Переходы с участием мелких примесей в спектрах субмиллиметрового магнитопоглощения в напряженных квантово-размерных гетероструктурах Ge/GeSi(111)

© В.Я. Алёшкин, Д.Б. Векслер, В.И. Гавриленко, И.В. Ерофеева, А.В. Иконников, Д.В. Козлов, О.А. Кузнецов*

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

* Научно-исследовательский физико-технический институт

Нижегородского государственного университета им. Н.И. Лобачевского,

603950 Нижний Новгород, Россия

E-mail: gavr@ipm.sci-nnov.ru

В спектрах субмиллиметрового $(f=130-1250\,\mathrm{GHz})$ магнитопоглощения в напряженных многослойных гетероструктурах $\mathrm{Ge/GeSi}(111)$ с квантовыми ямами при межзонной оптической подсветке при $T=4.2\,\mathrm{K}$ обнаружены линии, связываемые с возбуждением остаточных мелких акцепторов. Наблюдаемое резонансное поглощение может быть обусловлено оптическими переходами между примесными состояниями, связанными с двумя парами уровней Ландау дырок в квантовых ямах в слоях Ge .

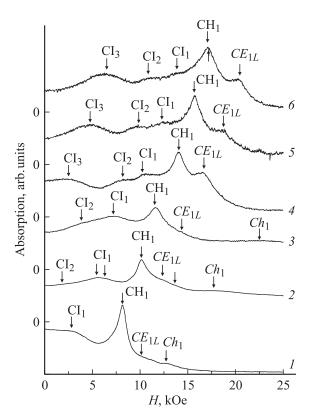
Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 03-02-16808), Минпромнауки РФ и ФЦП "Интеграция" (проект № Б0039/2102).

Традиционным методом исследования мелких примесей в гетероструктурах с квантовыми ямами является изучение спектров примесной фотопроводимости (ФП) в дальнем ИК-диапазоне. В последние годы этим методом были изучены акцепторы в напряженных гетероструктурах Ge/GeSi с квантовыми ямами [1-7]. Было показано, что связанное с упругой деформацией слоев и размерным квантованием расщепление валентной зоны приводит к малым значениям эффективных масс дырок в плоскости квантовых ям и, как следствие, к меньшим значениям энергии связи акцепторов по сравнению с характерными для объемного германия. Существенная информация об энергетическом спектре примесных центров была получена при измерении ФП в сильных магнитных полях [1,5,7], где наблюдались переходы $1s \rightarrow 2p_+$ и $1s \rightarrow 2p_-$ для акцепторов, расположенных как в центрах квантовых ям Ge, так и в центрах барьерных слоев GeSi. Однако в сильных магнитных полях происходит значительное увеличение сопротивления образца, вследствие чего существенно ухудшается соотношение сигнал/шум. Настоящая работа посвящена изучению магнитопоглощения в гетероструктурах Ge/GeSi с квантовыми ямами с остаточными мелкими акцепторами при межзонном оптическом возбуждении. Показана эффективность данного метода для исследования оптических переходов с участием мелких состояний примесей в квантовых ямах.

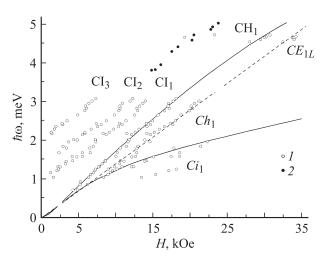
1. Методика эксперимента

Исследуемые гетероструктуры $Ge/Ge_{1-x}Si_x$ были выращены методом газотранспортной эпитаксии на подложках слаболегированного Ge(111). Полная толщина структур превышала критическую, что приводило к релаксации упругих напряжений на границе структура—

подложка. В результате слои GeSi в структуре оказываются двуосно-растянутыми, а слои Ge — двуосносжатыми. Структуры специально не легировались, концентрация остаточных акцепторных примесей составляла порядка $10^{14}\,\mathrm{cm^{-3}}$ [1]. Параметры исследованных образцов представлены в табл. 1. Образцы резмещались в световодном гелиевом криостате в центре сверхпроводящего соленоида. В качестве источников субмиллиметрового излучения использовались лампы обратной волны (ЛОВ). Спектры магнитопоглощения измерялись при $T = 4.2 \, {\rm K}$ при постоянной частоте ЛОВ и развертке магнитного поля H в фарадеевской конфигурации $\mathbf{E}_{\omega} \perp \mathbf{H}$, магнитное поле было направлено вдоль оси гетероструктуры. Измерения проводились как при линейной, так и при эллиптической поляризации микроволнового излучения. Последняя использовалась для определения знака носителей заряда и создавалась с помощью отражательного сеточного поляризатора, обеспечивающего регулируемый сдвиг фаз между двумя плоскими волнами, линейно поляризованными во взаимно перпендикулярных направлениях. Образец возбуждался модулирован-


