11

Последовательность превращений при упорядочении нестехиометрических соединений с образованием сверхструктур типа M_3X_2

© А.И. Гусев, А.М. Бельков, Т.Д. Выродова, А.С. Курлов

Институт химии твердого тела УрО РАН, Екатеринбург, Россия

E-mail: gusev@ihim.uran.ru

(Поступила в Редакцию 2 апреля 2014 г.)

Проведен симметрийный анализ моноклинной, орторомбических и тригональной сверхструктур типа M_3X_2 , которые могут образовываться в сильно нестехиометрических соединениях MX_y со структурой B1. Определены каналы переходов беспорядок—порядок $MX_y \to M_3X_2$. Показано, что при понижении температуры в нестехиометрических соединениях MX_y переходных металлов IV группы возможны две физически допустимые последовательности превращений, связанных с образованием сверхструктур M_3X_2 : "кубическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $MX_y \to$ орторомбическая (пр. гр. Immm) упорядоченная фаза $M_3X_2 \to$ орторомбическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $MX_y \to$ орторомбическая (пр. гр. Immm) упорядоченная фаза $M_3X_2 \to$ моноклинная (пр. гр. C2) упорядоченная фаза $M_3X_2 \to$ моноклинная (пр. гр. C2) упорядоченная фаза $M_3X_2 \to$ моноклинная (пр. гр. C2) упорядоченная фаза $C2 \to C2$

Работа поддержана проектом РНФ № 14-23-00025.

1. Введение

Переходные d-металлы IV и V групп образуют с углеродом, азотом и кислородом сильно нестехиометрические карбиды, нитриды и оксиды MX_{v} (X = C, N) с кубической (пр. гр. $Fm\bar{3}m$) структурой B1, а также карбиды и нитриды M_2X_v с гексагональной (пр. гр. $P6_3/mmc$) структурой L'3 [1]. В этих соединениях неметаллические атомы X размещаются в октаэдрических междоузлиях гранецентрированной кубической (гцк) или гексагональной плотноупакованной (гпу) металлических подрешеток. Атомы неметалла X в зависимости от их относительного содержания, у, могут заполнять все или только часть междоузлий. Незаполненные междоузлия называют структурными вакансиями

. Концентрация структурных вакансий на нижней границе области гомогенности кубических карбидов и нитридов MX_{ν} может достигать 30-50 at.%. Нестехиометрические кубические оксиды Ti_rO_r и V_rO_r со структурой B1 содержат структурные вакансии и в неметаллической (кислородной), и в металлической подрешетках. Узлы металлической подрешетки соединений со структурой В1 соответствуют кристаллографическим позициям 4(a), узлы металлической подрешетки — позициям 4(b) пространственной группы $Fm\bar{3}m$. В нестехиометрических соединениях MX_{ν} $(MX_{\nu}\square_{1-\nu})$ атомы неметалла X и структурные вакансии 🗆 образуют в неметаллической подрешетке раствор замещения. Наиболее широкие области гомогенности от $MX_{0.45-0.48}$ до $MX_{1.00}$ имеют карбиды и нитриды титана, циркония и гафния MX_v (0.45 $-0.60 \le y \le 1.0$) с кубической структурой В1. Высокая концентрация структурных вакансий является предпосылкой атомновакансионного упорядочения соединений MX_{ν} с образованием сверхструктур типа M_2X , M_3X_2 , M_4X_3 , M_6X_5 с разной симметрией. Ранее был проведен симметрийный анализ образования сверхструктур типа M_2X [2,3] и M_6X_5 [4–6] в кубических соединениях MX_y , сверхструктур M_2X в гексагональных соединениях M_2X_y [7–12] и сверхструктур типа Ti_5O_5 в кубическом монооксиде титана с двойной дефектностью [13,14]. В данной работе с точки зрения симметрии рассмотрена возможность образования сверхструктур типа M_3X_2 в соединениях MX_y с кубической базисной структурой B1.

Экспериментально сверхструктуры типа M_3X_2 изучено мало. Имеются несколько экспериментальных свидетельств, подтверждающих ее существование в карбиде титана: наличие сверхструктурных рефлексов (2/3 2/3 0), наблюдавшихся в работе [15] при изучении отожженного монокристалла TiC_{0.61} методом упругого рассеяния нейтронов; слабые сверхструктурные отражения с дифракционным вектором $|{\bf q}| \approx 2.03$, характерным для ромбической (пр.гр. $C222_1$) фазы Ti_3C_2 , наблюдали на рентгенограмме отожженного карбида ТіС_{0.70} [16]; обусловленные ближним порядком в TiC_{0.76} диффузные максимумы рассеяния нейтронов, по положению соответствующие отражениям (2/3 2/3 0), найдены авторами [17]; оценка параметров ближнего порядка [18] в монокристалле ТіС_{0.64} из данных по диффузному рассеянию нейтронов показала, что наилучшее согласие теории и эксперимента достигается, если отожженный карбид ТіС0.64 содержит две упорядоченные фазы Ti₂C и Ti₃C₂. Существование орторомбической (пр.гр. $C222_1$) сверхструктуры M_3X_2 в карбиде титана $TiC_{0.64}$ следует также из расчета [18], выполненного методом Монте-Карло. Следы орторомбической (пр. гр. С2221) фазы Ti_3C_2 (M_3X_2) наблюдали в работе [19]. Соглас-

