11

Усредненные электрические характеристики "лесослоя" и высота лесного покрова

© В.К. Балханов, В.Р. Адвокатов, Ю.Б. Башкуев

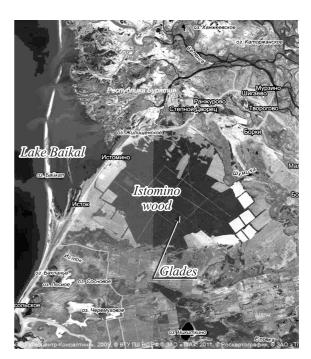
Институт физического материаловедения СО РАН, 670047 Улан-Удэ, Россия, e-mail: ballar@yandex.ru

(Поступило в Редакцию 21 ноября 2013 г.)

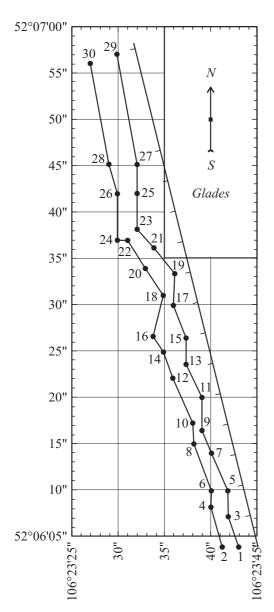
Описаны устройство и метод измерения электрических характеристик (удельного сопротивления ρ и диэлектрической проницаемости ϵ) "лесослоя". Метод измерения и способ обработки результатов подробно описаны для определенного лесного массива, для которого установлено, что в СДВ и ДВ диапазонах радиоволн усредненные удельное электрическое сопротивление $\rho=37\pm12\,\mathrm{k}\Omega$ м и диэлектрическая проницаемость $\epsilon=1.6\cdot0.3$. Установлено, что из-за отличия диэлектрической проницаемости от 1, измерение координат с помощью одночастотного GPS-приемника в "лесослое" всегда содержит систематическое одностороннее смещение. Это обстоятельство позволяет предложить метод определения усредненной высоты лесного покрова. Так, для рассматриваемого лесного массива средняя высота деревьев оказалась равной примерно 21 m.

Введение

На распространение электромагнитных волн вдоль земной поверхности существенное влияние оказывает растительность. В Байкальском регионе она занимает 60% территории. С точки зрения электромагнетизма любые среды описываются всего двумя параметрами — электрической проводимостью σ и диэлектрической проницаемостью ε . Чтобы знать, как растительность оказывает влияние на электромагнитные волны, необходимо знать эти параметры в широком частотном диапазоне.


В Байкальском регионе ранее уже проводились измерения проводимости и диэлектрической проницаемости лесной растительности — деревьев, кустарников [1,2]. В последнее время этот вопрос вновь стал актуальным. Это связано с тем, что возросшая хозяйственная деятельность вызывает существенные антропогенные нагрузки на природную среду. Поэтому необходимо регулярно получать информацию о динамическом состоянии лесного покрова [3]. Подобный диагноз особенно важен для прогнозирования СДВ и ДВ распространения радиоволн вдоль земной поверхности, покрытой лесом.

В литературе имеется ограниченное количество экспериментальных данных об электрических параметрах лесной растительности [1–6]. В современных условиях подобные измерения не проводились, заполнению этого пробела в СДВ–ДВ диапазонах радиоволн и посвящена настоящая работа.


В качестве объекта измерений был выбран Истоминский лес, находящийся всего в 1 km от берега озера Байкал (рис. 1). С целью выбора пунктов измерения Истоминский лес был исследован вдоль и поперек. В качестве ориентира была выбрана просека, указанная стрелкой на рис. 1. Двигаясь вдоль нее авторы углублялись в лесной массив на 50 m в пункты измерения

(рис. 2). Все координаты измерялись с помощью GPS-приемника. При этом выяснилось, что в лесу используемый одночастотный GPS-приемник давал одностороннее систематическое смещение расстояния в 4 m.

