Сбор фотоносителей в высокоомных кремниевых аморфно-кристаллических гетероструктурах

© И.М. Котина⁺, А.М. Данишевский^{*¶}, О.И. Коньков^{*}, Е.И. Теруков^{*‡}, Л.М. Тухконен⁺

194021 Санкт-Петербург, Россия

197376 Санкт-Петербург, Россия

(Получена 25 декабря 2013 г. Принята к печати 30 декабря 2013 г.)

Рассматривается механизм электронного транспорта в аморфно-кристаллических гетероструктурах, созданных на основе высокоомного *p*-кремния, с целью объяснения особенностей экспериментальных спектров фоточувствительности указанных структур, приготовленных на подложках с различным удельным сопротивлением. Выясняется причина образования инверсионного слоя на гетерогранице в данных структурах и влияние удельного сопротивления на величину поверхностных потенциалов. Приведены нетривиальные данные о влиянии работы выхода металлических контактов к аморфной пленке на механизм образования фототока.

1. Введение

Аморфно-кристаллические гетероструктуры a-Si : H/c-Si, создаваемые на низкоомном кремнии, интенсивно исследуются в связи с их широким использованием в солнечных элементах [1-4]. Аналогичные структуры на высокоомном кремнии привлекали к себе значительно меньшее внимание. В первую очередь их исследовали для создания детекторов ядерных излучений [5-7]. Было показано, что по параметрам такие структуры при регистрации короткопробежных частиц (α -частицы, электроны конверсии) близки к широко используемым детекторам с барьером Шоттки на n-Si (Au/n-Si).

В качестве фотоприемников гетероструктуры на высокоомном кремнии изучались только в [7,8]. В этих работах экспериментально исследовались гетероструктуры на подложках с различным удельным сопротивлением, разной толщиной аморфных пленок, рассматривалось влияние указанных параметров на фотоэлектрические свойства гетероструктур a-Si : H/c-Si(p), созданных на высокоомном кремнии р-типа проводимости. В работах [7,8] был обнаружен инверсионный приповерхностный изгиб зон в кристаллическом кремнии. Гетероструктуры обладали высокой фоточувствительностью в широкой области спектра. Целью настоящей работы являлось изучение механизмов сбора фотоносителей для объяснения особенностей спектральных характеристик фоточувствительности гетероструктур, приведенных далее в данной работе, влияния интенсивности возбуждающего света на спектральные характеристики. Кроме того, изучается влияние различных металлических контактов к аморфной пленке на механизм токопрохождения.

2. Зонная модель аморфно-кристаллической гетероструктуры

При построении энергетической диаграммы гетероперехода (рис. 1) обычно пользуются "правилом электронного сродства" (χ), предложенным Андерсоном [9]. В соответствии с этой моделью при нулевой плотности поверхностных состояний разрыв в зоне проводимости ΔE_c определяется разностью величин χ кристаллического и аморфного кремния (χ_1 , χ_2)

$$\Delta E_c = \chi_2 - \chi_1,\tag{1}$$

а разрыв в валентной зоне

$$\Delta E_v = (E_{g1} - E_{g2}) - \Delta E_c, \tag{2}$$

где $E_{g1,g2}$ — ширины запрещенной зоны аморфного и кристаллического кремния соответственно, q — заряд электрона. Разность работ выхода определяет величину диффузионного потенциала V_d ,

$$q(\Phi_2 - \Phi_1) = qV_d, \tag{3}$$

который является суммой диффузионных потенциалов в аморфном и кристаллическом кремнии:

$$qV_d = q(V_{d1} + V_{d2}). (4)$$

При этом из решения уравнения Пуассона [9] следует:

$$V_{d2}/V_{d1} = N_A \varepsilon_{Si}/N_D \varepsilon_{a-Si:H}, \tag{5}$$

где ε_{Si} , $\varepsilon_{a-Si:H}$ — диэлектрические проницаемости c-Si и a-Si : H, N_A и N_D — концентрации акцепторов в c-Si(p) и доноров в a-Si : H.