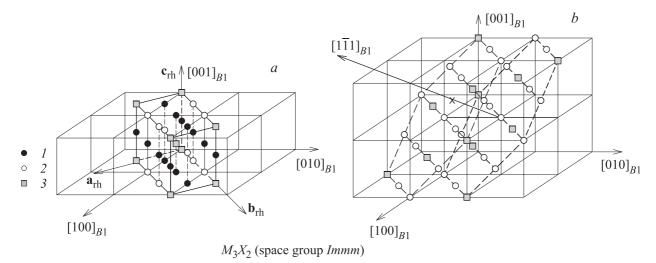


Рис. 1. Орторомбическая (пр. гр. Immm) сверхструктура M_3X_2 : a — положение элементарной ячейки в базисной кубической решетке со структурой B1; b — во всех атомных плоскостях $(1\bar{1}1)_{B1}$ неметаллической подрешетки одна треть всех узлов вакантна, остальные узлы заняты атомами внедрения, каждая вакансия находится в гексагональном окружении шести атомов X. I — атом металла M, 2 — неметаллический атом внедрения X, 3 — вакансия.

но [20,21], сверхструктуры M_3X_2 могут существовать в нестехиометрическом кубическом карбиде циркония ZrC_y вблизи нижней границы области гомогенности при температуре ниже $\sim 1200\,\mathrm{K}$. В карбиде гафния HfC_y существование сверхструктур M_3X_2 возможно вблизи нижней границы области гомогенности при температуре ниже $\sim 780\,\mathrm{K}$ [20-22]. В системе Ti-N обнаружена тригональная (пр. гр. $R\bar{3}m$) фаза η - Ti_3N_{2-x} , существующая в узком температурном интервале $1335-1374\,\mathrm{K}$ [23,24]. Но эта фаза η - Ti_3N_{2-x} не имеет области гомогенности и не являются упорядоченной фазой кубического нитрида титана TiN_y . Согласно [22,25], в кубическом нитриде TiN_y сверхструктура типа M_3X_2 может возникать при температуре ниже $\sim 1050\,\mathrm{K}$.

В целом из анализа экспериментальных и теоретических данных следует возможность образования в нестехиометрических карбидах и нитридах MX_y двух орторомбических (пр. гр. № 71 Immm (D_{2h}^{25}) и № 20 $C222_1\ (D_2^5)$), моноклинной (пр. гр. № 5 $C2\ (B112)\ (C_2^3)$) и тригональной (пр. гр. № 164 $P\bar{3}m1$ (D_{3d}^3)) сверхструктур типа M_3X_2 . Термодинамические расчеты фазовых равновесий в системах Ti-C, Zr-C, Hf-C и Ti-N, выполненные в работах [1,26,27] методом функционала параметров порядка (order parameters functional method (OPF)), подтверждают образование упорядоченных фаз типа M_3X_2 , но не позволяют определить их симметрию и пространственную группу. До сих пор не ясно, являются ли перечисленные сверхструктуры типа M_3X_2 взаимоисключающими или при понижении температуры они могут возникать в некоторой последовательности одна за другой.

В связи с этим в настоящей работе определены каналы переходов беспорядок—порядок $MX_y-M_3X_2$ и выполнен симметрийный анализ структуры фаз M_3X_2 для

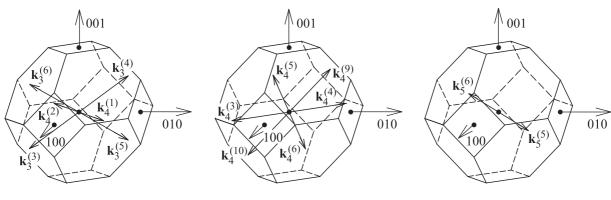
определения возможной последовательности фазовых превращений при образовании в нестехиометрических карбидах $M\mathbf{C}_y$ и нитридах $M\mathbf{N}_y$ сверхструктур типа M_3X_2 .

2. Симметрийный анализ сверхструктур M_3X_2

Превращения беспорядок-порядок или порядок-порядок, происходящие при понижении температуры, являются переходами из состояния с большей свободной энергией в состояние с меньшей энергией. Состояние вещества при атомно-вакансионном упорядочении можно характеризовать термодинамическим потенциалом Ландау, который имеет несколько минимумов, соответствующих высокосимметричной неупорядоченной и низкосимметричным упорядоченным фазам. При понижении температуры переходы от неупорядоченной фазы к какой-либо из упорядоченных фаз или переходы порядок-порядок от одной упорядоченной фазы к другой происходят с понижением симметрии. Симметрийный анализ позволяет установить величину понижения симметрии при образовании той или иной сверхструктуры и определить, в какой физически допустимой последовательности эти сверхструктуры могут возникать.

Симметрийный анализ сверхструктур начинается с определения векторов \mathbf{a}^* , \mathbf{b}^* и \mathbf{c}^* обратной решетки. Векторы обратной решетки находят через трансляционные векторы \mathbf{a} , \mathbf{b} и \mathbf{c} элементарной ячейки сверхструктуры по формулам следующего вида

$$\mathbf{a}^* = 2\pi \, \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a}(\mathbf{b} \times \mathbf{c})}.\tag{1}$$



 M_3X_2 (space group Immm and $C222_1$) M_3X_2 (space group C2 (B112))

 M_3X_2 (space group $P\overline{3}m1$)

Рис. 2. Сверхструктурные векторы обратной решетки сверхструктур типа M_3X_2 , входящие в канал фазового перехода беспорядок—порядок $MX_y-M_3X_2$, и их положение в первой зоне Бриллюэна базисной гцк решетки. Канал перехода, связанный с образованием орторомбической (пр. гр. Immm) сверхструктуры, включает два луча $\mathbf{k}_4^{(1)}$ и $\mathbf{k}_4^{(2)}$, а канал перехода беспорядок—порядок MX_y (пр. гр. $Fm\bar{3}m$) $\to M_3X_2$ (пр. гр. $C222_1$) включает эти два луча $\mathbf{k}_4^{(1)}$, $\mathbf{k}_4^{(2)}$ и еще четыре луча $\mathbf{k}_3^{(3)}$, $\mathbf{k}_3^{(3)}$, $\mathbf{k}_3^{(5)}$ и $\mathbf{k}_3^{(6)}$ звезды $\{\mathbf{k}_3\}$.