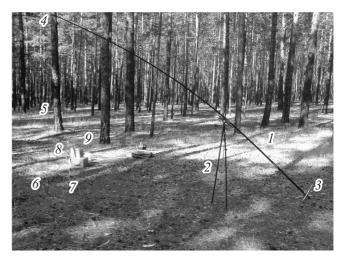
Опишем измерительный комплекс и метод обработки результатов измерения. Рассмотрим вопрос, почему в лесу измерение координат с помощью GPS-приемников всегда приводит к смещению относительных расстояний. Предложим способ определения усредненной высоты деревьев.

Рис. 1. Лесной массив — Истоминский лес возле берега озера Байкал в районе дельты реки Селенги. Срединные координаты: $52^{\circ}06'35''$ N.B., $106^{\circ}23'35''$ E.L. Линейный размер массива — $10 \, \mathrm{km}$.

Рис. 2. Профиль пунктов измерения, пункты обозначены цифрами 1-30. Прямая линия с рисками — просека, указанная на рис. 1.

Измерительный комплекс

В СДВ-ДВ диапазоне радиоволн определение проводимости σ и диэлектрической проницаемости ε удобнее всего осуществлять измерителем импеданса типа ИПИ-300, включающим рамку для определения горизонтальной компоненты магнитного поля H и вертикальную антенну для измерения вертикальной компоненты электрического поля E. Авторами разработан и изготовлен модифицированный комплекс аппаратуры ИПИ-300 для проведения исследований электрофизических характеристик леса в СДВ–ДВ диапазонах электромагнитных волн [7]. В состав аппаратуры входит вертикальная электрическая антенна "диполь Надеенко" — несимметричный вибратор длиной 2 m, состоящий из 4 проводов,


расположенных по образующей цилиндра с диаметром $30\,\mathrm{mm}$, предназначенный для измерения вертикальной составляющей электрического поля, входной антенный блок — истоковый повторитель с большим входным сопротивлением ($\geq 1\,\mathrm{M}\Omega$) и малой входной емкостью ($\approx 4\,\mathrm{pF}$), магнитная рамочная антенна для измерения горизонтальной составляющей магнитного поля, одноканальный селективный микровольтметр-фазометр ИПИ-300, телескопическое устройство с опорой для подвеса и подъема вертикальной электрической антенны. Общий вид комплекта аппаратуры приведен на рис. 3.

Измерительный комплект измеряет поверхностный импеданс δ — отношение электрического поля к магнитному: $\delta = E/Z_0H$, где Z_0 — сопротивление вакуума. Это отношение нормировано так, чтобы поверхностный импеданс был безразмерной величиной. Поверхностный импеданс является комплексной величиной, которую можно представить в следующем виде:

$$\delta = |\delta| \exp \psi.$$

Прибор ИПИ-300 собственно и измеряет модуль импеданса $|\delta|$ и фазу импеданса ψ . По известным модулю и фазе поверхностного импеданса по формулам (5) (которые приведены ниже) уже вычисляют значения удельного сопротивления ρ (обратной величине проводимости) и диэлектрической проницаемости ε .

Не останавливаясь на этом подробно, укажем, что выбор вертикальной ориентации электрической антенны связан с тем, что горизонтальное расположение электрической антенны не позволяет "прощупывать" верхний лесной слой. При горизонтальном расположении электрических антенн измерительный комплекс измерял бы только поверхностный импеданс ниже лежащей подстилающей среды.

Рис. 3. Модифицированный комплект ИПИ-300 для измерения электрофизических характеристик лесной среды. 1 — телескопическое удилище, 2 — опора удилища, 3 — нижнее крепление, 4 — подвеска электрической антенны, 5 — диполь Надеенко, 6 — входной антенный усилитель, 7 — экранированный провод, 8 — магнитная антенна, 9 — ИПИ-300.

