13,03

Влияние иодсодержащей добавки на состав, структуру и морфологию химически осажденных пленок селенида свинца

© З.И. Смирнова ¹, В.М. Баканов ¹, Л.Н. Маскаева ^{1,2}, В.Ф. Марков ^{1,2}, В.И. Воронин ³

1 Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург, Россия

² Уральский институт ГПС МЧС России,

Екатеринбург, Россия

³ Институт физики металлов УрО РАН,

Екатеринбург, Россия E-mail: imsok@bk.ru

(Поступила в Редакцию 30 июня 2014 г.)

Методами рентгеновской дифракции и растровой электронной микроскопии с энергодисперсионным анализом исследовано влияние добавки иодида аммония на элементный, фазовый состав, параметры структуры и морфологию поверхности пленок селенида свинца, осажденных из водных растворов. Установлено, что полученные пленки PbSe многофазны. Содержание иода в пленках прямо пропорционально концентрации NH4I в реакционной смеси и растет нелинейно с ее увеличением до 0.25 mol/L. Иод в составе пленок не образует отдельных иодсодержащих фаз, однако вызывает увеличение периода кристаллической решетки фазы PbSe от ~ 6.11 до ~ 6.16 Å и уменьшение размера микрокристаллитов до ~ 20 nm. Наблюдается корреляция между размером зерен пленок, параметром кристаллической решетки PbSe и концентрацией иодида аммония, вводимого в реакционную смесь, что объясняется изменением механизма роста пленок на начальных этапах гидрохимического осаждения.

Работа поддержана программой 211 Правительства РФ № 02.А03.21.0006.

1. Введение

Тонкие пленки халькогенидов свинца, обладающие термоэлектрическими свойствами, а также фоточувствительностью и люминесценцией в ИК-диапазоне $(1-5\,\mu\mathrm{m})$, широко востребованы в оптоэлектронной и сенсорной технике [1-3].

Для улучшения функциональных свойств слои сульфидов и селенидов свинца легируют галогенами. При этом наблюдается повышение фоточувствительности [4–11], а в случае сульфида свинца дополнительно повышение сорбционной способности по отношению к ионам тяжелых металлов в водных растворах. Последнее позволяет использовать указанные материалы в качестве чувствительных элементов химических сенсоров и ионоселективных электродов [12].

Среди галогенов особенно примечательна роль иода, обеспечивающего наиболее высокие сигналы фотоответа пленок халькогенидов металлов на ИК-излучение. Так, при исследовании слоев PbS, полученных методом гидрохимического синтеза из водных реакционных смесей, содержащих галоидные соли аммония, установлено, что по фотосенсибилизирующему действию элементы-галогены можно расположить в ряд $I > Cl > Br \ [5,6]$.

Применительно к селениду свинца влияние легирующей добавки иода на фазовый состав, структуру и сенсорные свойства до и после фотосенсибилизирующей термообработки в кислородсодержащей атмосфере изучалось в работах [7–11], где указанный материал синтезировался в виде тонких поликристаллических сло-

ев методом термического испарения в вакууме. Было установлено, что иод, вводимый в пленки PbSe из газовой фазы, стимулирует протекание в них различных физико-химических процессов, необходимых для придания им фоточувствительных свойств.

Важнейшим методом синтеза поликристаллических слоев PbSe является химическое осаждение из водных растворов [13], которое наряду с физическим вакуумным испарением [2,4,7–11,14] и эпитаксиальными методами [15] обеспечивает их высокие электрофизические свойства. Однако влияние примеси иода на состав, структуру и морфологию тонких пленок PbSe при получении методом гидрохимического синтеза в литературе практически не описано, хотя именно присутствие иода во многом определяет механизм и эффективность последующего процесса их термосенсибилизации.

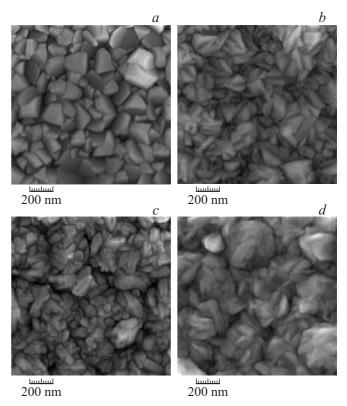
В связи с изложенным выше, целью настоящей работы является исследование влияния иодсодержащей добавки в реакционной смеси на состав, структуру и морфологию тонких пленок селенида свинца, получаемых химическим осаждением.

2. Объекты и методы исследования

Объектами исследования являлись пленки селенида свинца толщиной $\sim 400-700\,\mathrm{nm}$, полученные на ситалловых подложках методом химического осаждения из водных реакционных смесей, содержащих ацетат свинца $PbC_2H_3O_2$, селенокарбамид CH_4N_2Se , сульфит натрия Na_2SO_3 , цитрат натрия $Na_3C_6H_5O_7$ и аммиак NH_4OH .

Для легирования пленок иодом в реакционные растворы добавляли иодид аммония NH_4I в концентрации до $0.25\,\text{mol/L}$.