Элементарная ячейка орторомбической (пр. гр. Immm) сверхструктуры M_3X_2 показана на рис. 1, a. Эта сверхструктура имеет обратную решетку с векторами $\mathbf{a}_{Immm}^* = \langle 1\bar{1}0 \rangle,$ $\mathbf{b}_{Immm}^* = \frac{1}{3}\langle 110 \rangle$ и $\mathbf{c}_{Immm}^* = \langle 001 \rangle$. Трансляция сверхструктурных узлов обратной решетки орторомбической (пр. гр. Ітт) сверхструктуры M_3X_2 показывает, что первая зона Бриллюэна неупорядоченной гцк решетки содержит два луча $\mathbf{k}_4^{(1)}=(\mathbf{b}_1+\mathbf{b}_2+2\mathbf{b}_3)/3$ и $\mathbf{k}_4^{(2)}=-\mathbf{k}_4^{(1)}$ нелифшицевской звезды $\{\mathbf{k}_4\}$ (рис. 2) с текущим параметром $\mu_4=1/3$. Заметим, что каждой звезде $\{\mathbf{k}_s\}$, чьи лучи входят в канал перехода, соответствует параметр дальнего порядка η_s , описывающий термодинамическое состояние обсуждаемой сверхструктуры [28]. Таким образом, орторомбическая (пр. гр. Ітт) сверхструктура M_3X_2 описывается одним параметром дальнего порядка η_4 . (Здесь и далее описание и нумерация звезд $\{\mathbf{k}_s\}$ волновых векторов и их лучей $\mathbf{k}_s^{(j)}$ даны в соответствии с [1,26,29]; $\mathbf{b}_1 = (-1,1,1)$, $\mathbf{b}_2 = (1, -1, 1)$ и $\mathbf{b}_3 = (1, 1, -1)$ — структурные векторы обратной решетки базисной гцк решетки в единицах метолика определения сверхструктурных векторов, образующих канал перехода, подробно описана в [26, раздел 5.2]). Функция распределения, описывающая орторомбическую (пр. гр. Ітт) сверхструктуру M_3X_2 , была рассчитана ранее [1,26,31].

В соответствии с рис. 1, a координаты (x_I, y_I, z_I) базисной кубической структуры связаны с координатами орторомбической (пр. гр. Immm) сверхструктуры M_3X_2 следующими соотношениями $x_I = x_{\rm rh}/2 + 3y_{\rm rh}/2$, $y_I = -x_{\rm rh}/2 + 3y_{\rm rh}/2$ и $z_I = z_{\rm rh}$. Взаимное распределение атомов X и структурных вакансий \square в неметаллических атомных плоскостях $(1\bar{1}1)_{B1}$ обсуждаемой полностью упорядоченной $(y = 2/3, \eta_4 = 1)$ сверхструктуры

 M_3X_2 показано на рис. 1, b: во всех плоскостях $(1\bar{1}1)_{B1}$ одна треть всех узлов вакантна, остальные узлы заняты атомами внедрения, каждая вакансия находится в гексагональном окружении шести атомов X.

Орторомбическая элементарная ячейка сверхструктуры M_3X_2 с пространственной группой $C222_1$ показана на рис. 3,a. Базисные векторы обратной решетки этой сверхструктуры равны $\mathbf{a}_{C222_1}^* = \frac{1}{2}\langle 1\bar{1}0\rangle$, $\mathbf{b}_{C222_1}^* = \frac{1}{6}\langle 110\rangle$ и $\mathbf{c}_{C222_1}^* = \frac{1}{2}\langle 001\rangle$. Трансляция сверхструктурных узлов обратной решетки в границах первой зоны Бриллю-эна дает для этой сверхструктуры канал перехода, включающий два луча $\mathbf{k}_4^{(1)}$ и $\mathbf{k}_4^{(2)}$ звезды $\{\mathbf{k}_4\}$ и четыре луча $\mathbf{k}_3^{(3)} = -(7\mathbf{b}_1 + \mathbf{b}_2 + 2\mathbf{b}_3)/12$, $\mathbf{k}_3^{(4)} = -\mathbf{k}_3^{(3)}$, $\mathbf{k}_3^{(5)} = (\mathbf{b}_1 - 5\mathbf{b}_2 + 2\mathbf{b}_3)/12$ и $\mathbf{k}_3^{(6)} = -\mathbf{k}_3^{(5)}$ нелифшицевской звезды $\{\mathbf{k}_3\}$ (рис. 2). Текущие параметры звезд $\{\mathbf{k}_4\}$ и $\{\mathbf{k}_3\}$ равны $\mu_4 = 1/3$ и $\mu_3 = 1/12$ соответственно. Орторомбическая (пр. гр. $C222_1$) сверхструктура M_3X_2 описывается двумя параметрами дальнего порядка η_4 и η_3 . Функция распределения, описывающая орторомбическую (пр. гр. $C222_1$) сверхструктуру M_3X_2 , рассчитана в работах [1,26,31].