⁺ Петербургский институт ядерной физики им. Б.П. Константинова,

¹⁸⁸³⁰⁰ Гатчина. Ленинградская область. Россия

^{*} Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

[‡] Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина),

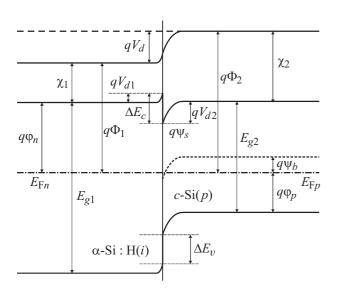
[¶] E-mail: Alex.d@mail.ioffe.ru

Компонент гетероперехода	Ширина запрещенной зоны E_g , эВ	Электронное сродство, эВ		Концентрация нескомпенсированных акцепторов $N_A - N_D$, см $^{-3}$	Относительная диэлектрическая проницаемость	Энергия Ферми $q\phi_n=E_c-E_{ m F}, \ q\phi_p=E_{ m F}-E_v, m 3B$
a-Si : H c -Si(p)	1.72 [11] 1.12	3.85 [10] 4.05	$10^{16} - 10^{17} \ [10]$	$(0.34 - 8.9) \cdot 10^{12}$	12 12	$q\varphi_n = 0.72$ $q\varphi_p = 0.365 - 0.4$

Таблица 1. Параметры компонентов гетероструктур

Из (1) и (3) можно получить выражение для разрыва зон ΔE_c :

$$\Delta E_c = qV_d - E_{g2} + q\varphi_n + q\varphi_p, \tag{6}$$


где $q\phi_n$ и $q\phi_p$ — положение уровней Ферми для аморфного и кристаллического кремния, отсчитанные от зоны проводимости и валентной зоны соответственно.

Из закона сохранения заряда [9] следует, что отношение толщин слоя объемного заряда в аморфном и кристаллическом кремнии есть

$$d_1/d_2 = N_A/N_D. (7)$$

Для построения энергетической диаграммы исследуемых гетероструктур (рис. 1) принимались параметры, приведенные в табл. 1.

Концентрация акцепторов в пластинах кристаллического кремния определялась из измерений вольтфарадных характеристик, и ее значение совпадало с паспортными данными. Из табл. 1 видно, что концентрация акцепторов в кристаллическом кремнии отличается от концентрации доноров в аморфном более чем на 4 порядка. Поэтому диффузионным потенциалом в аморфном кремнии, используемым при оценке потенциального барьера в c-Si, в первом приближении можно пренебречь, т. е. $V_d \approx V_{d2}$.

Рис. 1. Энергетическая диаграмма гетероструктуры $a ext{-Si}: H/c ext{-Si}(p).$

Наличие разрывов зон позволяет использовать для описания приповерхностной области пространственного заряда теорию, развитую для структур металл—диэлектрик—полупроводник [12]. На приведенной зонной диаграмме для приповерхностной области полупроводника электростатический потенциал $\psi(x)$ изменяется от значения ψ_s на поверхности до $\psi=0$ в электронейтральной области. Положительный знак ψ_s соответствует изгибу зон вниз, отрицательный — вверх. Зависимость концентраций электронов и дырок от потенциала ψ определяется соотношениями

$$n_p(x) = n_{p0} \exp[q\psi(x)/kT],$$

$$p_p(x) = p_{p0} \exp[-q\psi(x)/kT],$$
(8)

где n_{p0} , p_{p0} — равновесные концентрации электронов и дырок в объеме полупроводника, T — температура, k — постоянная Больцмана. Зависимость потенциала ψ от расстояния до границы раздела может быть получена из решения одномерного уравнения Пуассона:

$$d^2\psi(x)/dx^2 = -\rho(x)/\varepsilon_s. \tag{9}$$

(11)

При этом зависимость электрического поля от координаты x описывается следующим выражением [12]:

$$E(x) = -\partial \psi(x)/\partial x$$

= $\pm \sqrt{2kT/qL_D}F[(q/kT)\psi(x), n_{p0}/p_{p0}],$ (10)

где

И

$$F = \left\{ \left[e^{-q/kT} + (q/kT)\psi - 1 \right]
ight. \ + (n_{p0}/p_{p0}) \left[e^{q/kT} - (q/kT)\psi - 1 \right]
ight\}^{1/2} \ L_D = \left[\varepsilon_s / \left(q^2 p_{p0} kT \right) \right]^{1/2}.$$

Объемный заряд, отнесенный к единице площади границы раздела, индуцировавший поле на границе раздела, удовлетворяет соотношению $Q_s = -\varepsilon_s E_s$, где индекс s соответствует границе раздела.

