устойчивых изолированных нанокластеров $Ga_{1-x}Mn_xAs$ в зависимости от их элементарного состава, размера и симметрии. Такой подход чрезвычайно популярен благодаря своей гибкости и возможности использовать стандартные методы молекулярной квантовой химии. Особенно он эффективен при моделировании локальных свойств кристаллов, например, различных дефектов или адсорбции молекул на поверхности твердого тела. Для устранения возникающих из-за обрыва связей граничных эффектов разорванные связи принято насыщать атомами водородами или псевдоатомами. К сожалению, результаты, получаемые с использованием кластерной модели, критически зависят от размера кластера, его стехиометрии и формы. Поэтому такой подход требует тщательного выбора самого нанокластера [14].

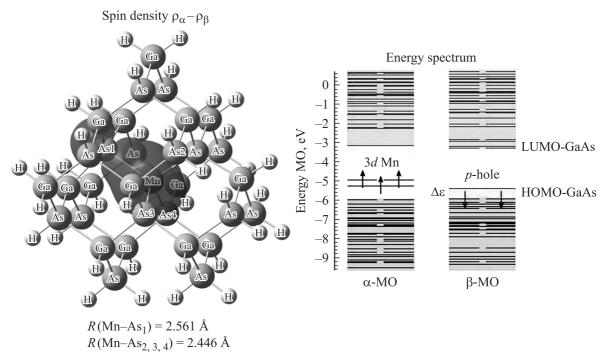

Для исследований была выбрана теория функционала плотности (ТФП), являющаяся одним из наиболее популярных и успешных квантово-химических подходов к изучению многоатомных систем с учетом электронной корреляции [15]. При этом методы ТФП имеют низкую размерность, что позволяет рассчитывать реальные наноструктуры. Кроме того, известно, что методы ТФП хорошо воспроизводят многие фундаментальные свойства и процессы с участием полупроводниковых систем [16-18]. В данной работе мы использовали градиентно-подправленный функционал РВЕРВЕ [19] и базис LanL2DZ [20] для оптимизации геометрии модельных нанокластеров, а также однопараметрический гибридный функционал mPW1PW91 [21] непосредственно для расчета д-факторов. Отметим, что функционал mPW1PW91 был специально разработан для расчета химических сдвигов и констант сверхтонкого взаимодействия спектров ЯМР.

Все квантово-химические расчеты производились с помощью лицензионного пакета *Gaussian09* [22], установленного на виртуальных unix-машинах в ПТЦ СПбГУ. Для визуализации результатов использовалась программа Gauss View 5.0 [23].


3. Результаты исследований и их обсуждение

3.1. Моделирование нейтрального состояния Mn⁰ в разбавленных ферромагнитных полупроводниках состава Ga_{1-x} Mn_x As

В качестве основного модельного кластера для изучения спиновых состояний Мп в объемном кристалле арсенида галлия был выбран нанокластер $Ga_{16}As_{16}H_{36}$ (симметрия C_{3v}), у которого центральный атом Ga замещался атомом Мп (см. рис. 1). При такой степени допирования концентрацию атомов Мп в системе можно оценить как 3.1%. Заметим, что нанокластер $Ga_{16}As_{16}H_{36}$ являет-



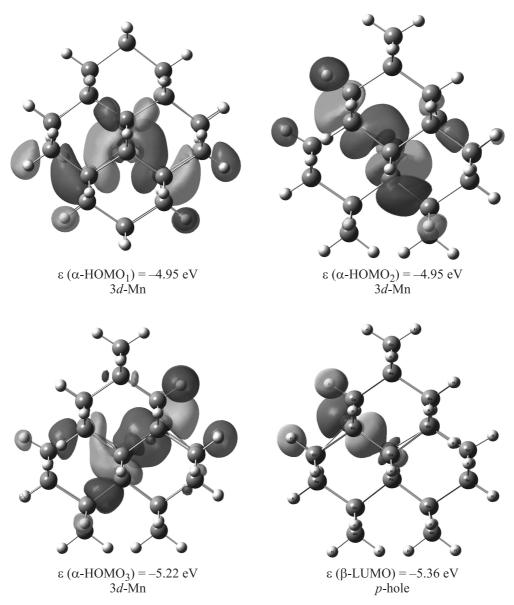
 $Ga_{15}MnAs_{16}H_{36}$ (symmetry C_{3v})

 $Ga_{12}MnAs_{16}H_{36}$ (symmetry T_d)

Рис. 1. Геометрия нанокластеров $Ga_{15}MnAs_{16}H_{36}$ и $Ga_{12}MnAs_{16}H_{36}$.

