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The electronic, optical and elastic properties of BeX were performed within full potential liberalized augmented

plane wave method based on density functional theory (DFT). Generalized gradient approximation (GGA) and

modified Becke Johnson (TB-mBJ) potential were used for exchange correlation. The mBJ gives improved band

gap as compare to GGA and in close agreement with the experimental results. The present band gaps of BeS, BeSe

and BeTe calculated within mBJ are 4.40, 4.0 and 2.40 eV respectively.

1. Introduction

The binary compounds BeX belong to II−VI semi-

conductors crystallize in four-fold coordinated zinc-blende

structure [1]. These compounds are in extensive study

in the recent years due to their useful physical, electro-

optical and other properties [2–4]. The distinguish features

of beryllium chalcogenides are small ionic radius ratio and

the high degree of covalent binding. The ionicities range

from 0.169 in BeTe to 0.312 in BeS [5]. Furthermore,

Be-monochalcogenides are semiconductors with indirect

band gap along Ŵ−X symmetry. They have large band

gaps (2.7−5.5 eV) and a high value of the bulk modulus

which results in an increased hardness and stability [6].
These interesting properties make them potentially useful

for technological applications. These materials have been

studied by many methods within different approximations to

reproduce the accurate description of electronic properties.

The first theoretical study of Be-chalcogenides was done

by Stukel [7], used the selfconsistent orthogonalized-plane

wave method (SCOPW) within the non-relativistic Slaters

local approximation to calculate the band structure and the

dielectric function of BeX. Sarkar and Chatterjee [8] studied
the band structure using the composite wave variational

version of the augmented plane wave method (APW) in

conjunction with the linear combination of atomic orbitals

(LCAO) method. Gonzalez D́iaz et al. [9] and Munoz et

al. [10] employed the first-principles pseudo potential (PP)
method based on the density functional formalism to study

the structural phase transition of these compounds. The

structural and electronic properties of BeX compounds have

also been investigated by Kalpana et al. [11] using the tight

binding linear muffin tin orbitals (FP-LMTO). Fleszar and

Hanke [12] have studied the electronic excitations of BeS,

BeSe and BeTe by means of the ab initio GW-approach. The

elastic constants of BeSe and BeTe have been calculated

by Doyen-Lang et al. [13], using the De Launay model
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(DLM) based on atomic model and angular central forces.

The experimental results of these compounds are very few

because of their high toxic nature which makes it difficult

to obtain as a single crystal or epitaxial layers [14–16].
In most of the semiconductors the theoretical

(LDA/GGA) [17] energy band gaps are underestimated

as compared to the experimental results. Thus further

approximations are required to modify the results in order to

make it comparable with the experimental one. As proposed

by Aryasetiawan et al. the most appropriate tool to study the

band gap is the many body perturbation theory, within the

GW approximation [18] but this theory is computationally

expensive. The theoretical band gap differs from the

experimental by a factor called derivative discontinuity

(1xc) [19]. Tran and Blaha gave an alternative method

which is computationally cheap and equally efficient in band

gap calculations, by modifying the Becke Roussel exchange

potential vBR
x ,σ [20] which is created by exchange hole. The

modified Becke−Johnson (mBJ) potential [21] read as

vmBJ
x ,σ (r) = cvBR

x ,σ (r) + (3c − 2)
1

π

√

5

6

√

tσ (r)

ρσ (r)
, (1)

which is the response of the exchange hole potential to

density variation containing derivative discontinuity 1xc .

In Eq. (1) ρσ (r) =
N0
∑

i=1

|ψi,σ |2 is the electron density,

tσ (r) = 1/2
N0
∑

i=1

∇ψ∗
i,σ is the kinetic energy density and

√

tσ (r)
ρσ (r) can be considered as screening term. An Eq. (1) is

written in such a way that for any value of c the exchange

potential is obtained for constant electron density.

c = α + β

(

1

Vcell

∫

cell

|∇ρ(r ′)|
ρ(r ′)

d3r

)1/2

(2)

where Vcell is the unit cell volume, α and β are two free

parameters whose values are α = −0.012 and β = 1.023
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Figure 1. Crystal structure of BeX.

bohr1/2 according to a fit to experimental results [22]. There
are many results of improved band gap within TB-mBJ.