В состоянии плоских зон $\psi_s=0$ и $Q_s=0$. В режиме обеднения $\psi_b>\psi_s>0$, а заряд Q отрицателен. Величина ($\psi_b=E_i-E_{\rm F},\ E_i$ — энергия середины запрещенной зоны, $E_{\rm F}$ — энергия уровня Ферми). При этом в выражении (11) для F доминирует второе слагаемое, так что $Q\propto (\psi_s)^{1/2}$. При сильной инверсии $Q_s\propto -\exp(q\psi_s/2kT)$. Начальная инверсия знака носителей возникает при $\psi_s=\psi_b$, а сильная инверсия при $\psi_s=2\psi_b$ [12].

Удельное сопротивление подложки $ ho_{\mathrm{Si}}$, к $\mathrm{Om}\cdot\mathrm{cm}$	Концентрация акцепторов в подложке N_A , 10^{12} см $^{-3}$	Положение уровня Ферми в c -Si относительно зоны проводимости, \ni В	Работа выхода из <i>c-</i> Si, эВ	qV_{d2} , эВ	Поверхностная концентрация электронов, 10^{11} см $^{-3}$	Поверхностная концентрация дырок, $10^8 { m cm}^{-3}$
1.5	8.9	0.755	4.805	0.245	2.64	7.19
2	6.7	0.745	4.795	0.235	2.38	7.95
8.8	1.5	0.71	4.76	0.2	2.77	6.8
21	0.63	0.686	4.736	0.176	2.62	7.24
40	0.34	0.67	4.72	0.16	2.63	7.23

Таблица 2. Концентрации и потенциалы в гетероструктуре

С учетом того, что концентрация акцепторов много меньше концентрации доноров в аморфном кремнии, падение потенциала в кристаллическом кремнии $V_{d2} \approx V_d$ и, следовательно,

$$qV_{d2} \approx q\psi_s - q\psi(\infty).$$
 (12)

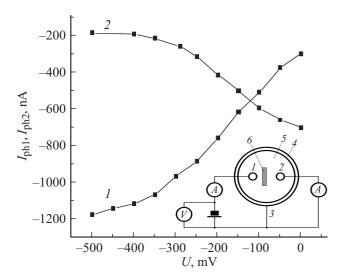
В табл. 2 приведены рассчитанные величины падения потенциалов в кристаллическом кремнии и концентрации электронов в канале для исследованных образцов аморфно-кристаллических гетероструктур.

Из анализа структуры энергетических зон в рамках модели Андерсона (табл. 2) следует, что в исследованных структурах должен возникать инверсионный изгиб зон на гетерогранице. Однако данная модель не учитывает наличие поверхностных состояний на границе раздела и возможное влияние металлического контакта к аморфной пленке на распределение падения напряжения между аморфной пленкой и кристаллическим кремнием. Поэтому только экспериментальные данные могут подтвердить образование инверсионного слоя.

3. Методика эксперимента

Исследуемые гетероструктуры создавались на бездислокационном кремнии р-типа проводимости с удельным сопротивлением $\rho_{\rm Si} = 1.5 - 40 \, {\rm кOm \cdot cm}$ и временем жизни носителей 500-1000 мкс. Пластины диаметром 17 мм и толщиной 1 мм с поверхностной ориентацией (111) шлифовались, травились в смеси HF: HNO₃ (1:8) и тщательно промывались деионизованной водой. Аморфные пленки осаждались на подложку в плазме высокочастотного тлеющего разряда (ВЧ разряд) из смеси газов SiH₄/Ar (0.34:1) при 250°С. Диаметр пленки был на 2 мм меньше диаметра подложки, толщины пленок — в диапазоне 150-2000 Å. На аморфную пленку путем вакуумного напыления через маску наносились металлические контакты из алюминия или нихрома диаметром 3 мм. Предварительно формировался тыльной омический контакт к кристаллическому кремнию путем вакуумного напыления алюминия и прогрева при 450°С. Для оценки качества полученных гетероструктур

измерялись их вольт-амперные и вольт-фарадные характеристики.


