01

Влияние электрического и магнитного полей на ориентационную структуру ферронематического жидкого кристалла

© А.Н. Захлевных, Д.В. Макаров

Пермский государственный национальный исследовательский университет, 614990 Пермь, Россия e-mail: anz@psu.ru

(Поступило в Редакцию 13 декабря 2013 г.)

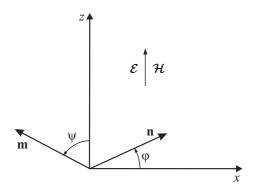
Изучены индуцированные электрическим и магнитным полями однородные ориентационные фазы в мягких ферронематиках — суспензиях магнитных наночастиц в нематических жидких кристаллах. Показано, что конкуренция электрического и магнитного полей может привести к различным последовательностям ориентационных переходов в ферронематике в зависимости от энергии сцепления между директором и намагниченностью. Получены и исследованы фазовые диаграммы этих переходов. В определенном диапазоне значений энергии сцепления и напряженности электрического поля предсказана последовательность возвратных переходов ориентационной структуры: угловая фаза—гомеотропная фаза—угловая фаза—планарная фаза.

Введение

Суспензии наночастиц в жидких кристаллах (ЖК) являются примерами интенсивно изучаемых в последние годы мягких конденсированных сред [1]. Помимо многочисленных применений в устройствах отображения информации, оптических затворах и сенсорных устройствах, они представляют большой интерес с точки зрения фундаментальной физики, так как характеризуются параметрами порядка разной тензорной природы, а их физические свойства оказываются существенно богаче свойств образующих их компонент. Диспергирование анизометричных частиц в жидкокристаллической матрице дает возможность получения нового материала с уникальными свойствами. Это связано в первую очередь с тем, что ЖК представляют собой среды со спонтанным ориентационным упорядочением. По этой причине ЖК ориентируют внедренные в них анизометричные частицы, воздействуя на которые с помощью внешних полей, можно управлять оптическими свойствами композитной среды.

Большие возможности появляются в том случае, когда диспергированные в ЖК частицы являются дипольными — сегнетоэлектрическими [1,2] или магнитными [3-6]. Это дает возможность управления свойствами среды в слабых электрических или магнитных полях, так как энергия взаимодействия дипольных моментов с полем линейна по полю, в то время как энергия взаимодействия ЖК-матрицы с полем квадратична. Внешнее поле, действуя на дипольные моменты частиц, вызывает их вращение в ЖК-матрице, которое передается самой матрице вследствие ориентационной связи между частицами и матрицей. И наоборот, воздействие на ЖКматрицу влечет за собой изменение ориентации длинных осей частиц. Это, конечно, подразумевает, что концентрация дисперсной фазы хотя и мала, чтобы можно было пренебречь магнитными диполь-дипольными взаимодействиями, но тем не менее достаточна для того, чтобы в суспензии осуществлялось так называемое коллективное поведение [7]. В этом случае каждая частица, поворачиваясь под влиянием поля, вызывает ориентационные искажения в ЖК-матрице в области с характерным размером порядка длины частицы. При низкой концентрации такое вращение частицы происходит независимо от остальных, при концентрации выше некоторой повороты частиц оказываются взаимозависимыми и приводят к коллективному отклику суспензии на приложенное поле.

В настоящей работе изучаются коллоидные суспензии магнитных наночастиц в нематических жидких кристаллах (НЖК) — так называемые ферронематики (ФН). Эти композиционные материалы были теоретически предсказаны в пионерской работе Брошар и де Жена [7], а затем синтезированы на основе как лиотропных, так и термотропных ЖК [1]. Ферронематики обладают двумя механизмами отклика на приложенное магнитное поле. Один из них типичен для ЖК, он квадратичен по полю и обусловлен диамагнитной анизотропией ЖК-матрицы. Другой механизм связан с воздействием поля на магнитные моменты частиц, он линеен по полю и является определяющим в слабых полях. Как отмечалось выше, в рассматриваемой суспензии эти механизмы являются взаимозависимыми ввиду ориентационной связи между дисперсной магнитной фазой и ЖК-матрицей. Особый интерес представляет случай, когда ориентационные механизмы являются конкурирующими. Это возможно, например, если магнитные частицы внедрены в матрицу таким образом, что в отсутствие поля суммарная намагниченность ФН перпендикулярна директору (так называемое гомеотропное сцепление магнитных частиц с матрицей). В этом случае включение магнитного поля вызывает в суспензии большое разнообразие физически интересных эффектов, например трикритические и возвратные явления [8-12]. Эти явления, как показано в настоящей работе, не всегда связаны с ограниченной геометрией, а являются результатом конкуренции дипольного и квадрупольного механизмов влияния поля на ФН. Даже в неограниченном ФН конкуренция ориентационных механизмов вызывает переходы, связанные с изменением характера сцепления между директором и намагниченностью [13–15]. Наличие электрического поля, способного напрямую влиять только на ЖК-матрицу, дает еще один механизм влияния — квадрупольный электрический. Конкуренция между этими тремя механизмами приводит к возвратным ориентационным переходам в ФН в ограниченных геометриях [11,12]. В настоящей работе анализируются ориентационные переходы в неограниченном ФН, помещенном в параллельные электрическое и магнитное поля. На поверхности магнитных частиц сцепление предполагалось мягким и гомеотропным.


1. Уравнения ориентационного равновесия

Рассмотрим неограниченный ФН с однородным распределением магнитных частиц $f \equiv N\nu/V$, где N — число магнитных частиц в суспензии, ν — объем частицы, V — объем, занимаемый ФН. Проанализируем его поведение в однородных сонаправленных электрическом $\mathbf{E} = (0, 0, \mathscr{E})$ и магнитном $\mathbf{H} = (0, 0, \mathscr{H})$ полях (рис. 1).