Yousaf et al. studied the X -Phosphides (X=B, Al, Ga,

In) III−V type semiconductors using mBJ and reported

the improved band gap over LDA/GGA [23]. III-nitride

semiconductors considering zinc blende and wurtzite crystal

structures with TB-mBJ yields an excellent agreement with

the experimental results [24]. Guo and Liu studied the

zinc blende transition metal compounds using mBJ and

reported the increased half metallic (HM) gap with respect

to GGA/LDA [25]. The similar explanation of improved

band gap within mBJ was found in topological half-Heusler

(THH) compounds [26] as well.
Presently, many calculations of the band structures have

been reported for these compounds with underestimated

band gap as compared to experimental one. But there

are few reports on the band structures of BeX with exact

band gap. To sort out this discrepancy we have used new

exchange correlation functional modified Becke Johnson

(mBJ) potential within a frame work of DFT. The aim of

this work is to give a detailed description of the behaviour of

electronic, optical and elastic properties of the zinc blende

BeX.

2. Computational details

Experimental lattice constants were used for volume

optimization to obtain the optimized lattice parameters. The

ground state calculation based on full potential linearized

augmented plane wave (FPLAPW) method as implemented

in WIEN2K [27] package has been employed to perform

the self-consistent electronic structure calculations. Both

LDA/GGA [17] and mBJ has been used for exchange

correlations. Nonspherical contributions to the charge

density and potential within the muffin tin (MT) spheres

were considered up to lmax = 10 (the highest value of

Table 1. RMT [arb. units]

Compounds
Muffin Tin Radius (RMT) arb. units

Be X

BeS 1.99 1.99

BeSe 2.11 2.11

BeTe 2.30 2.30

angular momentum functions). The cut-off parameter was

RMT × Kmax = 8 where Kmax is the maximum value of the

reciprocal lattice vector in the plane wave expansion and

RMT is the smallest atomic sphere radii of all atomic spheres.

In the interstitial region the charge density and the potential

were expanded as a Fourier series with wave vectors up

to Gmax = 12 arb. units. The number of k-points used in the

irreducible part of Brillouin zone is 286. The mesh of 1000k
points was taken to perform the Brillouin zone integration

and the self-consistency convergence is 10−3 Ry. The details

of RMT of BeX compounds are given in Table 1.

3. Crystal Structure

Beryllium monochalcogenides BeX (X=S, Se, Te) crys-

tallizes in zinc-blende structure. BeX contains two atoms

that form fcc primitive crystal with space group F-43m. The

Wyckoff positions positions are at Be (0, 0, 0) and X(1/4,
1/4, 1/4). The unit cell structure of BeX is presented in

Fig. 1.

4. Electronic properties

The fitting of the Murnaghan equation of state [28] to

the total energy versus volume yields to the equilibrium
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A DFT study of BeX (X = S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential 1449

Figure 2. Total and partial DOS of BeTe.

Figure 3. Band structures of BeS, BeSe and BeTe calculated within GGA and mBJ.

lattice constant (a0) and the bulk moudulus (B) presented

in Table 4. The electronic structures were calculated with

the stable lattice constant. The total DOS along with the

partial DOS and band structures of BeX calculated with

GGA and mBJ are shown in Figs. 2, 3. BeS, BeSe and

BeTe have the similar electronic structure within GGA and

mBJ thus only DOS plot of BeTe is presented in Fig 2.

The Fermi energy is set at 0 eV. The distinct features
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Figure 4. a, b valence band width and (c) comparison of band gaps of BeX (GGA & mBJ).