Спектральные характеристики фототока измерялись при нулевом и различных ненулевых обратных смещениях. В качестве источника монохроматического излучения использовался двойной призменный монохроматор с кварцевой лампой, освещение осуществлялось полоской света размером $2\times 5\,\mathrm{mm}$. Абсолютная мощность излучения определялась с помощью калиброванного кремниевого фотодиода и регулировалась нейтральными светофильтрами. Все измерения были проведены при комнатной температуре.

4. Экспериментальные результаты и их обсуждение

4.1. О наличии инверсионного слоя

С целью выяснения, имеется ли на гетерогранице проводящий канал, был проведен следующий эксперимент. На структуре с удельным сопротивлением подложки $ho_{\rm Si} = 1.5\,{
m kOm\cdot cm}$ и толщиной аморфной пленки $100\,{
m km}$ имелись два А1-контакта, разнесенные на 8 мм. Цепи обоих контактов 1 и 2 были замкнуты по отдельности с тыльным контактом 3, и в них измерялись фото- и темновой токи (рис. 2 вставка). Когда световой зонд (длина волны $\lambda = 700$ нм) устанавливался рядом с контактом 2, а в цепи контакта 1 величина обратного смещения изменялась от 0 до 0.5, то фототок в цепи контакта 1 увеличивался, а в цепи контакта 2 при этом уменьшался (рис. 2, кривые 1 и 2 соответственно). Кривые 1 и 2построены с вычетом темнового тока. Поглощение света в аморфной пленке для данной длины волны мало, и генерация фотоносителей осуществляется в основном в c-Si. Поэтому такая зависимость перераспределения фототоков от напряжения, приложенного к цепи контакта 1, возможна лишь за счет наличия гальванической связи указанных контактов через проводящий инверсионный канал на гетерогранице a-Si : H/c-Si(p).

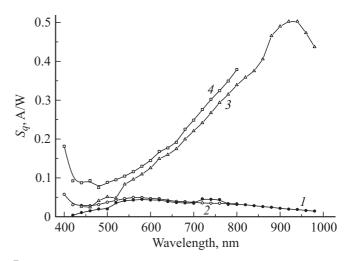
Проводящий канал на гетерогранице в кристаллическом кремнии существовал во всех исследуемых структурах в диапазоне удельных сопротивлений подложки

Рис. 2. Фототоки на контактах I ($I_{\rm ph1}$) и 2 ($I_{\rm ph2}$) гетероструктуры a-Si : H/c — Si(p) ($\rho_{\rm Si}=1.5\,{\rm кOM\cdot cM}$) в зависимости от напряжения в цепи контактов I-3. На вставке — схема измерений: I и 2 — Al-контакты, 3 — тыльный контакт к подложке, 4 — кремниевая пластина (подложка), 5 — пленка аморфного кремния, 6 — световой луч (вблизи контакта 2).

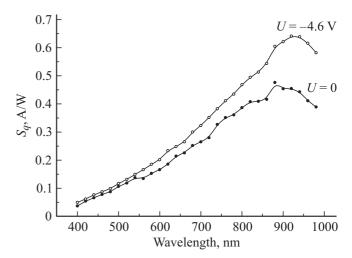
1.5—40 кОм · см [5,7]. Он обеспечивал сбор фотоносителей как при нулевом, так и при различных ненулевых обратных смещениях из областей, удаленных от электрода на расстояния, значительно превышающие диффузионную длину неосновных носителей (электронов).

4.2. Спектры фоточувствительности

Характер спектров фоточувствительности (ФЧ) исследуемых структур зависел от приложенного обратного смещения, удельного сопротивления подложки (ρ_{Si}) и толщины аморфной пленки. Существенным также оказалось влияние материала контактов к аморфному слою. Лля относительно небольших значений ρ_{Si}

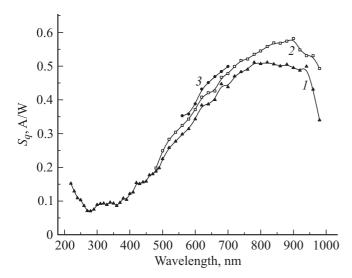

Для относительно небольших значений $\rho_{\rm Si}$ $(1.5-2.0\,{\rm kOm\cdot cm})$ фототоки короткого замыкания значительно зависели от наличия смещения. С увеличением $\rho_{\rm Si}$ эта зависимость ослаблялась.