Равновесные ориентации директора \mathbf{n} , т.е. единичного вектора, вдоль которого в среднем упорядочены длинные оси молекул ЖК, и намагниченности отвечают минимуму свободной энергии ФН. Ориентационную часть объемной плотности F свободной энергии ФН, находящегося в электрическом и магнитном полях, с учетом мягкого поверхностного сцепления магнитных частиц с ЖК-матрицей можно записать следующим образом [7,16,17]

$$F = -\mu_0 M_s f \mathbf{m} \mathbf{H} - \frac{1}{2} \mu_0 \chi_a (\mathbf{n} \cdot \mathbf{H})^2$$
$$- \frac{1}{2} \varepsilon_0 \varepsilon_a (\mathbf{n} \cdot \mathbf{E})^2 + \frac{w}{d} f (\mathbf{n} \mathbf{m})^2. \tag{1}$$

Здесь **m** — единичный вектор намагниченности Φ H, χ_a — анизотропия диамагнитной восприимчивости

Рис. 1. Ферронематик в электрическом $\mathscr E$ и магнитном $\mathscr H$ полях.

НЖК, μ_0 — магнитная проницаемость вакуума, M_s — намагниченность насыщения материала магнитных частиц, ε_0 — диэлектрическая проницаемость вакуума, ε_a — анизотропия диэлектрической проницаемости ЖК, f — средняя объемная доля магнитных частиц в суспензии, d — поперечный диаметр феррочастицы, w — поверхностная плотность энергии сцепления магнитных частиц с НЖК. Как уже отмечалось, мы рассматриваем ФН вдали от границ, поэтому распределения директора и намагниченности однородны в пространстве, и в свободной энергии (1) отсутствует энергия ориентационно-упругих деформаций директора (потенциал Озеена—Франка).

Первое слагаемое в выражении (1) представляет собой объемную плотность энергии взаимодействия магнитного поля с магнитными моментами феррочастиц (дипольный механизм влияния магнитного поля на ФН), второе — объемная плотность энергии взаимодействия магнитного поля с нематической матрицей (описывает квадрупольный механизм влияния магнитного поля на ФН), третье — объемная плотность энергии взаимодействия электрического поля с нематиком, четвертое — объемная плотность энергии ориентационного взаимодействия магнитных частиц с директором, называемого в физике жидких кристаллов сцеплением.

Будем считать поверхностную плотность энергии сцепления w>0, так что в отсутствие внешних полей минимуму свободной энергии соответствует взаимная ортогональная ориентация директора и намагниченности $(\mathbf{n}\perp\mathbf{m})$, которую называют гомеотропным сцеплением частиц с ЖК-матрицей. Рассмотрим ФН с положительными анизотропиями диамагнитной восприимчивости χ_a и диэлектрической проницаемости ε_a . В этом случае директор стремится ориентироваться в направлении полей Е и Н. Кроме того, магнитное поле Н ориентирует магнитные моменты частиц. Из-за взаимной ортогональной ориентации директора и намагниченности электрическое и магнитное поля вызывают конкуренцию между дипольным магнитным $[\sim \mu_0 M_s f \ \mathbf{m} \ \mathbf{H}]$ и квадрупольными магнитным [$\sim \mu_0 \chi_a ({\bf n} \, {\bf H})^2$] и электрическим $[\sim \varepsilon_0 \varepsilon_a (\mathbf{n} \mathbf{E})^2]$ механизмами влияния. Предполагая объемную долю феррочастиц в ферронематике малой $(f\ll 1)$, но еще достаточной для обеспечения коллективного поведения суспензии [7], магнитными дипольдипольными взаимодействиями будем пренебрегать. Задачей исследования является определение равновесных ориентаций директора и намагниченности относительно направления внешних полей.

В рассматриваемом случае (рис. 1) директор ${\bf n}$ и единичный вектор намагниченности ${\bf m}$ можно искать в виде:

$$\mathbf{n} = [\cos \varphi, 0, \sin \varphi],$$

$$\mathbf{m} = [-\sin \psi, 0, \cos \psi].$$
 (2)

Здесь φ и ψ — углы ориентации директора и намагниченности в однородной Φ Н-фазе, зависящие от напряженностей полей и материальных параметров суспензии.

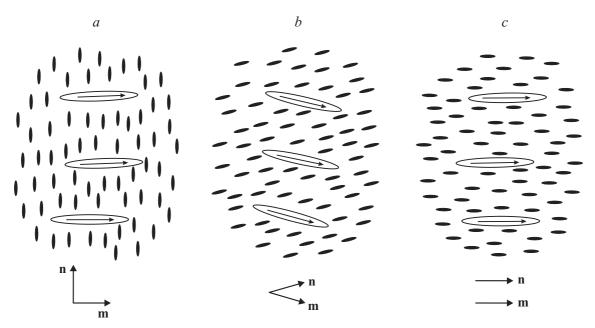


Рис. 2. Однородные ориентационные фазы ферронематика.

Определим безразмерные параметры

$$H = \frac{\chi_a \mathcal{H}}{M_s f}, \quad E = \frac{\mathscr{E}}{M_s f} \sqrt{\frac{\varepsilon_0 \varepsilon_a \chi_a}{\mu_0}}, \quad \sigma = \frac{w \chi_a}{\mu_0 M_s^2 f d}. \quad (3)$$

Здесь в качестве единицы измерения напряженности магнитного поля используется величина $\mathcal{H}_0 = M_s f/\chi_a$, для которой диамагнитный вклад $[\sim \mu_0\chi_a(\mathbf{n}\cdot\mathbf{H})^2]$ в свободную энергию ФН (1) и энергия взаимодействия феррочастиц с магнитным полем $[\sim \mu_0 M_s f \ \mathbf{m}\cdot\mathbf{H}]$ оказываются одного порядка. При $\mathcal{H}\approx\mathcal{H}_0$ происходит смена основного механизма влияния магнитного поля на систему от дипольного ($\mathcal{H}\leq\mathcal{H}_0$, влияние на магнитные моменты феррочастиц) к квадрупольному ($\mathcal{H}\geq\mathcal{H}_0$, влияние на диамагнитную НЖК-матрицу), и наоборот. Таким образом, $H=\mathcal{H}/\mathcal{H}_0$ является безразмерной напряженностью магнитного поля. Кроме того, введены безразмерная напряженность электрического поля E и безразмерная энергия сцепления магнитных частиц с НЖК-матрицей σ .

