05.5;06

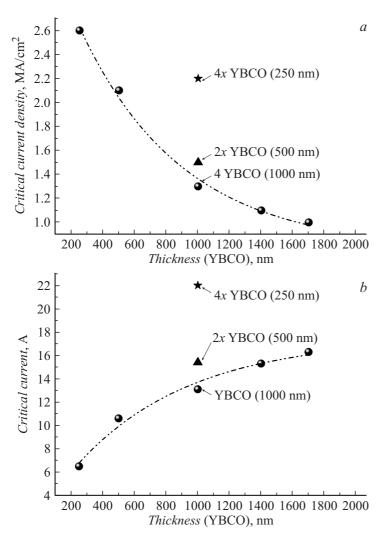
Разработка подхода формирования эпитаксиальных структур $YBa_2Cu_3O_x$ —интерслой— $YBa_2Cu_3O_x$ с высокой токонесущей способностью

© М.Я. Гараева, И.А. Черных, Т.С. Крылова, Р.И. Шайнуров, Е.П. Красноперов, М.Л. Занавескин

Национальный исследовательский центр "Курчатовский институт", Москва E-mail: igor.chernykh@gmail.com

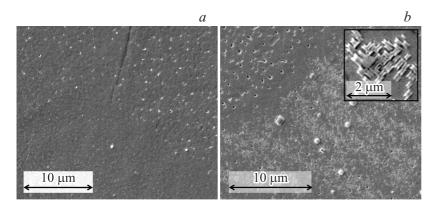
Поступило в Редакцию 3 июня 2014 г.

Предложен подход, основанный на формировании многослойных эпитаксиальных структур $YBa_2Cu_3O_x$ —интерслой— $YBa_2Cu_3O_x$. Применение интерслоев более простых кубических оксидов $SrTiO_3$ и CeO_2 позволяет останавливать рост кристаллических дефектов при формировании $BTC\Pi$ слоя. Обнаружен эффект перетекания тока через интерслои толщиной $10-50\,\mathrm{nm}$. Применение данного подхода позволяет увеличивать токонесущую способность кратно числу $BTC\Pi$ слоев. Предложенный подход принципиально решает проблему деградации критической плотности тока с толщиной слоя $YBa_2Cu_3O_x$.


Одной из первостепенных задач в области разработки ВТСП 2G лент является поиск путей повышения токонесущей способности. Прямое повышение толщины $YBa_2Cu_3O_x$ (YBCO) пленок не приводит к желаемому увеличению токонесущей способности в связи с деградацией критической плотности тока (J_c). При увеличении толщины YBCO пленок с 250 до 2000 nm происходит падение J_c в четыре раза, при дальнейшем увеличении толщины пленок J_c практически не увеличивается [1–2]. Эффект деградации J_c связывают с накоплением различного вида дефектов в пленке при увеличении ее толщины: возникновение пор, a-ориентированных кристаллитов (h00), несверхпроводящих включений, ухудшение текстуры, дефицит кислорода в приповерхностных слоях [1–3]. В настоящее время обсуждается вопрос об увеличении токонесущей способности ВТСП лент за счет формирования многослойных эпитаксиальных структур типа YBCO—интерслой— YBCO [4]. Таким образом, изучение токонесущей способности от-

дельных сверхпроводящих слоев и многослойной структуры в целом является актуальной задачей.

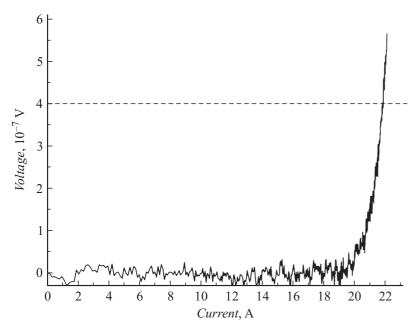
Главными требованиями для реализации эпитаксиального роста интерслоя на поверхности YBCO пленки являются соответствие параметров решеток интерслоя и YBCO слоев, коэффициентов температурного расширения, а также отсутствие химического взаимодействия между материалами YBCO и интерслоя. Очевидно, что таким требованиям удовлетворяют материалы буферных слоев для роста эпитаксиальных пленок YBCO, наиболее подходящими из которых являются $SrTiO_3$ (STO), CeO_2 [5–7].