Таблица 1. Параметры исследованных гетероструктур $Ge/Ge_{1-x}Si_x$

Номер образца	х	$d_{\mathrm{Ge}}, \mathrm{\AA}$	$d_{\mathrm{GeSi}}, \mathrm{\AA}$	Число периодов	Деформация в слоях $Ge(\varepsilon_{xx})$	Под- ложка		
262b	0.14	120	300	216	$3.8 \cdot 10^{-3}$	ГЭС-45		
307a	0.09	300	230	162	$8.7 \cdot 10^{-4}$	ГЭС-45		
308a	0.09	350	160	162	$4.4 \cdot 10^{-4}$	ГЭС-45		
308b	0.09	330	150	162	$4.4 \cdot 10^{-4}$	ГДГ-40		
309a	0.07	850	200	83	$4.6 \cdot 10^{-4}$	ГЭС-45		
309b	0.07	800	200	83	$3.3 \cdot 10^{-4}$	ГДГ-40		


ной с частотой 1 kHz межзонной подсветкой с помощью арсенид-галлиевого светодиода ($\lambda \approx 0.9 \, \mu \text{m}$), расположенного в жидком гелии рядом с образцом. Прошедшее через образец излучение детектировалось кристаллом n-InSb. Использовалась стандартная схема синхронного детектирования, сигнал с выхода синхродетектора передавался на аналого-цифровой преобразователь и записывался в память персональной ЭВМ как функция магнитного поля. Возможность наблюдения примесных переходов в спектрах магнитопоглощения при межзонной фотоподсветке связана с тем, что генерируемые свободные электроны и дырки могут захватываться как ионизованными примесями (всегда присутствующими в образце вследствие примесной компенсации), так в принципе и нейтральными примесями, что приводит к модуляции примесного поглощения. На поверхность образцов наносились полосковые омические контакты, позволяющие прикладывать латеральное электрическое поле. Для ряда образцов проводились измерения спектров субмиллиметровой фотопроводимости; в этом случае к образцу прикладывалось напряжение смещения порядка 1 V, субмиллиметровое излучение модулировалось с частотой 200 Hz [5].

2. Результаты и обсуждение

На рис. 1 представлены типичные спектры магнитопоглощения в образце № 308b; на рис. 2 приведены сводные данные по положению спектральных линий (включая результаты измерений ФП). По аналогии с результатами исследований магнитопоглощения при межзонном фотовозбуждении свободных носителей в квантующих магнитных полях $\hbar\omega_c\gg k_BT$ (ω_c — циклотронная частота носителей заряда) в других образцах Ge/GeSi [8-12] естественно связать "основную" линию поглощения СН₁ с циклотронным резонансом (ЦР) дырок. Конкретно имеется в виду переход с нижнего уровня Ландау дырок $0s_1$ на уровень $1s_1$ (оба уровня соответствуют тяжелым дыркам с моментом J = -3/2) (рис. 3). Линия Ch_1 может быть связана с переходом $3a_1 \to 4a_1$ между двумя нижними уровнями, относящимися к другой "лестнице" уровней Ландау тяжелых дырок с моментом J = +3/2. Как видно из рис. 2, наблюдаемые положения этих линий хорошо согласуются с расчетными. Линия CE_{1L} обусловлена ЦР электронов в 1L-долине, 1 которая образует дно зоны проводимости в слоях GeSi, являющихся в исследуемых структурах с широкими слоями Ge (№ 307-309) квантовыми ямами для электронов [11,12]. В этих образцах малы среднее значение доли кремния и соответственно величина упругой деформации слоев Ge ε_{xx} в отличие от ранее исследованных образцов № 259 [13], 306 [8-10] и 262, где дно зоны проводимости образовано состояниями 3*L*-долин в слоях Ge [14] (табл. 1).