Как уже отмечалось, ФН обладает двумя механизмами отклика на приложенное магнитное поле. Первый из них $[\sim \mu_0 M_s f \mathbf{m} \mathbf{H}]$ линеен по полю и определяет ориентационное поведение ФН в достаточно слабых магнитных полях. Этот вклад описывает влияние внешнего магнитного поля непосредственно на магнитные моменты феррочастиц и ввиду связи $[\sim f({\bf n}\,{\bf m})^2]$ опосредованно на нематическую матрицу. Второй механизм $[\sim \mu_0 \chi_a ({\bf n} {\bf H})^2]$, квадратичный по полю, отвечает воздействию поля на диамагнитную ЖК-матрицу, а через нее, согласно $[\sim f(\mathbf{n}\,\mathbf{m})^2]$, — на магнитные моменты феррочастиц. Однако в некоторых случаях необходимо разделить влияние на магнитные частицы и матрицу. Для этого наряду с магнитным полем можно поместить ФН в электрическое поле, воздействие которого на ЖК-матрицу описывается вкладом [$\sim \varepsilon_0 \varepsilon_a (\mathbf{n} \mathbf{E})^2$].

Объемную плотность свободной энергии ΦH (1) с помощью (2) можно записать следующим образом:

$$F = \mu_0 \chi_a H_0^2 \left[-H \cos \psi - \frac{1}{2} (H^2 + E^2) \sin^2 \varphi + \sigma \sin^2 (\varphi - \psi) \right]. \tag{4}$$

Равновесные значения углов поворота директора и намагниченности определяются условиями минимума свободной энергии (4) по φ и ψ :

$$\frac{\partial F}{\partial \varphi} = 0, \quad \frac{\partial F}{\partial \psi} = 0,$$
 (5)

$$\frac{\partial^2 F}{\partial \varphi^2} > 0, \quad \frac{\partial^2 F}{\partial \varphi^2} \frac{\partial^2 F}{\partial \psi^2} - \left(\frac{\partial^2 F}{\partial \varphi \partial \psi}\right)^2 > 0.$$
 (6)

Подставляя свободную энергию (4) в уравнения (5), получаем следующую систему уравнений равновесия:

$$(H^2 + E^2)\sin 2\varphi = 2\sigma \sin 2(\varphi - \psi),$$
 (7)

$$H\sin\psi = \sigma\sin 2(\varphi - \psi),\tag{8}$$

определяющую зависимости углов ориентации директора ϕ и намагниченности ψ от напряженностей полей E и H при различных значениях энергии сцепления σ магнитных частиц с ЖК-матрицей.

Система уравнений (7), (8) имеет несколько решений, удовлетворяющих условиям (6). Одно из них

$$\varphi = \psi = 0 \tag{9}$$

отвечает так называемой [13] гомеотропной фазе Φ H (рис. 2, a), в которой намагниченность перпендикулярна

директору и параллельна магнитному полю $(\mathbf{n} \perp \mathbf{m} \| \mathbf{H})$. При заданном значении E гомеотропная фаза устойчива при $H \leq H_{\perp}$, где H_{\perp} определяется уравнением

$$(H_{\perp}^2 + E_{\perp}^2)(2\sigma + H_{\perp}) - 2\sigma H_{\perp} = 0.$$

Другое решение описывает угловую [13] ориентационную фазу (рис. 2, b):

$$\sin 2\varphi = \frac{2H}{H^2 + E^2} \sin \psi, \tag{11}$$

 $\sin^2 \psi =$

$$\frac{[(H^2+E^2)(2\sigma+H)-2\sigma H][(H^2+E^2)(2\sigma-H)+2\sigma H]}{4\sigma(H^2+E^2)[2H^2+\sigma(H^2+E^2)]}$$
 (12)

В этой фазе угол между директором и намагниченностью зависит от напряженностей полей E, H и энергии сцепления σ . Угловая фаза ΦH (рис. 2, b) устойчива при $H_{\perp} \leq H \leq H_{\parallel}$. Здесь H_{\parallel} — поле перехода из угловой ориентационной фазы в планарную [13] фазу (фазу насыщения), в которой директор и намагниченность параллельны магнитному полю $(\mathbf{n} \| \mathbf{m} \| \mathbf{H})$. Поле H_{\parallel} определяется уравнением

$$(H_{\parallel}^2 + E^2)(2\sigma - H_{\parallel}) + 2\sigma H_{\parallel} = 0, \tag{13}$$

которое, как и выражение (10), обращает в нуль правую часть уравнения (12).

И наконец, решение

$$\varphi = \pi/2, \quad \psi = 0 \tag{14}$$

описывает планарную ориентационную фазу ФН (рис. 2, c), устойчивую при $H \ge H_{\parallel}$.

Проанализируем сначала систему уравнений (7), (8) в ряде частных случаев.

1.1. ФН в электрическом поле

Если к ФН приложено однородное электрическое поле E, а магнитное поле отсутствует (H=0), то при $\varepsilon_a>0$ директор стремится ориентироваться вдоль электрического поля $(\mathbf{n}\|\mathbf{E})$, т.е. вдоль оси z. Как следует из системы (7)-(8), угол ориентации намагниченности в этом случае полностью определяется углом поворота директора:

$$\varphi = \psi = \pi/2. \tag{15}$$

Это связано с тем, что электрическое поле напрямую не действует на магнитную подсистему, и поэтому ориентация намагниченности определяется только ее сцеплением с директором. Заметим, что при H=0 тривиальные решения (9) и (14) по-прежнему удовлетворяют уравнениям (7), (8) однако они не отвечают условиям минимума свободной энергии (6). Таким образом, ФН, помещенный только в однородное электрическое поле, находится в гомеотропной фазе (рис. 2, a), характеризующейся взаимно ортогональной ориентацией директора и намагниченности ($\mathbf{m} \perp \mathbf{n} || \mathbf{E}$). Изменение напряженности электрического поля не приводит к какому-либо изменению ориентационной структуры ФН.