В соответствии с рис. 3, a координаты (x_I, y_I, z_I) базисной неупорядоченной кубической структуры B1 и координаты орторомбической (пр. гр. $C222_1$) сверхструктуры M_3X_2 связаны следующими соотношениями $x_I = x_{\rm rh} + 3y_{\rm rh} - 1/2$, $y_I = -x_{\rm rh} + 3y_{\rm rh} - 1/2$ и $z_I = 2z_{\rm rh} - 1/2$. В неметаллической подрешетке такой полностью упорядоченной $(y = 2/3, \eta_4 = \eta_3 = 1)$ сверхструктуры в направлении $[1\bar{1}1]_{B1}$ чередуются атомные плоскости $(1\bar{1}1)_{B1}$, в которых относительные доли вакантных узлов равны $n_{\square}^{(1)} = 1/6$ и $n_{\square}^{(2)} = 1/2$ (рис. 3, b). Элементарная ячейка моноклинной (пр. гр. C2

Элементарная ячейка моноклинной (пр. гр. C2 (B112)) сверхструктуры M_3X_2 показана на рис. 4, a. В работе [30] пространственная группа этой сверх-

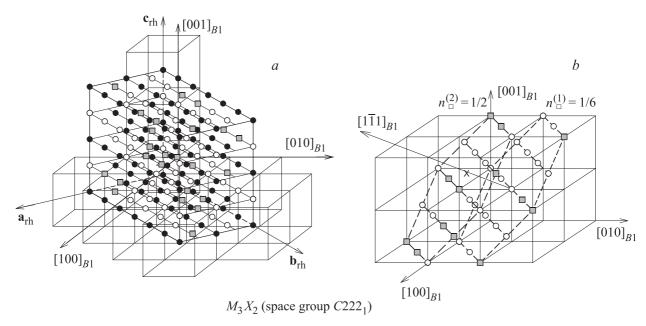


Рис. 3. Орторомбическая (пр. гр. $C222_1$) сверхструктура M_3X_2 : a — положение элементарной ячейки в базисной кубической решетке со структурой B1; b — в неметаллической подрешетке этой сверхструктуры в направлении $[1\bar{1}1]_{B1}$ чередуются атомные плоскости $(1\bar{1}1)_{B1}$, в которых относительные доли вакантных узлов равны $n_{\square}^{(1)}=1/6$ и $n_{\square}^{(2)}=1/2$.

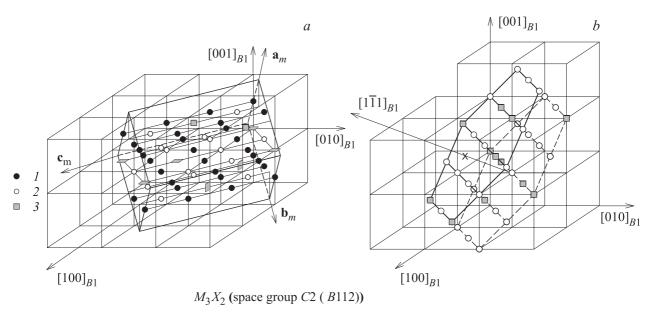


Рис. 4. Моноклинная (пр. гр. C2 (B112)) сверхструктура M_3X_2 : a — положение элементарной ячейки в базисной кубической решетке со структурой B1; b — одна треть узлов каждой неметаллической атомной плоскости $(1\bar{1}1)_{B1}$ вакантна, а остальные заняты атомами X. I — атом металла M, 2 — неметаллический атом внедрения X, 3 — вакансия.

структуры была определена неверно, в результате чего в элементарной ячейке были учтены не все атомы и вакансии; позднее эта же ошибка была повторена в [1,26,31]. Базисные векторы обратной решетки этой сверхструктуры равны $\mathbf{a}_{C2}^* = \frac{1}{3}\langle 112 \rangle$, $\mathbf{b}_{C2}^* = \frac{1}{3}\langle 11\bar{1} \rangle$ и $\mathbf{c}_{C2}^* = \frac{1}{3}\langle 1\bar{1}0 \rangle$, в соответствии с чем она образуется по каналу фазового перехода, включающему шесть лучей $\mathbf{k}_4^{(3)} = (\mathbf{b}_2 - \mathbf{b}_1)/3$, $\mathbf{k}_4^{(4)} = -\mathbf{k}_4^{(3)}$, $\mathbf{k}_4^{(5)} = (\mathbf{b}_1 + 2\mathbf{b}_2 + \mathbf{b}_3)/3$,

 $\mathbf{k}_4^{(6)} = -\mathbf{k}_4^{(5)}, \quad \mathbf{k}_4^{(9)} = (2\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)/3$ и $\mathbf{k}_4^{(10)} = -\mathbf{k}_4^{(9)}$ нелифшицевской звезды $\{\mathbf{k}_4\}$ (рис. 2). В моноклинной сверхструктуре M_3X_2 текущий параметр звезды $\{\mathbf{k}_4\}$ равен $\mu_4 = 1/3$.