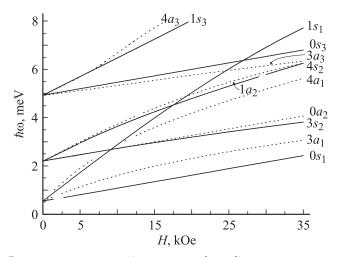


Рис. 1. Спектры магнитопоглощения в образце № 308b. $\hbar \omega$, meV: $I=1.39,\ 2=1.67,\ 3=1.96,\ 4=2.40,\ 5=2.65,\ 6=2.95.$

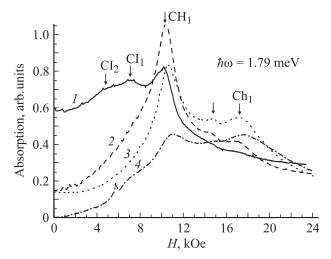
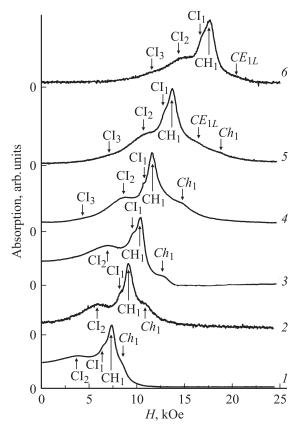


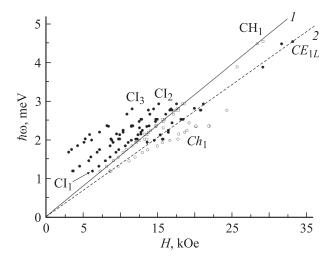
Рис. 2. Положения резонансных линий в спектре магнитопоглощения (*I*) и спектрах фотопроводимости (*2*) в образце № 308b. Сплошными линиями показаны рассчитанные переходы между уровнями Ландау $0s_1 \rightarrow 1s_1$ (CH₁) и $3a_1 \rightarrow 4a_1$ (*Ch*₁) (метод расчета и обозначения уровней Ландау см. в [7–10]). Штриховая линия — положение линии ЦР электронов в 1L-долине ($m_c = 0.083m_0$).

¹ Об этом свидетельствуют также результаты поляризационных измерений, аналогичные представленным в работах [11,12].

Рис. 3. Рассчитанные (по методике [7-10]) энергии уровней Ландау дырок из первых трех подзон размерного квантования для структуры № 308а. Первая цифра в обозначениях соответствует номеру уровня, вторая — номеру подзоны размерного квантования. Буква обозначает симметричность или антисимметричность состояния.


Рис. 4. Спектры магнитопоглощения в образце № 308а при приложенном к образцу постоянном электрическом поле. Интенсивность линий магнитопоглощения с участием примесей CI_1 и CI_2 последовательно уменьшается с увеличением приложенного электрического поля, в то время как линии ЦР CH_1 и Gh_1 сохраняются. $E, \mathrm{V/cm}$: I=0, 2=12.5, 3=22.5, 4=35.

Оставшиеся линии CI_1 – CI_3 и Ci_1 авторы связывают не с ЦР свободных носителей, а с переходами с участием мелких примесей по следующим причинам.


- 1) В магнитных полях свыше $10\,\mathrm{kOe}$ "зазор" между нижними уровнями Ландау $(0s_1,\ 3a_4)$ и вышележащими уровнями превышает $1\,\mathrm{meV}$ (рис. 3), что намного больше k_BT (0.36 meV при 4.2 K). Поэтому заселенность вышележащих уровней Ландау мала, и переходы с них не должны наблюдаться в спектрах.
- 2) В спектрах ЦР в квантующих магнитных полях $\hbar\omega_c\gg k_BT$ к линиям ЦР ${\rm CH_1},\ Ch_1,\ {\rm otherwise}$

щим переходам с двух нижних уровней Ландау дырок, могут добавиться межподзонные циклотронные переходы $(0s_1, \to 1s_3, 0s_1, \to 1s_5)$, наблюдавшиеся в образце № 309 с широкими квантовыми ямами Ge $(d_{\rm Ge}=800-850\,{\rm Å})$ [11,12]. Из исследованных в настоящей работе образцов самые широкие квантовые ямы Ge имеют место в образце № 308 $(d_{\rm Ge}=330-350\,{\rm Å})$. Однако даже в них расстояние между первой и взаимодействующей с ней третьей подзоной размерного квантования составляет 4.4 meV (рис. 3), в то время как "примесные" линии CI_1-CI_3 уверенно наблюдаются и при значительно меньших энергиях квантов (рис. 1, 2). Таким образом, вышеназванные линии не могут быть результатом межподзонного ЦР.