1.2. ФН в магнитном поле

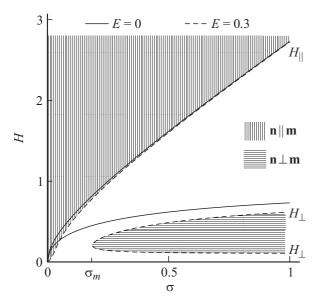
При наличии только магнитного поля H система уравнений ориентационного равновесия ΦH (7)–(8) совпадает с полученной ранее в работе [13] и описывает ориентационную структуру трех однородных фаз ΦH : гомеотропной, угловой и планарной (рис. 2). В слабом магнитном поле вектор намагниченности \mathbf{m} направлен вдоль поля \mathcal{H} , а директор \mathbf{n} ориентирован ортогонально полю. Такая структура ΦH (9) отвечает взаимно ортогональной ориентации намагниченности и директора $(\mathbf{n} \bot \mathbf{m} \| \mathbf{H})$ и носит название гомеотропной [13] фазы (рис. 2,a). С ростом напряженности магнитного поля при $H = H_{\bot}(E = 0) \equiv H_{\bot}^0$, где

$$H_{\perp}^{0} = \sigma[-1 + \sqrt{1 + 2/\sigma}],$$
 (16)

она теряет устойчивость и сменяется угловой [13] фазой (рис. 2,b), в которой угол между директором ${\bf n}$ и намагниченностью ${\bf m}$ отличен от 0 и $\pi/2$, а φ и ψ определяются выражениями

$$\sin 2\varphi = \frac{2}{H}\sin\psi,$$

$$\sin^2\psi = \frac{4\sigma^2H^2 - (2\sigma - H^2)^2}{4\sigma H^2(\sigma + 2)}.$$
(17)


Угловая фаза устойчива при $H^0_\perp \leq H \leq H^0_\parallel$, где

$$H_{\parallel}^{0} = H_{\parallel}(E=0) = \sigma[1 + \sqrt{1 + 2/\sigma}]$$
 (18)

является полем перехода между угловой и планарной [13] фазой (рис. 2, c), в которой намагниченность и директор (14) параллельны магнитному полю ($\mathbf{n} \| \mathbf{m} \| \mathbf{H}$). Планарная фаза устойчива при $H \geq H_{\parallel}^0$. При изменении напряженности магнитного поля переходы между гомеотропной, угловой и планарной фазами осуществляются пороговым образом по типу фазовых переходов второго рода.

2. Ориентационные фазы, индуцированные магнитным полем

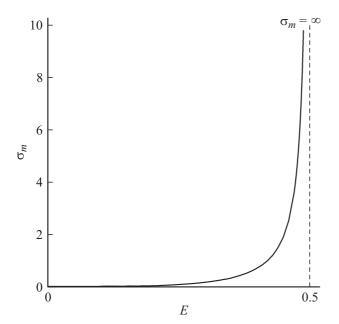

Как отмечалось выше, в отсутствие электрического поля (E=0) в ферронематике при $H \leq H_\perp^0$ устойчива гомеотропная фаза, в которой директор и намагниченность ортогональны $(\mathbf{n} \perp \mathbf{m})$. Если к ФН приложить дополнительно электрическое поле, параллельное магнитному, то, как легко убедиться, система уравнений (7), (8) также допускает решения, отвечающие гомеотропной фазе. При увеличении напряженности магнитного поля намагниченность и директор стремятся ориентироваться вдоль поля, что приводит к потере устойчивости гомеотропной фазы $(\phi = \psi = 0)$ и последующему ее переходу в угловую фазу $(0 < \varphi, \psi < \pi/2)$. Это подтверждается численным решением уравнения, результаты которого показаны на рис. 3, где приведены

Рис. 3. Фазовая диаграмма ФН на плоскости (H, σ) для различных значений электрического поля E.

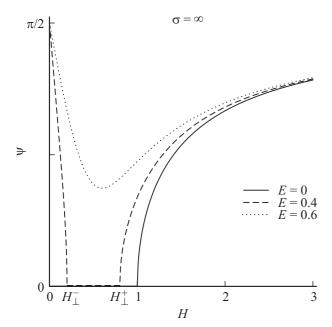
зависимости полей перехода из гомеотропной фазы в угловую (H_\perp) и из угловой в планарную (H_\parallel) от энергии сцепления магнитных частиц с матрицей. Сплошные кривые отвечают E=0, штриховые — $E\neq 0$. При E=0 область под кривой H_\perp^0 отвечает гомеотропной фазе, область $H_\perp^0 \leq H \leq H_\parallel^0$ — угловой фазе и область $H>H_\perp^0$ — планарной фазе. Поля переходов между фазами описываются формулами (16) и (18). При заданном σ с ростом H имеет место последовательность переходов гомеотропная фаза—угловая фаза—планарная фаза [13].

Как видно из рис. 3, при $E \neq 0$ зависимость $H_{\perp}(\sigma)$ становится двузначной (см. штриховые кривые, отвеча-

Рис. 4. Минимальное значение энергии сцепления σ_m , ниже которого нет гомеотропной фазы.

ющие уравнению (10)), т.е. имеются два значения порогового поля H_{\perp} , отвечающие одной и той же энергии сцепления σ между директором и намагниченностью. Теперь область под штриховой кривой $H_{\perp}(\sigma)$ и над ней является областью устойчивости угловой фазы, а область, ограниченная кривой $H_{\perp}(\sigma)$, отвечает гомеотропной фазе ФН. Область выше штриховой кривой H_{\parallel} по-прежнему отвечает планарной фазе. Область двузначности кривой $H_{\perp}(\sigma)$ для $E \neq 0$ отвечает $\sigma > \sigma_m$; при $\sigma < \sigma_m$ (слабое сцепление дисперсной магнитной фазы с НЖК-матрицей) любое сколь угодно слабое магнитное поле Н приводит к появлению угловой фазы, сменяющейся с ростом Н планарной фазой, в которой намагниченность и директор параллельны полю $(\mathbf{n} \| \mathbf{m} \| \mathbf{H})$. Видно, что включение электрического поля приводит к понижению порогового поля H_{\parallel} перехода ΦH в планарную фазу. Наиболее отчетливо это проявляется при слабой энергии сцепления σ между директором и намагниченностью (верхняя штриховая линия на рис. 3). При $\sigma > \sigma_m$ с ростом H происходит последовательность переходов: угловая-фаза гомеотропная фаза-угловая фаза-планарная фаза, т.е. имеют место возвратные явления. Как видно из рис. 4, с ростом напряженности электрического поля σ_m увеличивается, обращаясь в бесконечность при E = 1/2. Это означает, что в электрических полях напряженностью E > 1/2 и $H \neq 0$ для любых значений энергии сцепления гомеотропная фаза ФН отсутствует.