В работе [30] из-за ошибки в определении пространственной группы функция распределения моноклинной (пр. гр. C2 (B112)) сверхструктуры M_3X_2 тоже была рассчитана с ошибкой. Проведенный нами расчет пока-

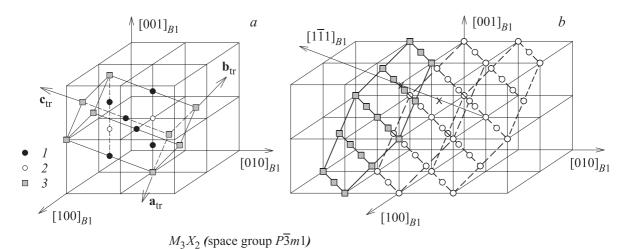


Рис. 5. Тригональная (пр. гр. $P\bar{3}m1$) сверхструктура M_3X_2 : a — положение элементарной ячейки в базисной кубической решетке со структурой B1; b — распределение атомов X и структурных вакансий в неметаллической подрешетке характеризуется последовательным чередованием двух комплектных атомных плоскостей $(1\bar{1}1)_{B1}$, все узлы которых заняты атомами X, и дефектной атомной плоскости $(1\bar{1}1)_{B1}$, все узлы которой вакантны. I — атом металла M, 2 — неметаллический атом внедрения X, 3 — вакансия.

зал, что моноклинная сверхструктура M_3X_2 описывается следующей функцией распределения

$$n(x_I, y_I, z_I) = y - (\eta_4/3) \Big\{ \cos \big[4\pi (x_I + z_I)/3 \big] \\ - (\sqrt{3}/3) \sin \big[4\pi (x_I + z_I)/3 \big] - (2\sqrt{3}/3) \sin \big[4\pi (y_I + z_I)/3 \big] \\ + \cos \big[4\pi (x_I - y_I)/3 \big] + (\sqrt{3}/3) \sin \big[4\pi (x_I - y_I)/3 \big] \Big\}.$$
(2)

В соответствии с рис. 4, a координаты (x_I, y_I, z_I) базисной кубической неупорядоченной фазы связаны с координатами моноклинной сверхструктуры M_3X_2 соотношениями $x_I = x_m/2 + y_m + 3z_m/2 - 1/4$, $y_I = x_m/2 + y_m - 3z_m/2 - 1/4$ и $z_I = x_m - y_m$.

В полностью упорядоченной моноклинной (пр. гр. C2 (B112)) структуре M_3X_2 $(y=2/3,\eta_4=1)$ одна треть узлов каждой неметаллической атомной плоскости $(1\bar{1}1)_{B1}$ вакантна, а остальные заняты атомами внедрения (рис. 4,b).

Элементарная ячейка тригональной (пр. гр. $P\bar{3}m1$) сверхструктуры M_3X_2 (рис. 5,a) имеет базисные векторы обратной решетки $\mathbf{a}_{P\bar{3}m1}^* = \frac{2}{3}\langle 21\bar{1}\rangle$, $\mathbf{b}_{P\bar{3}m1}^* = \frac{2}{3}\langle 121\rangle$, $\mathbf{c}_{P\bar{3}m1}^* = \frac{1}{3}\langle 1\bar{1}1\rangle$. Она образуется по каналу перехода, включающему два луча $\mathbf{k}_5^{(5)} = -\mathbf{b}_2/3$ и $\mathbf{k}_5^{(6)} = -\mathbf{k}_5^{(6)}$ нелифшицевской звезды $\{\mathbf{k}_5\}$ (рис. 2) с параметром $\mu_5 = 1/3$. Функция распределения, описывающая тригональную (пр. гр. $P\bar{3}m1$) сверхструктуру M_3X_2 , рассчитана в работах [1,26,31].

В неметаллической подрешетке полностью упорядоченной ($y=2/3, \eta_4=\eta_3=1$) тригональной сверхструктуры в направлении $[1\bar{1}1]_{B1}$ чередуются две атомные плоскости $(1\bar{1}1)_{B1}$, все узлы которых заняты атомами X, и одна дефектная плоскость, все узлы которой вакантны (рис. 5,b). В соответствии с рис. 5,a

координаты (x_I, y_I, z_I) неупорядоченной фазы связаны с координатами тригональной сверхструктуры соотношениями $x_I = x_{\rm tr}/2 + z_{\rm tr} + 1/2, \ y_I = y_{\rm tr}/2 - z_{\rm tr} + 1$ и $z_I = -x_{\rm tr}/2 + y_{\rm tr}/2 + z_{\rm tr} + 1/2.$

Определим изменение симметрии при переходе от неупорядоченной фазы MX_{v} к сверхструктурам $M_{3}X_{2}$ и при переходах между сверхструктурами типа M_3X_2 . Упорядочение атомов X и структурных вакансий \square происходит в базисной неметаллической гцк подрешетке неупорядоченной кубической (пр. гр. $Fm\bar{3}m$) фазы MX_{v} и связано с расщеплением высокосимметричных позиций 4(b) на две или большее число позиций низкосимметричной упорядоченной фазы. Позиции 4(b) имеют точечную группу симметрии $m\bar{3}m$ (Oh), которая включает 48 элементов симметрии $h_1 - h_{48}$ [1,26,29]. Точечные группы симметрии четырех обсуждаемых сверхструктур M_3X_2 являются подгруппами точечной группы $m\bar{3}m$ (Oh). Понижение поворотной симметрии равно отношению числа элементов точечной группы симметрии высокосимметричной неупорядоченной фазы к числу элементов точечной группы симметрии низкосимметричной фазы, т.е. отношению порядков групп. Изменение трансляционной симметрии равно отношению объемов элементарных ячеек или отношению числа узлов в элементарных ячейках низкосимметричной и высокосимметричной фаз. Общее понижение симметрии $N = n(G)/n(G_D)$ есть отношение порядков n(G) и $n(G_D)$ пространственных групп G и G_D высокосимметричной и низкосимметричной фаз и численно равно произведению поворотного и трансляционного понижений симметрии.