Теория

В свободном пространстве распространение электромагнитных волн вдоль земной поверхности в направлении оси x описывается экспоненциальным множителем $\exp(i\lambda x)$, где λ — параметр разделения переменных волнового уравнения. Над проводящей поверхностью с высокой точностью можно принять $\lambda=\omega/c$, где c — скорость света, ω — круговая частота. Если антенны измерительного комплекса расположены вблизи поверхности земли, то измеряемый импеданс будет $\delta_0=\frac{\omega\lambda}{ck_0^2}$, где k_0 — волновое число свободного пространства $(k_0=\omega/c)$. Подставляя $\lambda=\omega/c$, получаем $\delta_0=1$. Таким образом, над проводящей поверхностью модуль $|\delta_0|=1$ и фаза $\psi=0$.

Поместим измерительный комплекс в лес. Измеряемый поверхностный импеданс при этом будет

$$\delta = \frac{\omega \lambda}{ck^2},\tag{1}$$

где квадрат волнового числа лесослоя

$$k_0^2 = \frac{\omega^2}{c^2} \varepsilon_w + i\mu_0 \omega \sigma_w. \tag{2}$$

Здесь μ_0 — магнитная постоянная вакуума, σ_w и ε_w — соответственно проводимость и диэлектрическая проницаемость лесной растительности.

Использовать формулы (1) и (2) можно только для однородной сплошной среды, какой как раз и предстает лесослой в СДВ–ДВ диапазоне.

Подставляя $\lambda = \omega/c$ и (2) в соотношение (1), получаем

$$\delta = \frac{1}{\varepsilon_{-}},\tag{3}$$

где комплексная проницаемость

$$\varepsilon_{-} = \varepsilon_{w} + \frac{i}{\varepsilon_{0} \omega \rho_{w}}.$$
 (4)

Здесь ε_0 — диэлектрическая постоянная, удельное сопротивление $\rho_w=1/\sigma_w$ (напомним, что $\varepsilon_0\mu_0=1/c^2$). Поскольку $\delta=|\delta|e^{i\psi}$, то, разделяя действительные и мнимые части, из (3) и (4) находим расчетные формулы для определения ρ_w и ε_w :

$$\varepsilon_w = \frac{\cos \psi}{|\delta|}, \quad \rho_w = -\frac{|\delta|}{\varepsilon_0 \omega \sin \psi}.$$
(5)

Впервые формула (3) была получена В.А. Егоровым [4,5] и здесь приводится как для связности изложения, так и для того, чтобы обратить внимание на следующее. Лесослой помимо электрических характеристик имеет свою толщину (высоту деревьев и кустарников) и границу в виде опушки леса. В этом отношении результат (3) требует уточнения, в котором необходимо учесть среднюю высоту лесной растительности и расстояние хотя бы от ближайшей границы — опушки лесослоя.

Калибровка и результаты измерений

Измерительный комплекс измеряет фазу ψ , определяемую из разности фаз электрического и магнитного полей, плюс набег фазы, связанный с цепями электрической и магнитной антенн. Одновременно с фазой по шкале прибора ИПИ-300 измеряется значение A в dB, связанное по определению с модулем импеданса следующим соотношением: $|\delta|=10^{A/20}$. Как и фаза ψ , величина A включает в себя вклады, связанные с внешними цепями. Исключение аппаратурных параметров, не связанных с компонентами электромагнитного поля, производится калибровочным измерением, идея которого основывается на изложенной выше теории.

Результат калибровки, заключающийся в том, что измеренный в свободном пространстве импеданс δ_0 равен единице, позволяет произвести исключение всех посторонних наводок, не связанных непосредственно с компонентами электромагнитного поля. Продемонстрируем методику исключения всех наводок на конкретном примере.

Калибровочные измерения проводились в поле на расстоянии 100 m от опушки исследуемого леса. Так, при измерении на частоте 50 kHz были получены следующие экспериментальные результаты:

$$\psi_{\rm exp} = -11^{\circ}, \quad A_{\rm exp} = 43.7 \, {\rm dB}.$$

Наводку в значении A обозначим как ΔA . Тогда модуль импеданса будет $|\delta|=10^{(A_{\rm exp}+\Delta A)/20}$. Поскольку должно быть $|\delta_0|=1$, то отсюда следует, что поправочное значение

$$\Delta A = -A_{\rm exp} = -43.7 \,\mathrm{dB}.$$

Аналогично, для фазы имеем $\psi = \psi_{\rm exp} + \Delta \psi$. Поскольку должно быть $\psi = 0$, то отсюда находим поправочное значение для фазы:

$$\Delta \psi = -\psi_{\rm exp} = 11^{\circ}$$
.