noticed within mBJ as compared to GGA is shifting of the

conduction band and wide opening of the band gaps. We

have observed that the chalcogen p-band in the conduction

region shifted up in the energy level while going from

telluride to sulphide. The shifting of p-band was due to

the increase in the lattice parameters as explained by Wei

et al. for II−VI compounds [29]. The contribution from

the s states to total DOS is neglected as it is very small

and not presented in the Fig. 2. In all cases the top

of the valence band maxima (VBM) and the conduction

band minima (CBM) occur at Ŵ and X point respectively

as shown in Fig. 3. Thus the energy gap is an indirect

band gap between VBM and CBM. The comparison of

band gaps of BeX calculated withing GGA and mBJ are

displayed in Fig. 4, c. The order of the band gaps are

given as Eg(BeS) > Eg(BeSe) > Eg(BeTe). The overall

band gap results of GGA are found to be in fair agreement

with the previous theoretical results (LDA, TB-LMTO,

SCOPW, LCAO) but significantly underestimated from

the experimental values as shown in Table 2. Whereas

the implementation of new exchange-correlation functional

called mBJ potential has resolved this discrepancy of band

gap and provided an almost exact value as compared to

experimental data (Table 2). In all the systems the CBM

has been shifted towards the higher energy as compared

to GGA position but the position of VBM is shifted least,

almost fixed at the GGA position. Mostly the unoccupied

band has been shifted upward from the Fermi level which

results an increase in the band gap within mBJ. The upper

VBM nearby Fermi level are dominated by the p states

Table 2. Energy gap calculated within GGA and mBJ

Compound GGA mBJ Previous Expt.

BeS 3.30 4.40 3.13a/4.17c 5.50b

BeSe 2.70 4.00 2.63a/3.61c 4.50b

BeTe 2.10 2.40 1.98a/2.50d 2.70b

Note. aRef. [1], bRef. [14], cRef. [7], dRef. [12].
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of the chalcogen atoms in BeS, BeSe and BeTe. The

conduction band is composed of p states as majority

contribution from Be-p states. An analysis of the p band

in the valence region gives the width of the valence band

(−5.5−0.0 eV). From Fig. 4, a the energy range from 0.0

to −13.70 eV represents the band widths of BeX in the

valence region within GGA. The calculated band widths

are 13.40, 13.70 and 12.20 eV for BeS, BeSe and BeSe

respectively which agrees well with the previous studies

at 0 pressures [1]. The valence band below −10.00 eV

(core region) is mostly formed by the s states of chalcogen.

The valence band width (VBW) is maximum for BeSe

(13.70 eV). Within mBJ the minima of the s band for BeSe

and BeS are in the equal footing as shown in Fig. 4, b.

Indicating that the wave function is more localized going

from BeTe to BeS. As the atomic number of an anion

decreases the indirect band gap increases, implies that the

materials become less covalent and more ionic [30]. This

contradicts our results presented in section 6 which favours

BeTe to be more ionic. The band gap between the lowest

band (anion s band) and the valence band due to p states

calculated within GGA are 5.80, 6.20 and 4.90 eV for BeS,

BeSe and BeTe respectively (Fig. 4, a). The s−p band gap

is lowest for BeTe due to the higher energy position of Te-s
band (Figs. 4, a, b). The results of the dependency of VBW

on hydrostatic pressure reported that VBW increases with

increasing pressure which results in decrease of ionicity [30].

5. Optical Properties

Dielectric function ε(ω) of the electron gas depending

on the frequency has some important role in determining

the physical properties of solids. It has two parts real and

imaginary [31]

ε(ω) = ε1(ω) + iε2(ω). (3)

The imaginary part of the complex function ε2(ω) in cubic

symmetry compounds can be calculated by relation [32]

ε2(ω) =
8

2πω2

∑

nn′

∫

BZ

|Pnn′(k)|2 dSk

∇ωnn′ (k)
, (4)

where ωnn′ is the joint density of states and Pnn′ is

momentum matrix. Kramers−Kronig relation gives the real

part of the complex dielectric function ε1(ω) [33]

ε1(ω) = 1 +
2

π
P

∞
∫

∞

ω′ε2(ω
′)

ω′2 − ω2
dω. (5)

The values of the real and imaginary part of the dielectric

function provide the basis for the refractive index ñ(ω). The
complex refractive index is

ñ(ω) = n(ω) + ik(ω) = ε1/2 = (ε1 + ε2)
1/2, (6)

where n(ω) and k(ω) are the real and imaginary part

(extinction coefficient) of the refractive index:

n(ω) =
1√
2

[

{ε1(ω)2 + ε2(ω)2}1/2 + ε1(ω)
]1/2

, (7)

k(ω) =
1√
2

[

{ε1(ω)2 + ε2(ω)2}1/2 − ε1(ω)
]1/2

. (8)

If the medium is very weakly absorbing then we can

assume k(ω) is very small, so that

n =
√
ε, k =

ε2

2n
.