Подход настоящей работы заключается в использовании интерслоев при формировании пленки YBCO. В такой архитектуре сверхпроводящие слои разделены интерслоями с более простой кристаллической структурой и стехиометрическим составом. Идея использования интерслоев заключается в остановке накопления кристаллических и морфологических дефектов в пленках YBCO. В результате сверхпроводящие слои сохранят высокую плотность тока, и ток будет аддитивно увеличиваться с числом слоев.

В нашей работе рост сверхпроводящих и буферных слоев осуществлялся методом импульсного лазерного осаждения. Для распыления применено излучение эксимерного лазера на смеси Kr-F, плотность энергии на мишени составляла 2-3 J/cm². В качестве подложек применены текстурированные металлические ленты типа RABiTS, состоящие из сплава Ni, легированного 5 ат. % W. Была применена распространенная буферная архитектура $NiW/Y_2O_3/YSZ$ ($ZrO_2+8\%$ Y_2O_3)/ CeO_2 . В качестве интерслоев были использованы пленки STO и CeO₂, при этом ростовые параметры при переходе от роста YBCO к интерслою оставались неизменными: температура роста — 760°C, давление кислорода — $350\,\mathrm{mTorr}$. Для измерения критического тока (I_c) использовался четырехконтактный метод. Ток подводился через защитное серебряное покрытие, все измерения выполнялись при температуре $T = 77.4 \, \mathrm{K}$. Определение критического тока проводилось по критерию $1\,\mu\mathrm{V/cm}$ $(0.4 \mu V$ при длине токонесущего мостика 4 mm, ширина токонесущего мостика составляла 1 mm). Контроль морфологии поверхности покрытий осуществлялся с помощью метода растровой электронной микроскопии (РЭМ) на установке Quanta 3D 200i, FEI Co. Дифракционные спектры измерялись с помощью порошкового дифрактометра BRUKER D8 ADVANCE в режиме Θ -2 Θ в геометрии Брегга-Брентано. Более

Рис. 1. Зависимость критической плотности тока (a), критического тока от толщин пленок YBCO (b). Значения для многослойных пленок указаны для архитектур с использованием интерслоя STO толщиной $10\,\mathrm{nm}$. • — $1\,\mathrm{слой}$, • — $2\,\mathrm{слоя}$, • — $4\,\mathrm{слоя}$.

4 Письма в ЖТФ, 2014, том 40, вып. 20


Рис. 2. РЭМ-изображения поверхности ВТСП пленок: a — толщиной 250 nm, b — толщиной 1μ m. На увеличенной вставке приведено скопление a-ориентированных кристаллитов.

детальное описание эксперимента приведено в ранее опубликованных работах [8,9].

На первом этапе работы была изучена зависимость критической плотности тока однослойных YBCO пленок от толщины. Значения I_c и J_c сформированных пленок различной толщины приведены на рис. 1. Показано, что с увеличением толщины YBCO слоя наблюдается рост критического тока, при этом происходит падение критической плотности тока по экспоненциальному закону: при увеличении толщины сверхпроводящей пленки от $250\,\mathrm{nm}$ до $1\,\mu\mathrm{m}$ наблюдается уменьшение критической плотности тока на 50%. На рис. 2 приведены РЭМизображения поверхности пленок различной толщины. Для пленок толщиной $1\,\mu\mathrm{m}$ и выше наблюдается изменение топографии поверхности: видно большое количество пор, отдельные области покрыты a-ориентированными кристаллитами (рис. 2, b). Следует отметить, что рост пленки на разных зернах отличается, что может быть связано с разориентацией зерен подложки RABiTS на большие углы. В совокупности эти факторы могут приводить к падению критической плотности тока, что согласуется с работами [1–3].

На втором этапе были сформированы двухслойные ВТСП структуры с использованием интерслоев STO, CeO_2 с толщинами 10 и 50 nm

Письма в ЖТФ, 2014, том 40, вып. 20

Рис. 3. ВАХ четырехслойной архитектуры с общей толщиной ВТСП $1\,\mu{\rm m}$.

и толщиной слоев YBCO 500 nm. Для структур с использованием промежуточных слоев ${\rm CeO_2~10~u~50~nm}$ получены следующие значения I_c (и J_c): 13.1 A (1.3 MA/cm²) и 15.9 A (1.6 MA/cm²) соответственно. Значения I_c (и J_c) для структур с использованием промежуточного слоя STO не зависят от толщины интерслоя и составляют 15.4 A (1.5 MA/cm²) (рис. 1). Полученные результаты свидетельствуют о том, что происходит перетекание тока через интерслои толщиной $10-50~\rm nm$.