Одновременно с калибровочным измерением в глубине леса на расстоянии 50 m от просеки, обозначенной стрелкой на рис. 1, на частоте 50 kHz в одном из пунктов были измерены

$$\psi_{\rm exp} = -82^{\circ}, \quad A_{\rm exp} = 24 \, {\rm dB}.$$

Учитывая поправки, находим следующие действительные значения фазы

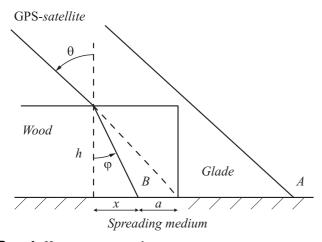
$$\psi = \psi_{\rm exp} + \Delta \psi = -82 + 11 = -71^{\circ}$$

и величины A:

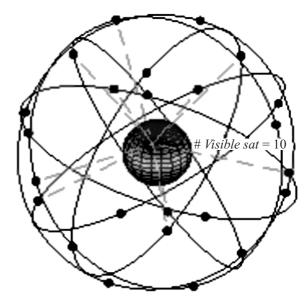
$$A = A_{\text{exp}} + \Delta A = 24 - 43.7 = -19.7 \,\text{dB},$$

относящиеся непосредственно к лесной растительности. Используя эти значения, находим сначала модуль импеданса

$$|\delta| = 10^{-19.7/20} = 0.11,$$


а по формулам (5) диэлектрическую проницаемость и удельное сопротивление исследуемого лесного участка:

$$\varepsilon_w = 1.57, \quad \rho_w = 41.8 \,\mathrm{k}\Omega \cdot \mathrm{m}.$$


Окончательно в результате измерений установлены следующие усредненные по всем 30 пунктам измерений эффективные электрофизические характеристики Истоминского леса вдоль просеки: удельное электрическое сопротивление $\rho_w=37\pm12\,\mathrm{k}\Omega\cdot\mathrm{m}$, диэлектрическая проницаемость $\varepsilon_w=1.6\pm0.3$. Следовательно, этими же электрическими характеристиками обладает и весь Истоминский лес.

Высота лесного покрова

Установленное с помощью одночастотного GPS-приемника систематическое смещение расстояния в лесу, указанное в начале работы, позволяет определить высоту лесного покрова, т.е. среднюю высоту деревьев в лесном массиве. Систематическое смещение было выявлено следующим образом. Сначала на открытой местности с помощью GPS-приемника измерялись географические координаты пункта измерения, обозначим его как пункт А. Затем оборудование перемещалось в лесной массив в пункт B, где визуально высота деревьев составляла 15-25 m. С помощью мерной ленты непосредственно измерялось расстояние АВ. С помощью GPS-приемника также измерялись географические координаты пункта измерения В. В ходе измерений было установлено, что расстояние между пунктами А и В, вычисленные по географическим координатам, оказались больше измеренного расстояния АВ. Объяснить такое расхождение можно, если привлечь тригонометрию и известный из физики закон Снеллиуса — преломление луча света при переходе из одной среды в другую. Заметим, что аналогичные измерения проводились и на поляне, в чистом поле. При этом вычисленные расстояния и непосредственно измеренные с точностью

Рис. 4. Измерение географических координат пунктов измерения A и B с помощью GPS-приемника. h — высота лесного массива.

Рис. 5. Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat — число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле). http://ru.wikipedia.org/wiki/GPS#.D0.98.D1.81.D1.82.D0.BE.D1.80.

http://ru.wikipedia.org/wiki/GPS#.D0.98.D1.81.D1.82.D0.BE.D1.80 D0.B8.D1.8F

до 0.5 m совпадают друг с другом. Расхождение же для Истоминского леса составляет 4 m, и это расхождение нельзя объяснить ошибкой измерения.