These equations tells that refractive index is related with real

part and absorption coefficient [α(ω)] is related with the

imaginary part of dielectric function. It is not valid for the

case when the medium has large absorption coefficient [34]

α(ω) = 2ωk(ω)

=
√
2ω
[

{ε1(ω)2 + ε2(ω)2}1/2 − ε1(ω)
]1/2

. (9)

Similarly the absorption coefficient can be calculated from

Beer’s Law is

α =
2kω

c
=

4πk
c
.

Reflectivity can be calculated as

R(ω) =

∣

∣

∣

∣

ñ − 1

ñ + 1

∣

∣

∣

∣

=
(n − 1)2 + k2

(n + 1)2 + k2
. (10)

While the electron energy loss function [34] is given by

lm

(

1

ε

)

= −ε2/(ε21 + ε22). (11)

The reflectivity, refractive index (real and imaginary),
dielectric function (real and imaginary), electron energy loss

function and optical conductivity calculated within GGA and

mBJ are shown in Figs. 7, 8. The real and imaginary part of

dielectric function is calculated in the energy range 0−14 eV

within GGA and mBJ as shown in Fig. 7. Transition from

the top of the valence bands to conduction bands contribute

to optical spectra. The onset of absorption edge in ε2 occurs

at 3.2, 4.0 and 5.2 eV for BeTe, BeSe and BeS respectively

within GGA. Similarly within mBJ the transition occurs at

higher energy 4.0, 5.0 and 6.5 eV for BeTe, BeSe and BeS

respectively. BeTe, BeSe and BeS have strong absorption

in between the energy range (4.5−8.0), (5.5−10.0) and

(6.5−12.0) eV respectively within mBJ. This region is

represented by different peaks due to electronic transition

between the valence and conduction band (Ŵv−Ŵc). The

static ε1 (ω = 0.0Hz) and low ε1(ω) are strongly depend

on the semiconductor’s band gap. Penn model relating the

inverse relation with band gap Eg [35]

ε1(0) ≈ 1 + (~ωp/Eg)
2 (12)
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Figure 5. Real and imaginary part of dielectric function of BeX (GGA & mBJ).

Figure 6. Refractive index and extinction coefficient of BeX (GGA & mBJ).

Figure 7. Reflectivity of BeX (GGA & mBJ).

Физика и техника полупроводников, 2014, том 48, вып. 11



A DFT study of BeX (X = S, Se, Te) semiconductor: modified Becke Johnson (mBJ) potential 1453

Figure 8. Optical conductivity of BeX (GGA & mBJ).

Figure 9. Optical conductivity of BeX (GGA & mBJ).

where ~ωp is the plasma energy. With mBJ it is clear

from Fig. 5 that ε1 initially increases up to maximum

at 5.00, 6.30 and 7.0 eV and decreases to zero at 6.0, 7.0

and 8.5 eV for BeTe, BeSe and BeS respectively. The

values of ε1 lower than 1 unit exhibit the reflectiveness

of the material indicating a metallic character. So these

materials can be used as a protection from radiation in this

energy range (ultra violet radiation). The negative ε1(ω) is

stable after 10 eV which suggests that the materials do not

interact with high energy photons and remain transparent

thus suitable for optical lenses. Fig. 6 shows the refractive

index and extinction coefficient calculated within GGA and

mBJ. The index n(ω) closely follows the ε1(ω). The values

of n(ω) reaches maximum at 5.0, 6.5 and 7.8 eV for BeTe,

BeSe and BeS respectively within mBJ. The spectrum

of n(ω) falls of and vanishes at the higher energies as

the materials absorb high energy photons and transparency

is lost. The refractive index above photon energy 7.0,

9.5 and 11.0 eV for BeTe, BeSe and BeS respectively

(see Fig. 6) decreases below unity which indicates the phase

velocity of light is greater than the light celerity c, which is

contradictory to relativity [34]. As the phase velocity is

given by v = ω
k = c

n . However the fact is that a signal

transmitted as a wave packet (group velocity, vg = dω
dk )

rather than a monochromatic wave (phase velocity) in a

dispersive medium. The relationship between group and

phase velocity is given as vg = v
(

1− k
n

dn
dk

)

.