Рис. 2. Геометрия (вид сбоку), спиновая плотность и энергетическая последовательность α - и β -орбиталей Кона–Шэма нанокластера $Ga_{15}MnAs_{16}H_{36}$ с нейтральным зарядовым состоянием Mn^0 . Атомы As из ближайшего окружения атома Mn обозначены цифрами 1-4; расстояния R(Mn-As) между атомом Mn и атомами As из его ближайшего окружения указаны на рисунке.

ся стехиометрическим, что позволяет интерпретировать рассчитанную разницу между энергиями его высшей занятой (ВЗМО) и низшей свободной молекулярными орбиталями (НСМО) как условную ширину запрещенной зоны нанокристалла: $\Delta_{\rm gap} = |\varepsilon_{\rm B3MO} - \varepsilon_{\rm HCMO}|$. Длины связей Ga—As в исходном нанокластере Ga₁₆As₁₆H₃₆ соответствовали известным кристаллографическим данным $R({\rm Ga-As}) = 2.448\,{\rm \AA}\,\,[24]$, а все оборванные связи Ga—As пассивировались атомами H.


Для того чтобы смоделировать нейтральное состояние $\mathrm{Mn^0}$, имеющее конфигурацию $3d^5+$ "p-дырка", нанокластер $\mathrm{Ga_{15}MnAs_{16}H_{36}}$ разбивался на два фрагмента: атом Mn с зарядом Z=0 и мультиплетностью M=6 и оставшийся нестехиометрический кластер $\mathrm{Ga_{15}As_{16}H_{36}}$

с зарядом Z=0 и мультиплетностью M=2. Далее была проведена частичная (с фиксированием всех атомов водорода) оптимизация геометрии Мп-легированного нанокластера градиентно-подправленным методом РВЕРВЕ в базисе LanL2DZ, проанализирован его энергетический спектр, проведен анализ заселенностей естественных орбиталей (NBO-анализ) и методом градиентно-инвариантных атомных орбиталей (GIAO) [25] с использованием однопараметрийного гибридного функционала mPW1PW91 рассчитаны компоненты g-фактора. Основные результаты этих расчетов представлены на рис. 2 и в таблице.

Видно, что спиновая плотность $\rho_{\alpha}-\rho_{\beta}$ (под спиновой плотностью подразумевается разность между плотно-

Значения экспериментальных и расчетных компонент *g*-фактора для нейтрального и ионизированного состояний Мn варсениде галлия

Состояние атома Mn	g-фактор ЭПР [14]	g-фактор mPW1PW91/LanL2DZ	g-фактор mPW1PW91/LanL2DZ (Ga,As) $+$ 6-31G(d) (Mn)
$\mathrm{Mn^03}d^5 + $ " p -дырка" $\mathrm{Ga_{15}MnAs_{16}H_{36}}$	2.81	$g_{xx} = 2.85, g_{yy} = 2.85,$ $g_{zz} = 2.25$	$g_{xx} = 2.86, g_{yy} = 2.86,$ $g_{zz} = 2.22$
${ m Mn}^- 3d^5 \ { m Ga}_{15} { m MnAs}_{16} { m H}_{36}$	2.002	$g_{xx} = 2.11, g_{yy} = 2.11,$ $g_{zz} = 2.09$	$g_{xx} = 2.09, g_{yy} = 2.09,$ $g_{zz} = 2.07$
$\begin{array}{c} \mathrm{Mn^{-}}3d^{5} \\ \mathrm{Ga_{12}MnAs_{16}H_{36}} \end{array}$	2.002	$g_{xx} = 2.11, g_{yy} = 2.11,$ $g_{zz} = 2.11$	$g_{xx} = 2.09, g_{yy} = 2.09,$ $g_{zz} = 2.09$

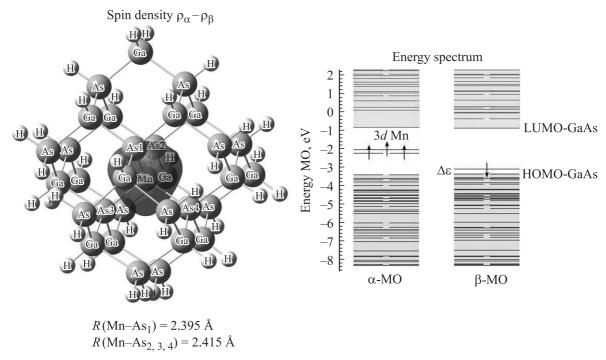


Рис. 3. Визуализация первых трех занятых α -ВЗМО, преимущественно 3d-Мn характера, и одной вакантной β -HCMO, на которой локализована "p-дырка" нанокластера Ga_{15} MnAs $_{16}$ H $_{36}$ с нейтральным зарядовым состоянием Mn 0 .