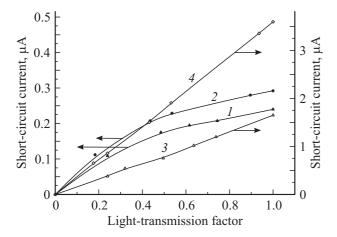
На рис. 3, 4, 5 приведены спектры ФЧ трех образцов, приготовленных на подложках с удельным сопротивлением $\rho_{\rm Si}=2$, 8.8 и 40 кОм · см и Аl-контактами на пленке a-Si : H. Спектры ФЧ образцов измерены при нулевом и небольших обратных смещениях (темновые токи вычтены) и приведены к одинаковому числу квантов света t, соответствующему величине t при длине волны 800 нм.


В спектрах на рис. 3 для образца # 1 с удельным сопротивлением подложки $\rho_{\rm Si}=2\,{\rm кOM}\cdot{\rm cm}$ наблюдается возрастание ФЧ и смещение максимума в сторону больших длин волн в случае наличия обратного смещения. Резкий подъем ФЧ (обратное смещение $-3\,{\rm B}$) имеет место для длин волн $\lambda>530\,{\rm hm}$. Поглощение света в аморфной пленке (толщина пленки $d=500\,{\rm \AA}$) в этом случае относительно мало, и фотоносители возникают

в основном в c-Si. Без смещения величина контактного потенциала ψ_c оказывается недостаточной для полного сбора фотоносителей. Приложение обратного смещения значительно увеличивает сбор фотоносителей на контакт.

То, что без смещения часть носителей не дает вклада в фототок, можно заключить исходя из характера зависимости фототока от светового потока. На рис. 6 приведены зависимости фототоков, полученных в режиме тока короткого замыкания, от мощности излучения, без смещения и со смещением —4 В для двух длин волн света — 700 и 820 нм. В первом случае наблюдались нелинейные зависимости от интенсивности, во втором фототоки значительно возрастали и их зависимости от светового потока становились линейными. Последнее


Рис. 3. Спектры фоточувствительности S_q гетероструктуры # 1 ($\rho_{\rm Si}=2\,{\rm кOm\cdot cm}$) с Al- (I,3) и NiCr- (2,4) контактами. (I,2) — U=0, (3,4) — $U=-3\,{\rm B}$. Расстояние от светового пятна до обоих контактов 2.5 мм.


Рис. 4. Спектры фоточувствительности S_q гетероструктуры # 2 ($\rho_{\rm Si}=8.8\,{\rm kOm\cdot cm}$) с Al-контактом: без смещения и со смещением $-4.6\,{\rm B}$. Расстояние от светового пятна до контакта $1\,{\rm mm}$.

связано, по-видимому, с уменьшением роли растекания неравновесных носителей и их рекомбинации. Для ФЧ образца # 2 с $\rho_{\rm Si}=8.8\,{\rm kOM}\cdot{\rm cm}$ различие спектров, полученных без смещения и со смещением, оказалось существенно меньшим (рис. 4), но только в том случае, когда измерения без смещения проводились с нейтральным фильтром, уменьшающим интенсивность света в ~ 2.5 раза. Однако для образца # 3 с еще более высокоомной подложкой ($\rho_{\rm Si}=40\,{\rm kOM}\cdot{\rm cm}$) различие между спектрами без смещения и со смещением оказалось небольшим даже без уменьшения потока падающего на образец излучения (рис. 5).

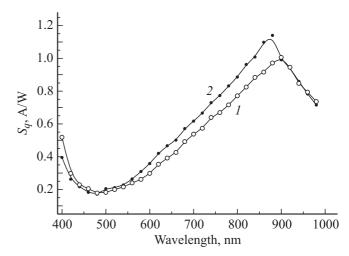

Следует отметить высокую абсолютную чувствительность данных образцов. При этом следует подчеркнуть, что все приведенные спектры $\Phi \Psi$ измерялись, когда

Рис. 5. Спектры фоточувствительности S_q гетероструктуры # 3 ($\rho_{\rm Si}=40\,{\rm кOm\cdot cm}$) с Al-контактом. U=0 (I), $-0.375\,{\rm B}$ (2), $-1.6\,{\rm B}$ (3). Расстояние от светового пятна до контакта $2\,{\rm mm}$.