Рассмотрим уравнение (10) в случае слабых электрических полей $E\ll 1$. Поскольку наличие электрического поля приводит к возвратным ориентационным фазам, то для заданной энергии сцепления существуют два пороговых значения магнитного поля H_{\perp} (рис. 3), параллельная и антипараллельная электрическому полю ориентации директора являются вырожденными. В рассматриваемом случае из (10) получаем


$$H_{\perp} = E^2 + \frac{2\sigma + 1}{2\sigma} E^4. \tag{19}$$

Из рис. З видно, что в отсутствие электрического поля при сколь угодно малой напряженности магнитного поля ФН находится в гомеотропной фазе. Из выражения (19) следует, что включение электрического поля сдвигает порог перехода H_{\perp} из угловой в гомеотропную фазу в область более сильных магнитных полей (нижняя штриховая линия на рис. 3).

Пороговое значение магнитного поля H_{\perp} перехода из гомеотропной фазы в угловую (отвечающее верхней штриховой ветви кривой $H_{\perp}(\sigma)$) также можно найти при малых E из уравнения (16)

$$H_{\perp} = H_{\perp}^{0} \left[1 - \frac{H_{\parallel}^{0} E^{2}}{2\sigma H_{\perp}^{0} (2 - H_{\perp}^{0})} \right]. \tag{20}$$

Видно, что наличие электрического поля смещает верхний порог устойчивости гомеотропной фазы в область более слабых магнитных полей, так как при любой

Рис. 5. Зависимость угла ориентации намагниченности $\psi = \varphi$ от напряженности магнитного поля H при жестком сцеплении $\sigma = \infty$.

энергии сцепления $H_{\perp}^0 < 1$ [13]. Таким образом при повторном переходе ΦH в угловую фазу электрическое поле оказывает дестабилизирующее воздействие на гомеотропную ориентационную фазу.

В случае $\sigma \to \infty$ (жесткое сцепление директора и намагниченности) из уравнения (10) находим два значения порогового магнитного поля

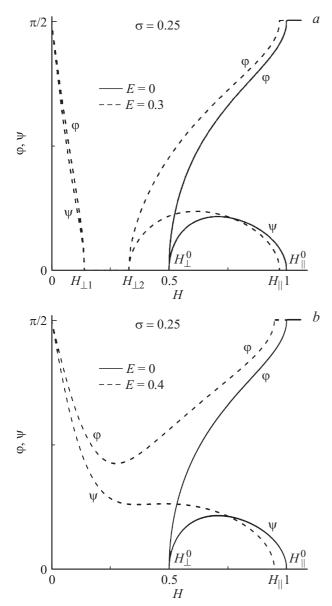
$$H_{\perp}^{\pm} = \left[1 \pm \sqrt{1 - 4E^2}\right] / 2,$$
 (21)

которые существуют только при $E \le 1/2$. При жестком сцеплении директор и намагниченность ортогональны друг другу при любых E и H, т.е. ΦH может находиться только в гомеотропной фазе. Два значения H_{\perp}^{\pm} (21) отвечают переходам между двумя гомеотропными фазами, отличающимися только взаимной ориентацией намагниченности т и магнитного поля Н. В отсутствие электрического поля при $H < H_{\perp}^{+}$ имеется только гомеотропная фаза с $\mathbf{m}\|\mathbf{H}$, при этом $H_{\perp}^-=0$ (рис. 5, сплошная линия). При $E\neq 0$ и $H< H_{\perp}^-$ ФН находится в гомеотропной фазе, в которой намагниченность ориентирована по отношению к магнитному полю под углом $\psi = \varphi = \arccos\{H/(H^2 + E^2)\}$ (рис. 5, штриховая линия). В этом случае доминирует квадрупольный диэлектрический механизм. С ростом напряженности магнитного поля начинает преобладать дипольный магнитный механизм и при $H=H_\perp^-$ происходит переход в другую гомеотропную фазу ($\phi = \psi = 0$), в которой намагниченность параллельна магнитному полю $(\mathbf{m} \| \mathbf{H})$. Эта фаза термодинамически устойчива в интервале полей $H_{\perp}^{-} \leq H \leq H_{\perp}^{+}$. При дальнейшем увеличении магнитного поля превалирует уже квадрупольный магнитный механизм, который при $H = H_{\perp}^{+}$ приводит

к переходу ФН обратно в исходную гомеотропную фазу. Таким образом, в ФН с жестким сцеплением осуществляется последовательность индуцированных магнитным полем H возвратных ориентационных переходов. Ширина области существования гомеотропной фазы $\Delta = H_{\perp}^+ - H_{\perp}^- = \sqrt{1-4E^2},$ в которой $\mathbf{m} \| \mathcal{H},$ уменьшается с ростом электрического поля, и при E > 1/2 эта гомеотропная фаза в ФН исчезает (рис. 5, пунктирная линия).

При конечной энергии сцепления с ростом напряженности магнитного поля намагниченность и директор стремятся ориентироваться вдоль поля, что приводит к потере устойчивости гомеотропной фазы при $H \geq H_{\perp}$ и последующему переходу ФН в угловую фазу. Углы ориентации директора и намагниченности φ и ψ в угловой ориентационной фазе ФН определяются выражениями (11), (12). В магнитном поле H при E=0 эти соотношения переходят в выражения (17), полученные ранее в работе [13], а в электрическом поле E при H=0 имеют значения (15), описывающие только гомеотропную фазу (рис. 2,a).

Рассмотрим случай $E\ll 1$, соответствующий слабым электрическим полям в уравнении (13). В низшем порядке имеем


$$H_{\parallel} = H_{\parallel}^{0} \left[1 - \frac{H_{\perp}^{0} E^{2}}{2\sigma H_{\parallel}^{0} (2 + H_{\parallel}^{0})} \right]. \tag{22}$$

Видно, что электрическое поле понижает порог устойчивости планарной фазы в магнитном поле, т. е. оказывает дестабилизирующее воздействие на угловую ориентационную фазу, способствуя переходу ФН в планарную фазу.