стью электронов со спином 1/2 и плотностью электронов со спином -1/2) нанокластера $Ga_{15}MnAs_{16}H_{36}$ с нейтральным зарядовым состоянием Mn^0 локализована в основном на атоме Mn, имеющем электронную конфигурацию $3d^5$ и полный спин S=5/2, а также на одном из ближайших к нему атомов Mn, который содержит так называемую "p-дырку" (см. рис. Mn^2). Детальный анализ последовательности одноэлектронных орбиталей Кона-Шэма нанокластера Mn^0 Mn^0

 $\Delta_{\rm gap}=2.50$ эВ. При этом в запрещенной зоне появляются три занятые α -ВЗМО, преимущественно 3d-Мп характера, и одна вакантная β -НСМО, на которой локализована "p-дырка" ближайшего атома As, приблизительно на $\Delta \varepsilon=0.565$ эВ выше валентной зоны. Визуализация этих орбиталей представлена на рис. 3. Еще две вырожденные 3d-орбитали примесного атома Мп попадают в валентную зону Мп-легированного нанокластера.

NBO-анализ заселенностей естественных орбиталей нанокластера $Ga_{15}MnAs_{16}H_{36}$ показал, что имеет место следующая электронная конфигурация атома Mn: [core] $4s^{0.40}3d^{5.58}4p^{0.03}$, при этом валентность атома Mn равна 2.26. Это хорошо согласуется с классическими представлениями о химической связи атома Mn в арсениде галлия: в образовании химической связи

Рис. 4. Геометрия (вид сбоку), спиновая плотность и энергетическая последовательность α - и β -орбиталей Кона–Шэма нанокластера $Ga_{15}MnAs_{16}H_{36}$ с ионизированным зарядовым состоянием Mn^- . Атомы As из ближайшего окружения атома Mn обозначены цифрами 1-4; расстояния R(Mn-As) между атомом Mn и атомами As из его ближайшего окружения указаны на рисунке.

с подрешеткой GaAs участвуют два 4s-электрона Mn из валентной оболочки, а $3d^5$ -оболочка сохраняется практически без изменений.

Важной характеристикой электронной структуры парамагнитных центров является д-фактор, отвечающий за положение линий в ЭПР спектре. Воздействие анизотропных электрических полей окружающих атомов, расщепление зеемановских уровней в нулевом внешнем магнитном поле и другие эффекты приводят к существенным отклонениям д-фактора от чисто спинового значения g = 2.0023 и к его анизотропии (т. е. зависимости д-фактора от ориентации образца во внешнем магнитном поле). Как уже отмечалось [11], спектр ЭПР нейтрального состояния Mn⁰ характеризуется переходом с д-фактором 2.81. Квантово-химические расчеты методом градиентно-инвариантных атомных орбиталей (GIAO) тензора *g*-фактора с использованием гибридного функционала mPW1PW91 дали значения, близкие к экспериментальному: $g_{xx} = 2.85$, $g_{yy} = 2.85$, $g_{zz} = 2.25$ (см. таблицу). Наблюдаемая анизотропия g-фактора (его z-компоненты) связана с симметрией C_{3v} изучаемого нанокластера $Ga_{15}MnAs_{16}H_{36}$: в реальном кристалле ближайшее окружение атома Мп имеет симметрию более высокого порядка T_d . Проведенные квантовохимические расчеты *g*-фактора имеют лучшее согласие с экспериментальными данными, чем известные теоретические оценки ($g_F = 2.75$) с использованием выражения для фактора Ланде [10], и могут служить дополнительным доказательством правильности представлений о нейтральном состоянии Mn^0 в арсениде галлия с электронной конфигурацией $3d^5 + ,p$ -дырка".