Термодинамические расчеты [1,25–27,31–33] фазовых равновесий в системах Ti-C, Zr-C, Hf-C и Ti-N, где существуют нестехиометрические соединения MX_y с базисной кубической структурой B1, подтверждают возможность образования упорядоченных фаз типа M_3X_2

за исключением тригональной (пр. гр. $P\overline{3}m1$). Проведем симметрийный анализ сверхструктур типа M_3X_2 и обсудим, в какой последовательности при понижении температуры они могут возникать.

Точечные группы симметрии моноклинной, тригональной и орторомбических сверхструктур M_3X_2 являются подгруппами точечной группы симметрии $m\bar{3}m$ (O_h) неупорядоченной кубической (пр. гр. $Fm\bar{3}m$) фазы MX_y , поэтому переход от фазы MX_y к любой из этих сверхструктур является фазовым превращением беспорядок—порядок.

Определение каналов фазовых переходов $MX_y-M_3X_2$ показало, что образование моноклинной, тригональной и орторомбических сверхструктур M_3X_2 связано с искажением симметрии по одной ($\{\mathbf{k}_4\}$ или $\{\mathbf{k}_5\}$) или двум ($\{\mathbf{k}_4\}$ и $\{\mathbf{k}_3\}$) нелифшицевским звездам. Из этого следует, что формирование всех четырех сверхструктур типа M_3X_2 может быть фазовым превращением только первого рода.

Из трех обсуждаемых сверхструктур M_3X_2 наиболее высокосимметричной является орторомбическая (пр. гр. Immm) фаза M_3X_2 . Она имеет точечную группу симметрии mmm (D_{2h}) , которая включает 8 элементов симметрии h_1-h_4 и $h_{25}-h_{28}$, тогда как в точечную группу (O_h) базисной кубической неупорядоченной фазы входят 48 элементов, поэтому вращательное (поворотное) понижение симметрии равно 6. Объем элементарной ячейки этой сверхструктуры составляет $V=3a_{B1}^3/2$ и потому понижение трансляционной симметрии равно 3/2. Общее понижение симметрии составляет $6\cdot 3/2=9$.

Точечная группа симметрии другой орторомбической (пр. гр. $C222_1$) фазы M_3X_2 включает 2 элемента симметрии h_1 и h_2 . Объем элементарной ячейки этой сверхструктуры $V=12a_{B1}^3$. В соответствии с этим вращательное и трансляционное понижения симметрии равны 24 и 12, а общее понижение симметрии при образовании орторомбической (пр. гр. $C222_1$) сверхструктуры M_3X_2 равно 288.

Моноклинная (пр. гр. C2 (B112)) сверхструктура M_3X_2 имеет точечную группу симметрии 2 (C2), которая включает 2 элемента симметрии h_1 и h_4 , поэтому вращательное понижение симметрии при ее образовании в нестехиометрическом соединении со структурой B1 равно 24. Понижение трансляционной симметрии при образовании этой сверхструктуры равно 9/2, а общее понижение симметрии $24 \cdot 9/2 = 108$.

Точечная группа симметрии $\bar{3}m$ (D_{3d}) тригональной (пр. гр. $P\bar{3}m1$) сверхструктуры M_3X_2 включает 4 элемента симметрии h_1 , h_{16} , h_{25} и h_{40} . Объем элементарной ячейки этой сверхструктуры $V=3a_{B1}^3/4$. В соответствии с этим вращательное и трансляционное понижения симметрии равны 12 и 3/4, а общее понижение симметрии при образовании тригональной (пр. гр. $P\bar{3}m1$) сверхструктуры M_3X_2 равно $12 \cdot 3/4 = 9$. Поскольку общее понижение симметрии при образовании орторомбической (пр. гр. Immm) и тригональной (пр.

гр. $P\bar{3}m1$) фаз типа M_3X_2 одинаково и равно 9, то эти две фазы можно считать альтернативными. Однако структура тригональной фазы M_3X_2 существенно отличается от структур орторомбических и моноклинной фаз M_3X_2 . Если рассматривать только неметаллическую подрешетку, то в тригональной (пр. гр. $P\bar{3}m1$) сверхструктуре M_3X_2 в направлении $[1\bar{1}1]_{B1}$ последовательно чередуются две комплектные атомные плоскости, все узлы которых заняты атомами внедрения, и одна дефектная плоскость, все узлы которой вакантны (см. рис. 5, b). Образование такой сверхструктуры в нестехиометрических соединениях MX_{ν} со структурой B1маловероятно. Это согласуется с термодинамическими расчетами [1,21,27,32], согласно которым образование тригональной (пр. гр. $P\bar{3}m1$) сверхструктуры M_3X_2 в нестехиометрических соединениях MX_{v} невозможно.

Точечные группы симметрии орторомбических (пр. гр. Immm и $C222_1$) и моноклинной (пр. гр. C2 (B112)) сверхструктур M_3X_2 не являются подгруппами точечной группы симметрии тригональной (пр. гр. $P\bar{3}m1$) сверхструктуры M_3X_2 . Таким образом, тригональная (пр. гр. $P\bar{3}1$) сверхструктура M_3X_2 по симметрии не связана ни с одной из трех других сверхструктур типа M_3X_2 .