Рис. 6. Зависимости фототоков в образце a-Si : H/c-Si(p) от потоков излучения, измеренных в короткозамкнутом режиме для двух длин волн: $\lambda = 700\,\mathrm{hm}$ (I, J), 820 нм (I, I) — I = 0, (I, I) — I = 0, (I, I) — I = 0.

Рис. 7. Спектры фоточувствительности S_q гетероструктуры # 4 ($\rho_{\rm Si}=21\,{
m kOm\cdot cm})$ с NiCr-контактом; $U=-3\,{
m B}$. Расстояние от светового пятна до контакта 2 (I), 5 мм (I).

световой луч был направлен не на контакт, а находился на расстоянии 1-2 и даже $5\,\mathrm{mm}$ от контакта.

Приведенные выше спектры ФЧ были получены с Al-контактом. Интересный эффект наблюдался в спектрах ФЧ для NiCr-контакта к аморфной пленке, который, помимо алюминиевого контакта, имелся на образце # 1. На рис. 3 приведены спектры ФЧ, полученные при использовании Al- и NiCr-контактов без обратного смещения и со смещением -3 В. С NiCr-контактом ФЧ при наличии одинакового обратного смещения оказалась выше во всем измеренном спектральном диапазоне. Особенно заметно в этом случае увеличение ФЧ на самом коротковолновом участке спектра. Данный эффект еще заметнее проявился в спектрах ФЧ (рис. 7), полученных на образце # 4 ($\rho_{\rm Si}=21\,{\rm kOM\cdot cM}$).

На рис. 7 приведены два спектра Φ Ч, полученные со смещением $U=-3\,\mathrm{B}$ в условиях, когда луч $(2\times5\,\mathrm{mm})$ был удален от NiCr-контакта на 2 и 5 мм. В случае, когда луч был расположен более близко к контакту, коротковолновая Φ Ч возрастала сильнее, а длинноволновая Φ Ч, наоборот, оказалась несколько меньшей, и даже длинноволновые максимумы обеих кривых были немного смещены по длинам волн по отношению друг к другу.

4.3. Обсуждение результатов

Рассмотрим процессы, происходящие в аморфнокристаллической гетероструктуре при освещении. Полный фототок гетероструктуры складывается из фототоков, возникающих за счет разделения электроннодырочных пар, генерируемых в аморфной пленке и в кристаллическом кремнии. При длинах волн $\lambda > 600$ нм поглощение света в аморфной пленке мало и можно рассматривать только фотогенерацию в кристаллическом p-кремнии. В этом случае часть фотонов бу-

дет поглощаться в обедненном слое, часть — в нейтральном объеме. Возникающие при поглощении света электронно-дырочные пары разделяются, неосновные носители (электроны), генерированные в обедненном слое и попавшие туда из нейтральной области полупроводника, перемещаются под действием поля обедненного слоя к границе раздела, а генерированные основные носители (дырки) выбрасываются полем в нейтральную область и достигают базового (тыльного) контакта.

При освещении узким пучком света на некотором расстоянии от переднего контакта сбор попавших на контакт неравновесных электронов определяется рядом факторов: транспортом вдоль канала, величиной разрыва в зоне проводимости, состояниями на границе раздела, определяющими захват и рекомбинацию носителей, и транспортом через аморфную пленку. Для транспорта вдоль канала необходимо наличие в нем тянущего поля. Такое поле даже при отсутствии обратного смещения возникает за счет градиента поверхностных потенциалов на гетерогранице под металлическим контактом и вне его. Кроме того, попавшие в инверсионный канал электроны (большой градиент концентрации $\Delta n \gg n_s$) распределяются по нему, создавая дополнительный градиент потенциала, инжектируются в потенциальную яму под контакт и преодолевают границу раздела за счет эмиссии "горячих" электронов или туннелирования термализованных. Носители могут достичь контакта, так как толщина пленки 30-50 нм, а длина диффузии в a-Si : H ~ 1 мкм [13]. Исходя из вышесказанного понятно влияние поля на величину фотосигнала. При приложении обратного смещения увеличиваются толщина слоя объемного заряда и тянущее поле в инверсионном канале за счет увеличения градиента поверхностного потенциала и краевых эффектов. Уменьшается также высота гетеропереходного барьера, и при этом увеличивается скорость прохождения гетерограницы.