3.2. Моделирование ионизированного состояния Mn⁻ в разбавленных ферромагнитных полупроводниках состава Ga_{1-x}Mn_xAs

Чтобы получить ионизированное состояние Mn $^-$, имеющее электронную конфигурацию $3d^5$, нанокластер $Ga_{15}MnAs_{16}H_{36}$ также разбивался на два фрагмента: атом Mn с зарядом Z=0 и мультиплетностью M=6 и оставшийся нестехиометрический кластер $Ga_{15}As_{16}H_{36}$ с зарядом Z=-1 и мультиплетностью M=1. Далее проводилась частичная оптимизация геометрии этого нанокластера градиентно-подправленным методом PBEPBE/LanL2DZ, анализировался его энергетический спектр, производился анализ заселенностей естественных орбиталей (NBO-анализ) и методом градиентно-инвариантных атомных орбиталей (GIAO) с использованием гибридного функционала mPW1PW91 были рассчитаны компоненты g-фактора. Основные результаты этих расчетов представлены на рис. 4, а также в таблице.

Добавление электрона к нанокластеру $Ga_{15}MnAs_{16}H_{36}$ приводит к стабилизации химической связи атома Mn в арсениде галлия и рекомбинации "p-дырки" вблизи валентной зоны. Так, наблюдается заметная релаксация связей Mn-As в ближайшем окружении

атома Mn: от расстояний $R(Mn-As_1) = 2.561 \text{ Å}$ и $R(Mn-As_{2,3,4}) = 2.446 \text{ Å в нанокластере с нейтральным}$ состоянием Mn^0 до расстояний $R(Mn-As_1) = 2.395 \,\text{Å}$ и $R(Mn-As_{2,3,4}) = 2.415 \,\text{ÅB}$ нанокластере с Mn^- . Подробный анализ последовательности одноэлектронных орбиталей Кона-Шэма нанокластера Ga₁₅MnAs₁₆H₃₆ с ионизированным зарядовым состоянием Мп- показывает, что вакантная β -HCMO, расположенная в нейтральном нанокластере вблизи валентной зоны, заселяется дополнительным электроном и стабилизируется: величина $\Delta \varepsilon = 0.274$ эВ характеризует уровень бывшей "*p*-дырки" относительно валентной зоны (см. рис. 4). Кроме того, условная ширина запрещенной зоны ($\Delta_{\rm gap}^{lpha}=2.54\,{
m pB},$ $\Delta_{\rm gap}^{\beta} = 2.49\,{\rm эB})$ заряженного Mn⁻ легированного нанокластера $Ga_{15}MnAs_{16}H_{36}$ практически совпадает с шириной запрещенной зоны $\Delta_{\rm gap} = 2.5\,{\rm pB}$ легированного нанокластера Ga₁₆As₁₆H₃₆, однако в запрещенной зоне нанокластера $Ga_{15}MnAs_{16}H_{36}$ наблюдаются три занятые α -ВЗМО, преимущественно 3d-Мп характера. Особо отметим, что спиновая плотность $ho_{lpha}ho_{eta}$ локализована в этом случае исключительно на атоме Мп.

NBO-анализ заселенностей естественных орбиталей нанокластера $Ga_{15}MnAs_{16}H_{36}$ с ионизированным зарядовым состоянием Mn^- показал, что электронная конфигурация атома Mn почти не изменяется по сравнению с нейтральным состоянием: [core] $4s^{0.40}3d^{5.68}4p^{0.04}4d^{0.01}$, а валентность атома Mn увеличивается до 2.57. При этом электронные конфигурации атомов As из ближайшего окружения становятся практически одинаковыми по сравнению с нейтральным состоянием, где у атома As_1 наблюдалась нехватка электронной плотности на p-орбиталях (p-дырка).

ЭПР спектр ионизованного состояния Мп- характеризуется значением *g*-фактора 2.002 [11], близким к чисто спиновому значению. Квантово-химические расчеты методом градиентно-инвариантных атомных орбиталей (GIAO) с использованием функционала mPW1PW91/LanL2DZ дали следующие значения тензора g-фактора для этого нанокластера: $g_{xx} = 2.11$, $g_{yy} = 2.11, \ g_{zz} = 2.09$ (см. таблицу). Полученные значения компонент д-тензора для ионизированного состояния значения Мп- хуже согласуются с экспериментальным, чем в случае нейтрального состояния. Мы предположили, что на качество расчетов *g*-фактора существенное влияние может оказывать выбранный валентный базис LanL2DZ с эффективным потенциалом остова для атома Мп. Поэтому была проведена серия дополнительных расчетов нанокластера Ga₁₅MnAs₁₆H₃₆ с использованием полного базиса 6-31G(d) на атоме Mn. Для остальных атомов базис не менялся. Результаты этих расчетов также представлены в таблице. Видно, что замена базисного набора на атоме Мп заметно улучшает значения компонент g-тензора для выбранного нанокластера: $g_{xx} = 2.09$, $g_{yy} = 2.09$, $g_{zz} = 2.07$.