Если GPS-приемник находится в пункте A, то он напрямую под углом падения ϑ "видит" GPS-спутник (рис. 4). Если приемник находится в лесу в пункте B, то GPS-спутник можно будет "увидеть" под углом преломления φ . Причем углы падения и преломления связаны законом Снеллиуса:

$$\sin \vartheta = n \sin \varphi. \tag{6}$$

Здесь n — показатель преломления среды, связанный с диэлектрической проницаемостью ε соотношением:

$$n = \sqrt{\varepsilon}. (7)$$

Проецируя с помощью углов ϑ и φ высоту h на линию AB, получаем

$$h \operatorname{tg} \vartheta = x + a, \tag{8}$$

$$h \operatorname{tg} \varphi = x. \tag{9}$$

Здесь a — это определенное выше систематическое смещение измеряемого расстояния, равная для Истоминского леса 4 m. Смысл величины x ясен из рис. 4.

Решая совместно четыре уравнения (6)–(10), можно выразить высоту h лесослоя через систематическое смещение расстояния a, угол падения ϑ и диэлектрической проницаемости ε :

$$h = a \left(\operatorname{tg} \vartheta - \frac{\sin \vartheta}{\sqrt{\varepsilon - \sin^2 \vartheta}} \right)^{-1}. \tag{10}$$

Для использования GPS-приемника необходимо наличие не менее трех—четырех GPS-спутников, которые расположены на небосклоне под разными углами. Поэтому под углом ϑ в формуле (10) надо понимать некоторый средний угол. Мы применим следующее рассуждение. Пусть в среднем GPS-спутники подняты над горизонтом под углом 55°. Тогда для таких спутников угол падения будет равен 35° (рис. 5). Подставляя $\vartheta=35^\circ$ и другие известные величины в формулу (10), находим h=21 m. Этим самым получена оценка средней высоты деревьев Истоминского леса, которую в среднем можно принять равной 21 m.

Заключение

Описаны устройство и метод измерения электрических характеристик лесослоя. Метод измерения и способ обработки результатов подробно описаны для Истоминского леса, расположенного вблизи озера Байкал. Установлено, что из-за отличия диэлектрической проницаемости от 1 измерение координат с помощью GPS-приемников в лесослое всегда содержит систематическое одностороннее смещение. Это обстоятельство позволило предложить метод определения усредненной высоты лесного покрова.

Список литературы

- [1] Башкуев Ю.Б. Электрические свойства природных слоистых сред. Новосибирск: Изд-во СО РАН. 1996. 196 с.
- [2] *Адвокатов В.Р., Башкуев Ю.Б., Балханов В.К.* // Электромагнитные волны и электронные системы. 2012. № 1. С. 47–50.
- [3] Иванов В.К., Кучук Г.А., Стаднюк А.М., Яцевич С.Е. // Успехи современной радиоэлектроники. 2005. № 7. С. 57– 72.
- [4] Дыдыпов Ч.Д., Дыденов В.Д., Башкуев Ю.Б. Исследование электрических свойств подстилающей среды. Новосибирск: Наука, 1979. 176 с.
- [5] *Егоров В.А.* // Проблемы дифракции и распространения волн. Л., 1990. Вып. 23. С. 158–177.
- [6] *Егоров В.А.* Влияние растительного покрова на распространение средних и более длинных электромагнитных волн // Автореф. дис. канд. физ.-мат. наук. СПб., 2007. 21 с.
- [7] Башкуев Ю.Б., Адвокатов В.Р., Балханов В.К. Способ измерения эффективных электрических свойств лесной среды в длинноволновом диапазоне радиоволн и устройство для его осуществления. ПАТЕНТ на изобретение № 2336520 С1 G 01N 22/00, G 01R 27/00. Бюллетень № 29 от 20 октября 2008 г.