Значительного повышения токонесущей способности в двухслойных структурах не наблюдалось, результаты сравнимы с однослойными пленками YBCO толщиной $1\,\mu$ m. Возможно, это связано с развитой морфологией пленок YBCO толщиной 500 nm, при которой формирование интерслоя не позволяет получить высокого качества вышележащего слоя YBCO. Образец с интерслоем CeO_2 толщиной 10 nm продемонстрировал более низкие показатели токонесущей способности:

4* Письма в ЖТФ, 2014, том 40, вып. 20

на дифрактограмме сформированного образца обнаружен $BaCeO_3$. Этот факт связан с взаимодействием интерслоя и слоя YBCO — на границе раздела происходит образование несверхпроводящей фазы $BaCeO_3$. Таким образом, рост верхнего слоя YBCO осуществлялся не на оксиде церия, а частично на CeO_2 , частично на $BaCeO_3$.

Заметного увеличения токонесущей способности по сравнению с однослойной пленкой YBCO удалось достичь в многослойных структурах с использованием более тонких ВТСП слоев (250 nm) с общей толщиной слоя YBCO $1\,\mu\mathrm{m}$ (4 × 250 nm). На рис. 3 представлена BAX четырехслойного образца: значение I_c составило 22.0 A ($J_c=2.2\,\mathrm{MA/cm^2}$). Сравнивая данные рис. 1, легко заметить, что у четырехслойного образца критический ток практически в 2 раза выше, чем для однослойной пленки YBCO толщиной 1000 nm, а критическая плотность тока лишь на 15% ниже, чем у однослойной пленки толщиной 250 nm.

Таким образом, применение многослойной архитектуры YBCO—интерслой—YBCO позволяет решить проблему деградации критической плотности тока с толщиной слоя YBCO: высокое значение критического тока свидетельствует о перетекании тока через диэлектрические слои с толщинами $10-50\,\mathrm{nm}$ и позволяет формировать YBCO пленки без существенной деградации J_c в отдельных слоях. Предложенный метод позволяет достичь значения токонесущей способности YBCO пленок $220\,\mathrm{A/cm}$ ширины ленты при толщине слоя сверхпроводника всего $1\,\mu\mathrm{m}$.

Авторы выражают благодарность Г.Л. Платонову, Е.А. Головковой и В.В. Гурьеву за помощь в проведении измерений.

Список литературы

- Foltyn S.R., Jia Q.X., Arendt P.N., Kinder L., Fan Y., Smith J.F. // Appl. Phys. Lett. 1999. V. 75. N 23. P. 3692–3694.
- [2] Zhang H., Yang J., Wang S., Wu Y., Lv Q., Li S. // Physica. C. 2014. V. 499. P. 54–56.
- [3] *Ohki K., Develos-Bagarinao K., Yamasaki H., Nakagawa Y. //* Journal of Physics: Conference Series. 2008. N 97. P. 012142(5 pp).
- [4] Foltyn S.R., Wang H., Civale L., Ji Q.X., Arendt P.N., Maiorov B., Li Y., Maley M.P., MacManus-Driscoll J.L. // Appl. Phys. Lett. 2005. V. 87. N 16. P. 162505–162505-3.

Письма в ЖТФ, 2014, том 40, вып. 20

- [5] Cheung Y.L., Jones I.P., Abell J.S., Button T.W., Maher E.F. // Supercond. Sci. Technol. 2007. V. 20. N 3. P. 216–221.
- [6] Shi D.Q., Ma P., Ko R.K., Kim H.S., Chung J.K., Song K.J., Park C. // Chinese Physics. 2007. V. 16. N 7. P. 2142–2147.
- [7] Chung J.K., Ko R.K., Shi D.Q., Ha H.S., Kim H., Song K.J., Park C., Moon S.H., Yoo S.I. // IEEE Transactions on Applied Superconductivity. 2005. V. 15. N 2. P. 3020–3023.
- [8] Черных И.А., Занавескин М.Л., Строев А.М., Клевалина Л.В., Крылова Т.С., Гараева М.Я., Тихомиров С.А., Платонов Г.Л., Никонов А.А., Шавкин С.В., Шиков А.К. // ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность. 2013. № 2. С. 7–11.
- [9] Черных И.А., Строев А.М., Гараева М.Я., Крылова Т.С., Гурьев В.В., Шавкин С.В., Занавескин М.Л., Шиков А.К. // Письма в ЖТФ. 2014. В. 1. С. 58–63.