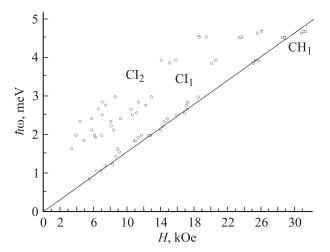

- 3) Экстраполяция положения линий ${\rm CI_1-CI_3}$ дает конечную (ненулевую) энергию $H\to 0$ (ср. [8–10]).
- 4) При приложении к образцу постоянного напряжения (до $35\,\mathrm{V/cm}$) в спектре магнитопоглощения (рис. 4) остаются линии, связанные с ЦР (СН₁, Ch_1), в то время как интенсивность "примесных" линий последовательно уменьшается, по-видимому вследствие ударной ионизации примесей.
- 5) Как видно из рис. 2, линии CI_1-CI_3 имеют тот же наклон, что и линия CH_1 , а линия Ci_1 параллельна Ch_1 . Подобное поведение наблюдалось для "примесных" линий как в образцах № 307 с очень широкими квантовыми ямами ($d_{Ge}=850\,\text{Å}$) [11,12], так

Рис. 5. Спектры магнитопоглощения в образце № 307а. $\hbar\omega$, meV: $1-1.21,\ 2-1.48,\ 3-1.70,\ 4-1.87,\ 5-2.22,\ 6-2.83.$

Рис. 6. Положения резонансных линий в спектрах магнито-поглощения (точки) в образце № 307а. I — рассчитанный (см. [7-10]) переход $0s_1 \rightarrow 1s_1$ (СН₁), 2 — положение линии ЦР электрона в 1L-долине.

Рис. 7. Положения резонансных линий в спектрах магнитопоглощения (точки) в образце № 262b. Сплошной линией показан рассчитанный (см. [7-10]) переход $0s_1 \rightarrow 1s_1$ (CH₁).

и в образцах с более узкими квантовыми ямами № 307а $(d_{\mathrm{Ge}}=300\,\mathrm{\AA})$ (рис. 5,6), № 306а $(d_{\mathrm{Ge}}=200\,\mathrm{\AA})$ [8–10], № 262b $(d_{\mathrm{Ge}}=120\,\mathrm{\AA})$ (рис. 7). Поэтому естественно предположить, что линии $\mathrm{CI}_1\mathrm{-CI}_3$ обусловлены переходами между примесными состояниями, связанными с уровнями Ландау $0s_1$ и $1s_1$, а линия Ci_1 — переходами между состояниями, связанными с уровнями $3a_1$ и $4a_1$.

При межзонной фотоподсветке при низкой температуре генерируемые свободные электроны и дырки могут захватываться как ионизованными примесями — акцепторами и донорами (всегда присутствующими в образце вследствие примесной компенсации), так в принципе и нейтральными примесями (в нашем случае акцепторами). Маловероятно, что наблюдаемые резонансы связаны с переходами с участием донорных примесей, поскольку, во-первых, исследуемые структуры имеют

р-тип проводимости, т.е. доноры являются компенсирующей примесью, а во-вторых, проведенные поляризационные измерения не выявили среди "примесных" линий резонансов, имеющих "электронную" поляризацию. Полная интерпретация обнаруженных примесных линий несомненно потребует проведения дальнейших экспериментальных и теоретических исследований; тем не менее можно перечислить все возможные оптические переходы с участием акцепторов. Во-первых, это переход $1s \rightarrow 2p_+$ для акцепторов, расположенных вблизи центров барьеров. Энергия связи достигает максимального и минимального значений в центрах квантовой ямы и барьера соответственно (табл. 2). Поэтому в случае остаточных ("равномерно" распределенных по структуре) примесей естественно ожидать проявления в спектрах переходов с энергиями, соответствующими именно этим положениям примесей (см., например, [3,4]). Типичные энергии связи акцепторов в центрах ям и барьеров в гетероструктурах Ge/GeSi составляют 7-8 и 2 meV соответственно (табл. 2), поэтому переходы, связанные с акцепторами, расположенными в квантовой яме, находятся за пределами исследуемого диапазона энергий. Во-вторых, в наших спектрах поглощения могут проявляться переходы между возбужденными акцепторными состояниями, связанными с различными уровнями Ландау. Такие переходы могут осуществляться при межзонной подсветке, если время жизни носителей сравнимо с характерными временами релаксации горячих носителей по возбужденным состояниям [15]. Наконец, межзонная подсветка может приводить к образованию A^+ -центров вследствие захвата "лишней" дырки нейтральным акцептором. По оценкам энергия связи A^+ -центров, находящихся в квантовой яме, составляет около 2 meV [16], поэтому они могут проявляться в спектрах наряду с акцепторными, расположенными в барьере.