В случае жесткого сцепления директора и намагниченности $(\sigma \to \infty)$ уравнение (13) сводится к квадратному уравнению $H_{\parallel}^2 + H_{\parallel} + E^2 = 0$, которое не имеет решений при положительных значениях H_{\parallel} . Другими словами, при этих условиях планарная фаза в ФН не реализуется, так как исходная взаимно ортогональная ориентация директора и намагниченности остается неизменной.

Анализ фазовой диаграммы ФН (рис. 3) показывает, что в сонаправленных электрическом и магнитном полях в ФН возможны три ориентационные фазы: гомеотропная, угловая и планарная. В зависимости от напряженности электрического поля и энергии сцепления внешнее магнитное поле может индуцировать различные последовательности переходов между ними. Так, если энергия сцепления $\sigma > \sigma_m$ (рис. 3 и 4), то в заданном электрическом поле увеличение напряженности магнитного поля приводит к последовательности возвратных ориентационных переходов: угловая фаза—гомеотропная фаза—угловая фаза—планарная фаза (рис. 6, a). Если $\sigma < \sigma_m$, то с ростом магнитного поля в ФН происходят переходы только между угловой и планарной фазами (рис. 6, b).

На рис. 6 показаны зависимости углов ориентации директора φ и намагниченности ψ от напряженности

Рис. 6. Зависимость углов φ и ψ в Φ H от напряженности магнитного поля H при $\sigma=0.25$.

магнитного поля при различных значениях E. В отсутствие электрического поля (рис. 6, сплошные линии) при $H < H^0_{\perp}$ ферронематик находится в гомеотропной фазе (рис. 2, a): единичный вектор намагниченности **m** ориентирован вдоль магнитного поля H, а директор n ортогонален полю, т.е. углы ориентации директора ϕ и намагниченности ψ равны нулю. С ростом напряженности магнитного поля при $H=H^0_\perp$ пороговым образом исчезает взаимная ортогональная ориентация директора и намагниченности — ФН переходит в угловую фазу (рис. 2, b). С ростом H вектор \mathbf{m} отклоняется от направления поля **H**, что соответствует увеличению ψ , затем угол поворота намагниченности ψ достигает максимального значения, а затем уменьшается, обращаясь в нуль при $H=H_{||}^0$. При этом угол ориентации директора φ в диапазоне напряженностей $H^0_\perp \leq H \leq H^0_{||}$ с

ростом H монотонно увеличивается от нуля до $\pi/2$. Таким образом, при $H=H_{||}^0$ ФН пороговым образом переходит в планарную фазу (рис. 2,c) и при $H\geq H_{||}^0$ находится в состоянии магнитного насыщения $\mathbf{m}||\mathbf{n}||\mathbf{H}$.

При $E \neq 0$ (штриховые линии на рис. 6) в отсутствие магнитного поля директор ${\bf n}$ ориентирован вдоль электрического поля, а единичный вектор намагниченности ${\bf m}$ ортогонален полю, т. е. углы ориентации директора ${\boldsymbol \phi}$ и намагниченности ${\boldsymbol \psi}$ равны $\pi/2$. При включении магнитного поля происходит поворот намагниченности вдоль магнитного поля, что сопровождается уменьшением ${\boldsymbol \phi}$ и ${\boldsymbol \psi}$. В зависимости от величины напряженности электрического поля E возможно два сценария перехода Φ H в планарную фазу при увеличении магнитного поля.

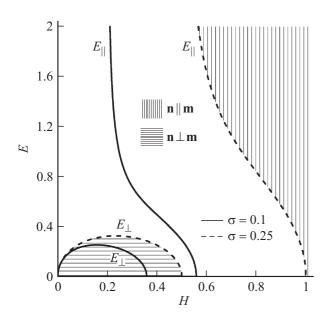
В первом случае (рис. 6, а, штриховая линия) с ростом H углы ориентации директора φ и намагниченности ψ уменьшаются, обращаясь в нуль при $H = H_{\perp 1}$. Затем в диапазоне полей $H_{\perp 1} \leq H \leq H_{\perp 2}$ ФН находится в гомеотропной фазе ($\phi = \psi = 0$). При дальнейшем увеличении напряженности магнитного поля, когда H становится больше $H_{\perp 2}$, происходит повторный переход в угловую ориентационную фазу, в которой φ и ψ становятся отличными от нуля. Увеличение напряженности сопровождается монотонным увеличением угла поворота директора ϕ , который при $H=H_{||}$ становится равным $\pi/2$. Угол ориентации намагниченности ψ с ростом поля увеличивается, достигает максимального значения, а затем уменьшается, обращаясь в нуль при $H = H_{||}$. В полях $H \geq H_{||}$ ФН находится в планарной фазе и значения углов $\phi = \pi/2$ и $\psi = 0$ не меняются.

Во втором случае (рис. 6, b, штриховая линия) с ростом H угол ориентации директора φ уменьшается, достигает некоторого минимального значения, а затем увеличивается и при $H \geq H_{||}$ достигает значения $\pi/2$. При этом угол поворота намагниченности ψ уменьшается, обращаясь в нуль при $H = H_{||}$. Таким образом, при включении магнитного поля и дальнейшем увеличении его напряженности H ориентационная структура ферронематика пороговым образом переходит из угловой фазы в планарную, минуя гомеотропную фазу. Отметим также, что внешнее электрическое поле (штриховые линии на рис. 6) понижает пороговые поля магнитных ориентационных переходов между ориентационными фазами Φ H.