Кроме того, нам удалось смоделировать ионизированное состояние ${\rm Mn}^-$ в другом нанокластере,

Ga₁₂MnAs₁₆H₃₆, полученном заменой центрального атома Ga на атом Mn в нанокластере $Ga_{13}As_{16}H_{36}$. Этот кластер имеет симметрию T_d (см. рис. 1) и правильно описывает локальную кубическую симметрию кристалла арсенида галлия, что является принципиально важным при расчете тензора д-фактора. В силу его нестехиометричности, для этого нанокластера характерно наличие трех избыточных валентных электронов, один из которых захватывается "р-дыркой" вблизи атома Мп. Результаты квантово-химических расчетов компонент g-тензора для нанокластера Ga₁₂MnAs₁₆H₃₆ показывают (см. таблицу), что в этом случае анизотропия д-фактора отсутствует: $g_{xx} = 2.09$, $g_{yy} = 2.09$, $g_{zz} = 2.09$. Можно ожидать, что дальнейшее увеличение базисного набора приведет к лучшему согласию с экспериментальными данными.

4. Заключение

Градиентно-подправленным функционалом плотности PBEPBE в базисе LanL2DZ изучены зарядовые состояния атома Mn (нейтральное Mn⁰ и ионизированное Mn^{-}) в нанокластере $Ga_{15}MnAs_{16}H_{36}$. Детальный анализ последовательности одноэлектронных орбиталей Кона-Шэма нанокластера Ga₁₅MnAs₁₆H₃₆ с нейтральным состоянием Mn⁰ показал, что в его условной запрещенной зоне появляются три занятые α -ВЗМО, преимущественно 3d-Мn характера, и одна вакантная β -НСМО, на которой локализована "р-дырка", приблизительно на 0.565 эВ выше валентной зоны. Изменение зарядового состояния примесного центра с нейтрального Mn⁰ на ионизированное Mn⁻ приводит к заметной релаксации связей Mn-As в ближайшем окружении атома Mn и рекомбинации "р-дырки" вблизи валентной зоны, а также влияет на локализацию спиновой плотности в нанокластере $Ga_{15}MnAs_{16}H_{36}$.

Методом градиентно-инвариантных атомных орбиталей с использованием гибридного функционала mPW1PW91/LanL2DZ рассчитаны компоненты тензора нейтрального Mn^0 *g*-фактора для $(g_{xx} = 2.85,$ $g_{yy} = 2.85$, $g_{zz} = 2.25$) и ионизированного Mn⁻ $(g_{xx}=2.11,\ g_{yy}=2.11,\ g_{zz}=2.09)$ состояний нанокластера Ga₁₅MnAs₁₆H₃₆. Оказалось, что полученные значения д-фактора находятся в хорошем согласии с экспериментальными ЭПР-данными (д-фактор нейтрального состояния равен 2.81, а ионизированного 2.002). При изменении базисного набора на атоме Mn с LanL2DZ на 6-31G(d) удалось улучшить согласие с экспериментом для ионизированного состояния ($g_{xx} = 2.09, g_{yy} = 2.09,$ $g_{zz} = 2.07$). Кроме того, нам удалось избежать анизотропии д-фактора при моделировании ионизированного состояния Mn⁻ в нанокластере Ga₁₂MnAs₁₆H₃₆, имеющем правильную локальную симметрию кристалла арсенида галлия (T_d) . В целом можно говорить о корректности кластерного подхода для описания зарядовых эффектов в разбавленных ферромагнитных полупроводниках.

Работа выполнена в рамках НИР "Исследование функциональных свойств полупроводниковых нанокластеров методами ТФП", 11.37.25.2012.