The extinction coefficient k(ω) closely follows the ε2(ω)

compare Figs. 5, 6. A variation of k(ω) from ε2(ω) is

attributed to small optical conductivity [34]. Fig. 7 shows

the reflectivity curve with respect to photon energy. The

reflectivity spectrum is small in the low energy region

indicating that inter band transition do not occur in the

infrared spectrum. The inter band transition for BeTe,

BeSe and BeS occurs above 5.0, 7.0 and 7.7 eV respectively

within mBJ which makes these compounds applicable in

visible and ultra violet region. It has been observed in Fig. 7,
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Table 3

Reflectivity Refractive index Dielectric fn. (ε1) ωp (×1014 Hz)

GGA mBJ GGA mBJ GGA mBJ Other GGA mBJ

BeTe 0.22 0.19 2.75 2.60 7.50 6.00 7.597a/6.9b 81.341 91.724

BeSe 0.18 0.15 2.50 2.30 6.25 5.00 6.334a/6.1c 93.989 124.58

BeS 0.16 0.13 2.25 2.20 5.50 4.50 5.806a 106.354 134.27

Note. aRef. [30], bRef. [36], cRef. [37]

for high energy photons reflectivity is maximum and then

stabilizes up to some energy value. This behavior is due to

the fact that the semiconducting behavior is lost and metallic

character predominates. The electron energy loss-function of

BeX calculated within GGA and mBJ are displayed in Fig. 8.

The order of loss function on the basis of width and height

of the peaks are given as BeTe > BeSe > BeS. It is obvious

from Fig. 8 that for a photon with energy lesser than the

band gap of a material, no energy loss occurs which means

no scattering of electrons. Obviously mBJ gives an energy

loss at high energy range as compared to GGA as the band

gap is large. The slow rise in the slope of energy loss is due

to inelastic scattering, it increases with increasing energy.

The peaks in the energy loss spectrum correspond to plasma

resonance. These materials exhibit metallic behavior above

peak value whereas below peak values they show dielectric

property [30]. The optical conductivity curve is shown in

Fig. 9. The range of optical conductivity within mBJ for

BeTe, BeSe and BeS are 4−10, 5.5−11 and 6.5−13 eV

respectively. Among BeTe and BeSe, BeS shows the highest

optical conductivity peak within GGA which agrees well

with the previous reported result (LDA) [1] this is contrary
to the present mBJ result. The optical conductivity is

highest for BeSe within mBJ as shown in Fig. 9. The static

reflectivity, refractive index, real part of dielectric constant

(ε1) and plasma frequency (ωp) calculated from Eq. 12 are

tabulated in Table 3.

6. Elastic properties

As one can observe that C11, C12, C44 values satisfy

the condition (C11 −C12) > 0, (C11 + 2C12) > 0, C11 > 0,

C44 > 0, cubic stability. Thus the structure of BeX is

mechanically stable. The elastic anisotropy of crystals has

an important implication in engineering science since it is

highly correlated with the possibility to induce micro cracks

in materials [38]. To quantify the elastic anisotropy of

these compounds, we have computed the anisotropy factor.

A from the present values of the elastic constants. For

a completely isotropic material, A = 1.0, while any value

smaller or larger than1 indicates anisotropy. The magnitude

of the deviation from 1 is a measure of the degree of elastic

anisotropy possessed by the crystal. The Zener anisotropy

factor (A = 2C44

C11−C12
), Poisson’s ratio (γ = 3B−2GH

2(3B+2GH) ),

Shear modulus (C′ = 1/2(C11 −C12)), Bulk modulus

(B = 1
3

(C11 + 2C12)) which represents the resistance to

volume change and Young modulus (Y = 9BGH
3B+GH

) [39] are

calculated within GGA, where GH = GR+GV
2

is the isotropic

shear modulus, GV is Voigt’s shear modulus [40] and GR is

Reuss’s shear modulus [41] presented as:

GV =
C11 −C12 + 3C44

5

and

GR =
5(C11 −C12)C44

4C44 + 3(C11 −C12)
.