Точечные группы симметрии орторомбической (пр. гр. *C*222₁) и моноклинной (пр. гр. *C*2 (*B*112)) сверхструктур M_3X_2 являются подгруппами точечной группы симметрии орторомбической (пр. гр. Ітт) сверхструктуры M_3X_2 . Поэтому наиболее симметричная орторомбическая (пр. гр. Immm) сверхструктура M_3X_2 может быть высокотемпературной фазой относительно орторомбической (пр. гр. $C222_1$) и моноклинной (пр. гр. C2) фаз M_3X_2 . Более вероятен переход порядок-порядок "орторомбическая (пр. гр. Іттт) фаза $M_3X_2 o$ орторомбическая (пр. гр. $C222_1$) фаза M_3X_2 ", так как в нем общее понижение симметрии максимально и равно 32. При переходе порядок-порядок "орторомбическая (пр. гр. Immm) фаза $M_3X_2 o$ моноклинная (пр. гр. C2) фаза M_3X_2 " общее понижение симметрии составляет 12 и этот переход исключить нельзя. Точечная группа симметрии моноклинной (пр. гр. С2) фазы $M_3 X_2$ не является подгруппой точечной группы симметрии орторомбической (пр. гр. $C222_1$) фазы M_3X_2 , поэтому превращение порядок-порядок "орторомбическая (пр. гр. $C222_1$) фаза $M_3X_2 \to$ моноклинная (пр. гр. C2) фаза M_3X_2 " невозможно; кроме того, при таком превращении вместо понижения происходило бы общее повышение симметрии.

Проведенный анализ позволяет считать, что при понижении температуры в нестехиометрических соединениях MX_y со структурой B1 возможны две альтернативные последовательности превращений, связанных с упорядоченными фазами типа M_3X_2 : "кубическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $MX_y \to$ орторомбическая (пр. гр. Immm) упорядоченная фаза $M_3X_2 \to$ орторомбическая (пр. гр. $C222_1$) упорядоченная фаза M_3X_2 " и "кубическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $M_3X_2 \to$ орторомбическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $M_3X_2 \to$ орторомбическая (пр. гр. $Fm\bar{3}m$)

гр. Immm) упорядоченная фаза $M_3X_2 \rightarrow$ моноклинная (пр. гр. C2) упорядоченная фаза M_3X_2 ". Обе последовательности включают превращения беспорядок—порядок и порядок—порядок. С учетом общего понижения симметрии более вероятна первая последовательность превращений, заканчивающаяся возникновением орторомбической (пр. гр. $C222_1$) сверхструктуры M_3X_2 . Переходы между моноклинной (пр. гр. C2) и орторомбической (пр. гр. $C222_1$) упорядоченными фазами M_3X_2 могут происходить как полиморфное превращение.

Если экспериментально какая-либо упорядоченная фаза не обнаруживается, то последовательность превращений и без этой фазы остается физически верной. Следует заметить, что указанные последовательности превращений найдены из симметрийных соображений. В [1,26,27] методом функционала параметров порядка (OPF) показано, что с точки зрения термодинамики образование орторомбических и моноклинной сверхструктур типа M_3X_2 одинаково вероятно и должно происходить при близких температурах.

Наилучшим решением вопроса о последовательности превращений было бы сравнение свободных энергий разных фаз. Для этой цели наиболее приемлемы метод вариации кластеров (CV) [34–36] и метод функционала параметров порядка (ОРF) [27,37]. Но даже ОРF-метод, специально развитый для описания упорядочения в сильно нестехиометрических соединениях, не позволяет выявить какой-либо разницы в свободных энергиях обсуждаемых сверхструктур M_3X_2 (см., например, [27]). Дело в том, что существующий вариант ОРГ-метода обеспечивает одновременный учет только параметров дальнего порядка и обусловленных ими ближайших корреляций (или сверхструктурного ближнего порядка), а сверхструктурный ближний порядок в фазах M_2X одинаков. Однако в упорядоченных фазах помимо корреляций, обусловленных дальним порядком, существуют близкодействующие корреляции, которые не исчезают при температурах $T_{\rm trans}$ переходов порядок—беспорядок или порядок-порядок, а сохраняются в некотором температурном интервале вблизи $T_{\rm trans}$, меняясь с температурой. По-видимому, разницу в свободных энергиях фаз M_2X с разной симметрией можно будет выявить, если полностью учесть ближний порядок в упорядоченных и неупорядоченной фазах. Но в настоящее время ни CV-, ни ОРГ-метод не позволяют учесть близкодействующие корреляции.

Однако недавний анализ сверхструктурного ближнего порядка и определение вероятностей парных межатомных взаимодействий в нескольких координационных сферах неметаллической подрешетки нестехиометрических соединений MX_y [38] показали, что выводы метода ОРF можно уточнить. В частности, из результатов определения вероятностей парных взаимодействий следует, что свободные энергии обсуждаемых орторомбических и моноклинной сверхструктур M_3X_2 и их температуры перехода беспорядок—порядок $T_{\rm trans}$ должны отличаться [38]. Что касается тригональной (пр. гр. $P\bar{3}m1$)

сверхструктуры M_3X_2 , то из данных [38] следует, что для нее $T_{\rm trans}=0$ и образование такой сверхструктуры в нестехиометрических соединениях $MX_{\rm V}$ исключено.