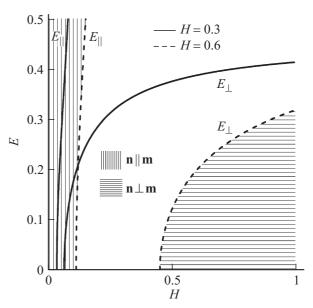
3. Ориентационные фазы, индуцированные электрическим полем

Переходы между различными ориентационными фазами Φ H можно осуществить и при фиксированной напряженности магнитного поля H, меняя электрическое поле E. В этом случае для нахождения поля перехода из гомеотропной фазы Φ H в угловую необходимо уравнение (10) разрешить относительно напряженности

электрического поля:


$$E_{\perp} = \sqrt{\frac{2\sigma H}{H + 2\sigma} - H^2},\tag{23}$$

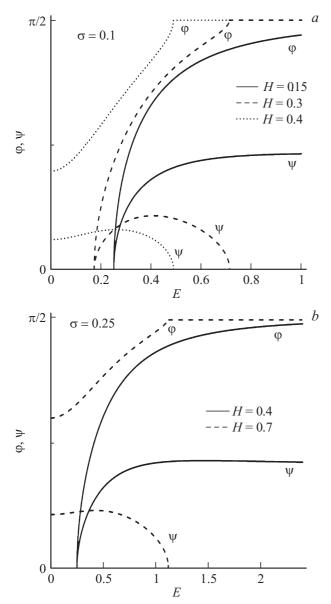
где E_{\perp} определяет порог перехода между гомеотропной и угловой фазами ФН при различной энергии сцепления и напряженности магнитного поля (рис. 7), причем действительные решения существуют только при $H \leq H_{\perp}^0$. Если $H > H_{\perp}^0$, то ФН находится в угловой фазе и изменением напряженности электрического поля его не удастся перевести в гомеотропную фазу.


Аналогичным образом поле перехода из угловой фазы ФН в планарную находится из выражения (13)

$$E_{\perp} = \sqrt{\frac{2\sigma H}{H - 2\sigma} - H^2} \tag{24}$$

Видно, что решения этого уравнения существуют только при $2\sigma \leq H \leq H^0_{\parallel}$. При $H > H^0_{\parallel}$ ФН находится в планарной фазе, и в слабых магнитных полях $(H < 2\sigma)$ воздействие электрического поля на ЖК-подсистему оказывается недостаточным для того, чтобы уменьшить угол между директором и намагниченностью и вызвать переход ФН в планарную фазу. Соответствующие фазовые диаграммы ФН изображены на рис. 7 и 8. Области с горизонтальной штриховкой соответствуют гомеотропной фазе $(\mathbf{n} \perp \mathbf{m})$, с вертикальной—планарной фазе $(\mathbf{n} \parallel \mathbf{m})$. Как видно из рис. 7, увеличение энергии сцепления расширяет интервал напряженностей электрического и магнитного полей, в котором существует планарная фаза, но сдвигает планарную фазу ФН в область более сильных магнитных полей. Увеличение магнитного поля (рис. 8) повышает минимальное значение энергии сцепления, при которой существует гомеотропная фаза. В целом анализ фазовых диаграмм показывает, что

Рис. 7. Фазовая диаграмма ФН на плоскости (E,H) для различных значений энергии сцепления σ .


Рис. 8. Фазовая диаграмма ФН на плоскости (E,σ) для различных значений магнитного поля H.

изменение электрического поля E может привести к различным последовательностям ориентационных переходов Φ H в зависимости от напряженности магнитного поля H и энергии сцепления σ . Однако электрическое поле в отличие от магнитного не индуцирует возвратные переходы в Φ H. Это справедливо также, как показано в [11,12], и для ограниченных геометрий.

Интервал напряженностей магнитного поля $\Delta_H=$ = σ $\left[-3+\sqrt{1+2/\sigma}\right]$, в котором возможно существование всех трех ориентационных фаз ФН, определяется разностью между максимально возможным значением магнитного поля H^0_\perp в гомеотропной фазе и минимально возможным 2σ в планарной фазе. Видно, что ширина этой области Δ_H обращается в нуль при $\sigma=1/4$ (рис. 7, штриховые линии).

При энергии сцепления $\sigma < 1/4$ (рис. 9,a) в зависимости от напряженности внешнего магнитного поля **H** возможно четыре различных сценария изменения ориентационной структуры Φ H, индуцированных электрическим полем **E**.

Если напряженность магнитного поля $H < 2\sigma$, то изменение напряженности электрического поля E индуцирует переходы только между гомеотропной и угловой фазами. В отсутствие электрического поля при такой величине магнитного поля ФН находится в гомеотропной фазе ($\varphi = \psi = 0$). При включении электрического поля углы φ и ψ остаются неизменными до тех пор, пока напряженность электрического поля не достигнет некоторого критического значения, при превышении которого ориентационная структура ФН пороговым образом переходит в угловую фазу, и углы φ и ψ становятся отличными от нуля (рис. 9, a, сплошные линии). При последующем увеличении E директор стремится ориентироваться вдоль поля, т.е. $\varphi \to \pi/2$ а угол ориентации намагниченности $\psi \to \arccos \{H/2\sigma\}$ Планарная фаза

Рис. 9. Зависимость углов φ и ψ в угловой фазе Φ Н от напряженности электрического поля E при различных H и σ .

 $(\varphi=\pi/2,\psi=0)$ оказывается недостижима при $H<2\sigma$, поскольку электрическое поле не может непосредственно воздействовать на магнитные частицы.

В диапазоне полей $2\sigma \leq H \leq H_\perp^0$ (рис. 9, a, штриховые линии) с ростом напряженности электрического поля E реализуется последовательность переходов: гомеотропная фаза—угловая фаза—планарная фаза. В этом интервале напряженностей магнитного поля в отсутствие электрического поля ΦH находится в гомеотропной фазе ($\mathbf{m} | \mathbf{H} \perp \mathbf{n}$), т.е. углы ориентации директора φ и намагниченности ψ равны нулю. При включении электрического поля ΦH по-прежнему остается в гомеотропной фазе, и значения углов φ и ψ не меняются. Однако с ростом E при некотором критическом значении напряженности взаимная ортогональная ориентация директора и намагниченности нарушается и ΦH переходит в угло-

вую ориентационную фазу. При дальнейшем увеличении напряженности электрического поля директор начинает приближаться к направлению электрического поля и угол поворота директора φ монотонно увеличивается до значения $\pi/2$. Вектор намагниченности, напротив, сначала отклоняется от направления поля, что соответствует увеличению угла ψ , а затем снова ориентируется вдоль поля, при этом ψ обращается в нуль. Таким образом, Φ H оказывается в планарной ориентационной фазе $(\mathbf{m}||\mathbf{H}||\mathbf{n})$.