Из экспериментальных данных видно, что эффект внешнего поля сильнее проявляется в образцах с меньшим удельным сопротивлением $(1.5-2 \, \mathrm{кOM} \cdot \mathrm{cm})$. Это связано с соотношением эффективной глубины поглощения света и толщины слоя объемного заряда в c-Si. Без поля генерация носителей при $\lambda > 560\,\mathrm{Hm}$ происходит частично вне слоя объемного заряда. Часть избыточных носителей заряда растекается, рекомбинирует и не попадает на контакт. Кроме того, для этих образцов с меньшим удельным сопротивлением подложки имеет место большая величина поверхностного потенциала в c-Si (табл. 2) и, следовательно, более высокий энергетический барьер для электронов. Только небольшая часть из них участвует в фототоке в результате преодоления барьера. В итоге происходит аккумуляция электронов на интерфейсе, которая приводит к увеличению рекомбинационных потерь. Когда прикладывается обратное смещение, уровень дна зоны проводимости кристаллического кремния повышается и высота энергетического "пичка", препятствующего переходу электронов в a-Si: H под контактом, оказывается меньше. Кроме того, часть

приложенного напряжения падает на аморфной пленке, благодаря чему сбор электронов, перешедших в a-Si : Н к контакту, становится эффективнее. Оба эти фактора обусловливают резкий рост фототока.

Спектральный максимум фоточувствительности возникает в случае, когда эффективная глубина поглощения света сравнима с толщиной слоя объемного заряда. Так, для образца с удельным сопротивлением 2 кОм · см максимум ФЧ без обратного смещения оказался в окрестности длины волны 560 нм, где глубина поглощения света близка к толщине слоя объемного заряда в этом случае.

С приложением поля слой объемного заряда растягивается, в результате сбор фотоносителей осуществляется из большего объема и ФЧ существенно растет. Максимум ФЧ перемещается в более длинноволновую область спектра.

Влияние приложенного смещения слабее в образцах с высокоомной подложкой, так как в этом случае толщина слоя объемного заряда достаточно велика и без поля. Кроме того, изгиб зон в c-Si оказывается заметно меньше (табл. 2).

Падение ФЧ при изменении длины волны в сторону коротких волн, наблюдаемое на всех образцах, связано, по-видимому, с увеличением скорости рекомбинации носителей у гетерограницы из-за увеличения коэффициента поглощения, обусловливающего возрастание темпа генерации неравновесных носителей во все меньшем объеме.

Проблемным вопросом является наличие коротковолнового подъема ФЧ при $\lambda < 460$ нм (2.7 эВ), наблюдавшегося для NiCr-контакта к аморфной пленке. В этом случае свет поглощается преимущественно в аморфной пленке. Так, при энергии фотона $h\nu = 3$ эВ ($\lambda = 413$ нм) через пленку толщиной 300 Å до подложки дойдет только 16% первоначальной интенсивности света. Возможность вклада в фототок фотоносителей, создаваемых в аморфной пленке на расстоянии нескольких миллиметров от контакта, представляется недостаточно ясной, и поэтому целесообразно рассматривать только транспорт электронно-дырочных пар, генерируемых в c-Si.

Как известно [14], рост фототока в поверхностноканальных МДП фотоэлементах на основе кремния за счет роста внутреннего фотоэффекта в кремнии происходит при $h\nu > 4$ эВ. Для образца аморфнокристаллической гетероструктуры # 3 с Al-контактом также наблюдался подъем ФЧ при $h\nu > 4.4$ эВ (рис. 5). Тем не менее механизм, обусловливающий подъем ФЧ при $h\nu > 2.7$ эВ, наблюдавшийся на образцах с NiCr, остается неясным.