3. Заключение

Выполненный симметрийный анализ сверхструктур типа M_3X_2 дает основание полагать, что при понижении температуры возможны две последовательности превращений, связанных с фазами M_3X_2 . Первая последовательность имеет вид "кубическая (пр. гр. *Fm3m*) неупорядоченная фаза $MX_y \rightarrow$ орторомбическая (пр. гр. Immm) упорядоченная фаза $M_3X_2 o$ орторомбическая (пр. гр. $C222_1$) упорядоченная фаза M_3X_2 ". Альтернативной ей является последовательность "кубическая (пр. гр. $Fm\bar{3}m$) неупорядоченная фаза $MX_{v} \rightarrow$ орторомбическая (пр. гр. Immm) упорядоченная фаза $M_3 X_2 \to$ моноклинная (пр. гр. C2) упорядоченная фаза M_3X_2 ". Обе последовательности включают превращения беспорядок-порядок и порядок-порядок. С учетом общего понижения симметрии и имеющихся немногочисленных экспериментальных данных более вероятна первая последовательность превращений, заканчивающаяся образованием орторомбической (пр. гр. $C222_1$) сверхструктуры M_3X_2 .

Список литературы

- [1] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer, Berlin—Heidelberg—N.Y.—London (2001). 607 p.
- [2] А.И. Гусев. Письма в ЖЭТФ **91**, *3*, 130 (2010).
- [3] А.И. Гусев. ФТТ 52, 9, 1804 (2010).
- [4] A.I. Gusev, A.A. Rempel. J. Phys. C 20, 31, 5011 (1987).
- [5] А.И. Гусев. ЖЭТФ **136**, *3*, 486 (2009).
- [6] A.I. Gusev, A.S. Kurlov. In: Niobium: Chemical Properties, Applications and Environmental Effects / Eds M. Segers, T. Peeters. Nova Sciences Publ., N Y, 2013. P. 61.
- [7] A.S. Kurlov, A.I. Gusev. Phys. Rev. B 76, 17, 174115 (2007).
- [8] А.С. Курлов, А.И. Гусев. Докл. АН **417**, *5*, 616 (2007).
- [9] А.С. Курлов, А.И. Гусев. ЖЭТФ 132, 4, 812 (2007).
- [10] А.С. Курлов, С.В. Ремпель, А.И. Гусев. ФТТ **53**, *1*, 164 (2011).
- [11] A.S. Kurlov, A.I. Gusev. Tungsten. Carbides: Structure, Properties and Application in Hardmetals. Springer, Cham—Heidelberg—N. Y.—Dordrecht—London (2013). 256 p.
- [12] А.С. Курлов, А.И. Гусев. Физика и химия карбидов вольфрама. Физматлит, М. (2013). 272 с.
- [13] A.I. Gusev. J. Solid State Chem. 199, 3, 181 (2013).
- [14] А.И. Гусев. ЖЭТФ **144**, 2, 340 (2013).
- [15] V. Moisy-Maurice. Structure atomique des carbures nonstoechiometriques de metaux de transition. Rapport CEA-R-5127. Commissariat a l'Energie Atomique. Gif-sur-Yvette (France) (1981). 184 p.
- [16] V.N. Lipatnikov, A.A. Rempel, A.I. Gusev. Int. J. Refr. Met. Hard Mater. 15, 1, 61 (1997).
- [17] V. Moisy-Maurice, C.H. de Novion, A.N. Christensen, W. Just. Solid State Commun. **39**, *5*, 661 (1981).

- [18] C.H. de Novion, B. Beuneu, T. Priem, N. Lorenzelli, A. Finel. In: The Physics and Chemistry of Carbides, Nitrides and Borides / Ed. R. Freer. Kluwer Acad. Publ., Netherlands. (1990). P. 329.
- [19] В.Н. Липатников, А. Коттар, Л.В. Зуева, А.И. Гусев. ФТТ 40, 7, 1332 (1998).
- [20] А.И. Гусев. ФТТ **32**, *9*, 2752 (1990).
- [21] A.I. Gusev, A.A. Rempel. J. Phys. Chem. Solids 55, 3, 299 (1994).
- [22] А.И. Гусев. Докл. Акад. наук 322, 5, 918 (1992).
- [23] W. Lengauer. Acta Met. Mater. 39, 12, 2985 (1991).
- [24] W. Lengauer, P. Ettmayer. J. Phase Equilibria 14, 2, 162 (1993).
- [25] А.И. Гусев, А.А. Ремпель. Докл. АН 332, 6, 717 (1993).
- [26] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
- [27] А.И. Гусев. УФН 170, 1, 3 (2000).
- [28] А.Г. Хачатурян. Теория фазовых превращений и структура твердых растворов. Наука, М. (1974). 384 с.
- [29] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М. (1986). 368 с.
- [30] A.I. Gusev, A.A. Rempel. Phys. Status Solidi A **135**, *I*, 15 (1993).
- [31] А.И. Гусев, А.А. Ремпель. Нестехиометрия, беспорядок и порядок в твердом теле. УрО РАН, Екатеринбург (2001). 580 с.
- [32] A.I. Gusev, A.A. Rempel. Phys. Status Solidi A 163, 2, 273 (1997).
- [33] A.I. Gusev, A.A. Rempel. In: Materials Science of Carbides, Nitrides and Borides / Eds Y.G. Gogotsi, R.A. Andrievski. Kluwer Academic Publishers, Dordrecht (1999). P. 47–64.
- [34] R. Kikuchi. Phys. Rev. 81, 6, 988 (1951).
- [35] J. Hijmans, J. de Boer. Physica 21, 6, 471 (1955).
- [36] В.Г. Вакс, В.И. Зиненко, В.Е. Шнейдер. УФН **141**, *4*, 629 (1983).
- [37] A.I. Gusev. Philosoph. Mag. B 60, 3, 307 (1989).
- [38] А.С. Курлов, А.И. Гусев. ФТТ 52, 2, 345 (2010).