Список литературы

- [1] T. Dietl. Nature Materials, **9**, 965 (2010). DOI 10.1038/NMAT2898
- [2] H. Ohno, H. Munekata, T. Penney, S. von Molnar, L.L. Chang. Phys. Rev. Lett., 68 (17), 2664 (1992).
- [3] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye. Appl. Phys. Lett., **69** (3), 363 (1996).
- [4] H. Ohno. *Recent topics in diluted magnetic semiconductors* Keio Topical workshop on semiconductor spintronics at Tohoku University, 2013.
- [5] D. Chiba, K. Takamura, F. Matsukura, H. Ohno. Appl. Phys. Lett., 82, 3020 (2003).
- [6] A.Z. AlZahrani, G.P. Srivastava, R. Garg, M.A. Migliorato. J. Phys.: Condens. Matter, 21, 485 504 (2009).
- [7] T.C. Schulthess, W.M. Temmerman, Z. Szotek, A. Svane, L. Petit. J. Phys.: Condens. Matter, 19, 165 207 (2007).
- [8] M. Linnarsson, E. Janz'en, B. Monemar, M. Kleverman, A. Thilderkvist. Phys. Rev. B, 55 (11), 6938 (1997).
- [9] J.C.H.M. van Gisbergen, M. Godlewski, T. Gregorkiewicz, C.A.J. Ammerlaan. Phys. Rev. B, 44 (7), 3012 (1991).
- [10] К.Ф. Штельмах. Автореф. докт. дис. (Санкт-Петербург, СПб. гос. политехн. ун-т, 2005).
- [11] К.Ф. Штельмах, М.П. Коробков, И.Г. Озеров. ФТП, **37** (8), 913 (2003).
- [12] C.A. Ullrich. Semiconductor Nanostructures. Lect. Notes Phys. 706, 271 (2006).
- [13] J.R. Chelikowsky, Y. Saad, I. Vasiliev. Lect. Not.-Phys. 706, 259 (2006)
- [14] Р.А. Эварестов, А.В. Бандура. Рос. хим. журн., LI (5), 149 (2007).
- [15] И.В. Крауклис, В.Г. Маслов, Ю.В. Чижов. Стационарная и нестационарная теория функционала плотности в приложении к задачам нанофотоники (Санкт-Петербург, Учеб.-метод. пособие, СПбГУ, 2007).
- [16] J.R. Chelikowsky, E. Kaxiras, R.M. Wentzcovitch. Phys. Status Solidi b, 243 (9), 2133 (2006) / DOI 10.1002/pssb.200666817
- [17] М.В. Лебедев. ФТП, 45 (11), 1579 (2011).
- [18] A.S. Andreev, V.N. Kuznetsov, Y.V. Chizhov. J. Phys. Chem. C, 116, 18139 (2012).
- [19] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett., 77, 3865 (1996).
- [20] P.J. Hay, W.R. Wadt. J. Chem. Phys., 82, 270 (1985).
- [21] C. Adamo, V. Barone. J. Chem. Phys., 108, 664 (1998).
- [22] Gaussian 09, Revision C.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian, Inc., Wallingford CT, 2009.
- [23] GaussView, Version 5, R. Dennington, T. Keith, and J. Millam. Semichem Inc., Shawnee Mission, KS, 2009.
- [24] S. Adachi. GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (World Scientific Publishing Co, 1994); R.W.G. Wyckoff. 2nd edn. Interscience Publishers, New York, New York Note: ZnS structure, sphalerite structure Crystal Structures, 1, 85 (1963).
- [25] R. Ditchfield. Mol. Phys., 27, 789 (1974).

Редактор Т.А. Полянская

DFT modeling of Mn charge states in the $Ga_{1-x}Mn_xAs$ dilute ferromagnetic semiconductors: the cluster approach

I.V. Krauklis, O.Yu. Podkopaeva, Yu.V. Chizhov

Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia

Abstract Quantum chemical cluster modeling of the highsymmetry nanoclusters $Ga_{15}MnAs_{16}H_{36}$ and $Ga_{12}MnAs_{16}H_{36}$ simulating the bulk of a GaAs crystal with Mn paramagnetic impurity center is carried out within the Density Functional Theory. A Generalized Gradient Approximation method PBEPBE/LanL2DZ is used to study the neutral Mn⁰ and ionized Mn⁻ states of a Mn atom in the nanoclusters under consideration. The change of the charge state of the impurity center from Mn⁰ to Mn⁻ leads to a considerable relaxation of Mn-As bonds in the immediate surroundings of the Mn atom and to the "p-hole" recombination. It also affects the spin density localization. The components of the g-tensor for both the neutral Mn⁰ and the ionized Mn⁻ states are calculated by the Gauge-Independent Atomic Orbital (GIAO) method with the hybrid density-functional mPW1PW91. The resulting values of the g-factor are in good agreement with the experimental Electron Paramagnetic Resonance data. The results obtained confirm the applicability of the cluster approach for describing charge effects in dilute ferromagnetic semiconductors.