The Kleinman parameter (ξ) [42] describes the relative

positions of the cation and anion sub-lattices under volume

conserving strain distortions, for which positions are fixed

by symmetry. We use the relation: ξ = C11+8C12

7C11+2C12
. The

calculated values of Bulk Modulus (B), Poisson’s ratio

(γ), Shear modulus (C′), Young modulus (Y ), isotropic

Table 4 (units in GPa)

a0(Å) B C11 C12 C44 ξ

BeS

Present(GGA) 5.040 64.079 121.34 34.446 65.929 0.430

Expt.a 4.870 105.00

LDAb 4.800 100.80 167.00 68.000 105.00 0.544

FP-LAPWc 4.803 103.70 143.70 84.000 91.10

TB-LMTOd 4.839 102.80 140.32 95.950 23.89

PPe 4.745 116.00 184.00 75.000 99.00 0.420

BeSe

Present 5.429 41.567 83.270 20.716 50.753 0.399

Expt.f 5.137 92.200

LDAb 5.093 82.450 153.00 56.00 88.00 0.508

FP-LAPWc 5.084 86.080 151.70 53.30 53.70

TB-LMTOd 5.089 89.280 113.10 77.36 19.38

PPe 5.037 98.000 149.00 59.00 81.00 0.43

DLMg 5.037 149.70 82.40 40.20

BeTe

Present 5.796 41.208 52.142 35.741 31.623 0.793

Expt.a 5.617 66.800

LDAb 5.581 62.360 99.000 44.000 68.000 0.77

FP-LAPWc 5.556 64.900 104.20 44.000 53.400

TB-LMTOd 5.563 68.48 85.56 59.94 13.600

PPe 5.531 70.60 111.00 43.00 60.00 0.44

DLMg 5.626 86.30 56.80 20.70

Note. aRef. [52], bRef. [1], cRef. [53], dRef. [30], eRef. [9], fRef. [54],
gRef. [13].
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Table 5 (units in GPa)

Compound A C’ GR GV GH γ Y B/GH Hv

BeS 1.517 43.447 54.623 56.936 55.780 0.030 129.70 1.149 8.423

BeSe 1.623 31.277 40.633 42.963 41.798 0.098 93.915 0.995 6.312

BeTe 3.856 8.202 14.762 22.2546 18.508 0.269 48.294 2.226 2.795

Table 6. Mass (M in g/mol), v l , v t , vm (in m/s), Debye temperature (θD in K) and density (ρ)[g/cm3]

Compound Volume (Å3) Mass Density (ρ) v t v l vm θD

BeS 32.054 41.077 1.279 6603.333 10403.372 13765.795 1372.592

BeSe 39.987 87.972 2.220 4358.795 6620.255 20951.260 1947.732

BeTe 48.629 136.612 2.809 2566.870 4843.045 34857.402 3026.673

shear modulus(GH), Voigt’s shear modulus (Gv), Kleinman

parameter (ξ) are presented in Table 4, 5. The unit GPa has

been used throughout the text for the calculation of elastic

constants. Poisson’s ratio is the measure of compressibility,

interestingly, as γ → 1/2, material tends to incompressibil-

ity [43] and at γ = 1/2 the material is nearly incompressible.

The value of the Poisson ratio (γ) for covalent materials is

small (0.1), whereas for ionic materials a typical value of γ

is 0.25 [44]. Frantsevich et al. suggested that the Poisson’s

ratio can be used as an indicator for ductile (γ > 1/3)
or brittle behavior (γ < 1/3) [45]. Another criterion for

ductility or brittleness is the value of the B/GH ratio. The

higher or lower the B/GH ratio is, the more ductile or brittle

the material respectively. The critical value which separates

ductile and brittle materials is approximately [1.75] [46].
The calculated γ for BeS, BeSe and BeTe are 0.03, 0.098

and 0.269 respectively, thus it can be predicted that BeTe

is ionic where as BeSe is covalent as shown in Table 5.