Другим интересным вопросом является заметное различие характеристик ФЧ, полученных с Al- и NiCr-контактами к аморфной пленке. ФЧ с NiCr-контактом, как видно из спектров ФЧ на рис. 3, оказалась выше, чем с Al-контактом, во всем спектральном диапазоне. Можно предположить, что это связано с различной работой выхода металлов. Работа выхода NiCr больше, и поэтому поверхностный потенциал оказывается меньше,

потенциальная яма под контактом менее глубокая, в результате чего величина фототока в сравнении со случаем Al-контакта больше.

Также можно предположить, что определенную роль играют различные скорости поверхностной рекомбинации под контактами. Данная проблема требует выяснения в ходе дальнейших исследований.

5. Заключение

Проведен анализ токопрохождения при освещении аморфно-кристаллических гетероструктур, приготовленных на высокоомном кремнии, объяснены особенности спектральных характеристик фоточувствительности данных структур, их изменение при приложении обратного смещения. Показано, что удельное сопротивление подложек в значительной степени определяет характер спектральных кривых (особенно в отсутствии обратного смещения) и величину ФЧ. Выяснено влияние работы выхода металлических контактов к аморфной пленке на электронный транспорт в данных структурах.

Список литературы

- [1] L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt. Solar Energy Mater. & Solar Cells, 93, 905 (2009).
- [2] Q. Wang, M.R. Page, E. Iwaniczko, Y. Xu, L. Roybal, R. Bauer, B. To, H.-C. Yuan, A. Duda, F. Hasoon, Y.F. Yan, D. Levi, D. Meier, Howard M. Branz, T.H. Wang. Appl. Phys. Lett., 96, 013 507 (2010).
- [3] A. Descoeudres, Z. Holman, L. Barraud, S. Morel, S. De Wolf, C. Ballif. IEEE J. Photovolt., 3, 83 (2013).
- [4] M. Zeman, D. Zhang. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, ed. by W.G.J.H.M. van Sark, F. Roca, L. Korte (Springer-Verlag, Berlin Heidelberg, 2012) p. 13.
- [5] V.V. Avdeichikov. Nucl. Instr. Meth., 155, 125 (1978).
- [6] Y. Chiba, I. Endo, M. Kubota, T. Ohsugi, S. Orada, S. Asai, N. Hirata, J. Kitano, T. Ohta, K. Seki, T. Yokojama, M. Yobe, F. Takasaki. Nucl. Instr. Meth. A, 299, 152 (1990).
- [7] Н.П. Афанасьева, А.М. Данишевский, А.В. Дербин, И.М. Котина и др. Препринт ЛИЯФ № 1759 (1991).
- [8] А.М. Данишевский, И.М. Котина, О.И. Коньков, Е.И. Теруков, Л.М. Тухконен. Письма ЖТФ, **40** (9), 72 (2014).
- [9] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник (М., Мир, 1975).
- [10] H. Matsuura. J. Appl. Phys., 64, 1964 (1988).
- [11] В.П. Афанасьев, М.М. Бадредин-Миргхани, Г.А. Коноплев, А.В. Семенов. Сб. трудов VIII международной конф. "Аморфные и микрокристаллические полупроводники" (СПб., изд-во Политехн. ун-та, 2012) с. 47.
- [12] С. Зи. Физика полупроводниковых приборов, т. 1 (М., Мир, 1984).
- [13] S.S. Georgiev, A. Toneva, D. Sueva. Solar Energy Mater. & Solar Cells, 58, 387 (1999).
- [14] В.А. Зуев, В.Т. Попов. Фотоэлектрические МДП приборы (М., Радио и связь, 1983).

Редактор Л.В. Шаронова

Collection of photo-carriers in high-resistance amorphous-cristalline heterostructures

I.M. Kotina⁺, A.M. Danishevskii^{*}, O.I. Kon'kov^{*}, E.I. Terukov^{*}≠, L.M. Tuhkonen⁺

+ B.P. Konstantinov Petersburg
Nuclear Physics Institute,
188300 Gatchina, Leningrad Region, Russia
* loffe Physicotechnical Institute,
Russian Academy of Sciences,
194021 St. Petersburg, Russia
≠ St.-Petersburg Electrotechnical University
"LETI",
193376 St. Petersburg, Russia