Если напряженность магнитного поля лежит в интервале $H^0_\perp \leq H \leq H^0_\parallel$ (рис. 9, a, пунктирные линии), то ферронематик находится в угловой фазе даже в отсутствие электрического поля, т.е. φ и ψ отличны от 0 и $\pi/2$. При включении электрического поля и дальнейшем увеличении его напряженности E ориентационная структура Φ H пороговым образом переходит из угловой фазы в планарную, минуя гомеотропную ориентационную фазу. В этом случае угол φ монотонно увеличивается до значения $\pi/2$, а угол ψ уменьшается до нуля. И наконец, если напряженность магнитного поля $H \geq H^0_\parallel$, то ориентационная структура Φ H, уже переведенная магнитным полем в планарную фазу, не меняется с ростом электрического поля.

При $\sigma > 1/4$ (рис. 9, b) в зависимости от напряженности магнитного поля Н могут реализоваться два сценария изменения ориентационной структуры ФН, обусловленные внешним электрическим полем Е. В однородном внешнем поле H < 1/2 при изменении электрического поля происходит переход только из гомеотропной фазы в угловую. Переход из угловой фазы в планарную не происходит ни при какой напряженности электрического поля (рис. 9, b, сплошные линии). Для рассматриваемой напряженности магнитного поля в отсутствие электрического поля ФН находится в гомеотропной ориентационной фазе ($\phi=\psi=0$). При включении электрического поля эта ориентационная фаза сохраняется, пока напряженность электрического поля не превысит некоторого критического значения, после чего гомеотропная фаза пороговым образом сменяется угловой ориентационной фазой. При последующем росте Е угол поворота директора $\phi \to \pi/2$ (11), а угол ориентации намагниченности $\psi \rightarrow \arccos\{H/2\sigma\}$ (12). При H > 1/2 ФН находится в угловой ориентационной фазе, из которой при увеличении электрического поля возможен переход только в планарную фазу (рис. 9, b, штриховые линии).

Заключение

В работе изучено совместное влияние электрического и магнитного полей на суспензию магнитных частиц на основе НЖК (ФН) в неограниченной геометрии с мягкими условиями сцепления между директором и намагниченностью. Внешнее магнитное поле влияет на ориентацию магнитных частиц (дипольный ферромагнитный механизм) и на ЖК-матрицу (квадрупольный диамагнитный механизм). Электрическое поле в отличие

от магнитного влияет непосредственно только на одну из подсистем — ЖК — посредством квадрупольного диэлектрического механизма. Сцепление между директором и намагниченностью приводит к конкуренции между этими ориентационными механизмами.

Показано, что воздействие однородных электрического и магнитного полей может привести к различным последовательностям ориентационных переходов в неограниченном ФН в зависимости от энергии сцепления между директором и намагниченностью. Получены и исследованы фазовые диаграммы этих переходов. В определенном диапазоне значений энергии сцепления и напряженности электрического поля предсказана последовательность возвратных переходов ориентационной структуры: угловая фаза-гомеотропная фаза-угловая фаза-планарная фаза. Такое поведение ФН обусловлено конкуренцией между дипольным (ферромагнитным) и квадрупольными (диэлектрическим и диамагнитным) механизмами влияния полей на его ориентационную структуру. Анализ фазовых диаграмм показывает, что электрическое поле также может индуцировать различные последовательности ориентационных переходов в ФН в зависимости от напряженности магнитного поля и энергии сцепления между директором и намагниченностью, но в отличие от магнитного оно не индуцирует возвратные переходы в ФН. В достаточно толстых слоях найденные решения описывают поведение ФН вдали от границ ячейки.

Работа выполнена при частичной поддержке гранта РФФИ № 13–02–96001.

Список литературы

- [1] Garbovskiy Y.A., Glushchenko A.V. // Solid State Phys. 2010. Vol. 62. P. 1–74.
- [2] Shelestiuk S.M., Reshetnyak V.Yu., Sluckin T.J. // Phys. Rev. E. 2011. Vol. 83. P. 041 705.
- [3] Podoliak N., Buchnev O., Buluy O., D'Alessandro G., Kaczmarek M., Reznikov Y., Sluckin T.J. // Soft Matter. 2011. Vol. 7. P. 4742–4749.
- [4] Podoliak N., Buchnev O., Bavykin D.V., Kulak A.N., Kaczmarek M., Sluckin T.J. // J. Colloid Interface Sci. 2012. Vol. 386. P. 158–166.
- [5] Tomašovičová N., Timko M., Mitróová Z., Koneracká M., Rajňak M., Éber N., Tóth-Katona T., Chaud X., Jadzyn J., and Kopčanský P. // Phys. Rev. E. 2013. Vol. 87. P. 014 501.
- [6] Raikher Y.L., Stepanov V.I., Zakhlevnykh A.N. // Soft Matter. 2013. Vol. 9. P. 177–184.
- [7] Brochard F., de Gennes P.G. // J. Phys. (France) 1970. Vol. 31. P. 691–708.
- [8] Zakhlevnykh A., Shavkunov V. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 1999. Vol. 330. P. 593–599.
- [9] Zakhlevnykh A.N., Shavkunov V.S. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 2001. Vol. 367. P. 175–182.
- [10] Zakhlevnykh A.N., Semenova O.R. // Mol. Cryst. Liq. Cryst. 2011. Vol. 540. P. 219–226.
- [11] Makarov D.V., Zakhlevnykh A.N. // Mol. Cryst. Liq. Cryst. 2012. Vol. 553. P. 199–210.

- [12] Makarov D.V., Zakhlevnykh A.N. // Soft Matter. 2012. Vol. 8. P. 6493–6503.
- [13] Zakhlevnykh A.N. // J. Magn. Magn. Mater. 2004. Vol. 269. P. 238–244.
- [14] Burylov S.V., Zakhlevnykh A.N. // Phys. Rev. E. 2013. Vol. 88. P. 012 511.
- [15] Burylov S.V., Zakhlevnykh A.N. // Phys. Rev. E. 2013. Vol. 88. P. 052 503.
- [16] Burylov S.V., Raikher Y.L. // Mol. Cryst. Liq. Cryst. 1995. Vol. 258. P. 107–122.
- [17] Burylov S.V., Raikher Y.L. // Mol. Cryst. Liq. Cryst. 1995. Vol. 258. P. 123–141.