B/GH ratio is 2.226 for BeTe higher than 1.75 which

indicates more ductility in nature as compare to BeS and

BeSe. The calculated anisotropy factor is 3.856 in BeTe

highest among BeSe and BeS. As the atoms along the

edge of FCC crystal is more separated than along the face

diagonal. This causes anisotropy in the system. BeTe gives

high anisotropy with high γ value and high B/GH ratio

as compare to BeS and BeSe. It has been suggested that

the intrinsic correlation between hardness and elasticity of

materials correctly predicts Vicker’s hardness for a wide

variety of crystalline materials as well as bulk metallic

glasses (BMGs) [47]. If a material is intrinsically brittle,

its Vicker’s hardness linearly correlates with the shear

modulus (Hv = 0.151GH ) [48]. The calculated value of

Vicker’s hardness for BeS, BeSe and BeTe are 8.423, 6.312

and 2.795GPa respectively (see Table 5).

The Cauchy pressure relation C12−C44, can be used

to characterize the bonding type [49]. Negative Cauchy

pressure corresponds to more directional bonding, while

positive values indicate predominant metallic bonding. In

our calculation BeS and BeSe gives the negative value

of Cauchy pressure, indicates directional bonding whereas

metallic bond predominates in BeTe. Higher values of

Young’s modulus (γ) in comparison to the bulk modulus

(B) (see Table 4, 5) indicate the material is hard to

break [50]. The calculated ξ for BeS and BeSe agrees

well with the previous results calculated within pseudo

potential method (PP) [9] except for BeTe. The condition

for structural and cubic stability has given by the relation

C12 < B < C11 [51], which give credence to our result.

The Debye temperature (θD in K) is a fundamental

physical property, and is used to distinguish between

high-and low temperature regions for a solid. At low

temperature (T < θD) one expects high-frequency modes

to be frozen, the vibrational excitations arise solely from

acoustic vibrations and θD calculated from elastic constants

is same as that determined from specific heat measurement.

If (T > θD) we expect all modes to have energy kBT [55].
In the present case, Debye temperature (θD) is estimated for

BeS, BeSe and BeTe for (T < θD) by using the calculated

elastic constant data, in terms of the following classical

relations [39].

θD =
h
k

[

3n
4π

(

Naρ

M

)]
1
3

vm,

where vm is the average wave velocity, h is Planck’s

constants, k is Boltzmann’s constant, Na is Avogadro’s

number, n is the number of atoms per formula unit, M
is the molecular mass per formula unit, ρ = M/V is the

density, and vm is obtained from [56]:

vm =

[

1

3

(

3

v3t
+

1

v3l

)]−1/3

,

where v l and v t are the longitudinal and transverse elastic

wave velocities respectively, which are obtained from

Navier’s equations [57]

v l =

(

3B + 4GH

3ρ

)1/2

and v t =

(

GH

ρ

)1/2

.

The calculated average longitudinal and transverse elastic

wave velocities and Debye temperature for BeS, BeSe and
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BeTe are given in Table 6. As we have not found any

experimental data to compare our result of these properties

in the literature for these compounds. Future experimental

work may testify our calculated results.

7. Conclusion

The electronic band structures, optical and elastic prop-

erties of BeS, BeSe and BeTe are investigated using the

FP-LAPW method. The binary Be-monochalcogenides are

indirect band gap compounds and are optically inactive. The

band gaps calculated within GGA are underestimated as

compared to experimental one. This discrepancy has been

solved by opting a new exchange correlation functional,

modified Becke Johnson (mBJ) potential within a frame

work of DFT. The calculated band gaps within mBJ ar 4.40,

4.00 and 2.40 eV for BeS, BeSe and BeTe respectively which

are in close agreement to experimental results. Our study

of elastic properties have revealed that BeS is predicted to

be a hardest material with largest value of Young’s modulus

129.70GPa and Vicker’s hardness factor 8.423GPa. The

calculated Possion’s ratio (0.269) close to 0.25 and the

highest value of B/GH (2.226) in BeTe suggests that this

material is compressible and ductile in nature. Cauchy

pressure relation predicted metallic bonding in BeTe. BeSe

is more covalent in nature with γ = 0.098 close to 0.10.

The optical properties like dielectric functions, refractive

index, energy loss function, reflectivity, optical conductivity

are also calculated. These parameters are inter related and

band gap dependent. Furthermore, it is suggested that

these materials need to be studied experimentally for their

possible application in optoelectronic devices.
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