Таблица 2. Энергия связи уровней мелких акцепторов в гетероструктурах $Ge/Ge_{1-x}Si_x$ (в meV)

Номер образца	1 <i>s</i>	$2p_0$	2 <i>s</i>	$2p_{\pm}$
262b (центр ямы)	7.9	Резонансное	1.3	1.4
262b (центр барьера)	2.1	Резонансное	0.6	0.2
307а (центр ямы)	6.9	2.8	1.2	1.5
307а (центр барьера)	1.8	0.6	0.4	0.9
308a (центр ямы)	7.5	3.1	1.7	2.0
308а (центр барьера)	2.0	0.8	0.5	0.3
309b (центр ямы)	8.4	3.1	2.5	1.8
309b (центр барьера)	1.9	0.9	0.4	_

Авторы признательны М.Д. Молдавской за многолетнее сотрудничество, заложившее основу настоящей работы, Е.А. Усковой за подготовку образцов, В.Л. Ваксу и А.Н. Панину за помощь в постановке экспериментов с ЛОВ, Ю.Н. Дроздову за рентгенодифракционные исследования образцов.

Список литературы

- [1] В.И. Гавриленко, И.В. Ерофеева, А.Л. Коротков, З.Ф. Красильник, О.А. Кузнецов, М.Д. Молдавская, В.В. Никоноров, Л.В. Парамонов. Письма в ЖЭТФ **65**, *2*, 194 (1997).
- [2] В.Я. Алешкин, В.И. Гавриленко, И.В. Ерофеева, Д.В. Козлов, О.А. Кузнецов, М.Д. Молдавская. ФТП 32, 10, 1240 (1998).
- [3] V.Ya. Aleshkin, V.I. Gavrilenko, I.V. Erofeeva, A.L. Korotkov, D.V. Kozlov, O.A. Kuznetsov, M.D. Moldavskaya. Phys. Stat. Sol. (b) 210, 2, 649 (1998).
- [4] В.Я. Алешкин, Б.А. Андреев, В.И. Гавриленко, И.В. Ерофеева, Д.В. Козлов, О.А. Кузнецов. ФТП 34, 5, 582 (2000).
- [5] V.Ya. Aleshkin, B.A. Andreev, V.I. Gavrilenko, I.V. Erofeeva, D.V. Kozlov, O.A. Kuznetsov, M.D. Moldavskaya, A.V. Novikov. Physica E 7, 3–4, 608 (2000).
- [6] V.Ya. Aleshkin, B.A. Andreev, V.I. Gavrilenko, I.V. Erofeeva, D.V. Kozlov, O.A. Kuznetsov. Nanotechnology 11, 4, 348 (2000).
- [7] V.Ya. Aleshkin, V.I. Gavrilenko, D.B. Veksler, L. Reggiani. Phys. Rev. B 66, 155 336 (2002).
- [8] В.Я. Алешкин, В.И. Гавриленко, И.В. Ерофеева, М.Д. Молдавская, В.Л. Вакс, Д.Б. Векслер, О.А. Кузнецов, J. Leotin, F. Yang. Материалы совещ. "Нанофотоника" ИФМ РАН, Н. Новгород. (1999). С. 114.
- [9] V.Ya. Aleshkin, V.I. Gavrilenko, I.V. Erofeeva, O.A. Kuznetsov, M.D. Moldavskaya, V.L. Vaks, D.B. Veksler. Proc. 6th Int. Symp. "Nanostructures: physics and technology". St. Petersburg, Russia (1999). P. 356.
- [10] В.Я. Алешкин, В.Л. Вакс, Д.Б. Векслер, В.И. Гавриленко, И.В. Ерофеева, М.Д. Молдавская, О.А. Кузнецов, Ф. Янг, М. Гуаран, Ж. Леотен. Изв. РАН. Сер. физ. 64, 2, 308 (2000).
- [11] В.Я. Алешкин, Д.Б. Векслер, В.И. Гавриленко, И.В. Ерофеева, А.В. Иконников, Д.В. Козлов, О.А. Кузнецов. Материалы совещ. "Нанофотоника". ИФМ РАН. Н. Новгород. (2003). С. 11.
- [12] В.Я. Алешкин, Д.Б. Векслер, В.И. Гавриленко, И.В. Ерофеева, А.В. Иконников, Д.В. Козлов, О.А. Кузнецов. ФТТ **46**, *1*, 000 (2004).
- [13] В.И. Гавриленко, И.Н. Козлов, О.А. Кузнецов, М.Д. Молдавская, В.В. Никоноров, Л.К. Орлов, А.Л. Чернов. Письма в ЖЭТФ 59, 5, 327 (1994).
- [14] В.Я. Алешкин, Н.А. Бекин, ФТП 31, 171 (1997).
- [15] С.В. Мешков, Э.И. Рашба. ЖЭТФ 76, 6, 2206 (1979).
- [16] В.Я. Алешкин, В.И. Гавриленко, Д.В. Козлов. Материалы совещ. "Нанофотоника". ИФМ РАН. Н. Новгород. (2003). С. 318.