Сравнительные исследования фазового состава и кристаллической структуры пленок PbSe(0), не содержащих иода, и слоев PbSe(I) проводились методом порошковой дифракции рентгеновских лучей. Рентгенограммы получались на стандартном промышленном дифрактометре Дрон-4 с использованием медного анода. Для выделения В-излучения из сплошного спектра был использован монохроматор из пиролитического графита. Съемка велась по методу Брэгга-Брентано в интервале углов $20{-}100^{\circ}$ с шагом 0.03° и временем экспозиции 7 s в точке. Фазовый состав устанавливался путем анализа экспериментальных рентгенограмм с применением базы данных Международного центра дифракционных данных (International Centre for Diffraction Data, ICDD). Фазовый анализ выполнялся с использованием кристаллографической базы данных ICDD-2010, PDF-2. Структурные параметры уточнялись методом полнопрофильного анализа Ритвельда [16] с применением программы "Fullprof".1 Теоретический профиль дифрактограмм, полученный размытием рефлексов с интегральными интенсивностями в угловом пространстве с учетом постоянных конкретного прибора (формы и полуширины линий), сравнивался с экспериментальным. При этом уточнялись профильные параметры. В качестве критериев качества уточнения применялись факторы сходимости, или R-факторы, четырех видов: профильный, взвешенный профильный, брэгговский и структурный. Угловое разрешение прибора описывалось функцией вида


$$H_k^2 = U \operatorname{tg}^2 \theta + V \operatorname{tg} \theta + W,$$

где θ — угол рассеяния, H_k — полная ширина на половине максимума k-го брэгговского рефлекса.

Морфология поверхности пленок исследовалась методом растровой электронной микроскопии (SEM) на сканирующем электронном микроскопе MIRA3LMV с увеличением от 500 до 150 000 раз при ускоряющем напряжении электронного пучка 10 или 20 kV. Помимо этого использовался растровый электронный микроскоп JEOL JSM-5900 LV с приставкой для энергодисперсионного (EDX) анализа (рентгеновским спектрометром EDS Inca Energy 250), на котором морфология поверхности и элементный состав различных участков пленки изучались при ускоряющем напряжении пучка электронов 10 kV. Точность определения элементного состава составляла ~ 10 rel.%.

3. Морфология и элементный состав пленок PbSe(0) и PbSe(I)

На рис. 1 представлены электронно-микроскопические изображения поверхности пленок PbSe, полученных из

Рис. 1. Электронно-микроскопические изображения пленки PbSe, осажденной в отсутствие иодсодержащей добавки (a), и пленок PbSe(I), полученных из реакционной смеси, содержащей 0.05 (b), 0.10 (c), 0.25 mol/L (d) NH₄I. Увеличение $\times 150\,000$.

реакционных смесей с различной концентрацией иодида аммония. Видно, что введение NH_4I вызывает существенное изменение морфологии поверхности исследуемых слоев. В отсутствие иода (рис. 1,a) кристаллиты селенида свинца, структура которого относится к кубической сингонии, структурному типу NaCl (пр.гр. $Fm\bar{3}m$) (PDF Card N 03-065-0133), имеют правильный габитус, близкий к кубическим кристаллам. С увеличением концентрации NH_4I вплоть до 0.25 mol/L (рис. 1,b-d) частицы приобретают продолговатую форму, их средний размер монотонно уменьшается от ~ 100 nm (в отсутствие иода) до величины порядка нескольких десятков нанометров (в присутствии добавки иода). Кроме того, наблюдается тенденция к агломерированию микрокристаллитов в более крупные образования.

Различия в морфологии поверхности и микроструктуре пленок, очевидно, связаны с изменением механизма роста слоев PbSe при гидрохимическом синтезе в присутствии галогенид-ионов [6]. Введение иодид-ионов в реакционную смесь, способных образовывать со свинцом малорастворимые соединения иодида и гидроксииодида свинца [17], приводит к спонтанному образованию множественных центров кристаллизации в объеме водного раствора и на поверхности подложек. В присутствии галогенидов аммония на начальных этапах

 $^{^1}$ Juan Rodriquez-Carcajal. FULLPROF-2K. Laboratoire Leon Brillouin (CEA-CNRS); e-mail:juan@bali.sacley.cea.fr.

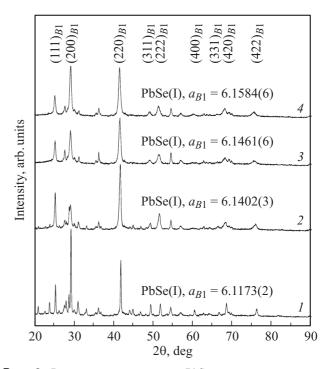
Таблица 1. Соотношение атомных концентраций Pb:Se, Pb:I в легированных и не легированных иодом пленках селенида свинца в зависимости от концентрации иодида аммония в реакционной смеси

Концентрация NH ₄ I, mol/L	Pb:Se	Pb:I
0	1.0	_
0.05	1.0	11.0
0.10	1.0	7.9
0.25	1.0	5.2

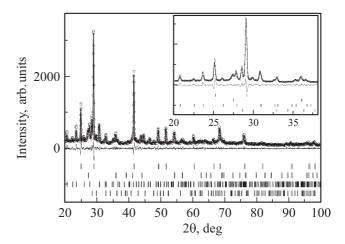
синтез PbSe происходит как массовая кристаллизация, из-за чего в конечном счете уменьшаются размеры формирующихся частиц и повышается их концентрация на единицу площади пленок. Таким образом, введение иода в пленку в процессе синтеза изменяет механизм кристаллизации и роста поликристаллических слоев PbSe.

В табл. 1 приведены данные элементного EDX-анализа пленок PbSe, легированных и не легированных иодом. В сформированных слоях было обнаружено присутствие Pb, Se, I, S и в ряде случаев углерода, по-видимому обусловленного загрязнением пленок продуктами разложения органических прекурсоров в ходе синтеза.

Из данных табл. 1 видно, что независимо от количества иодида аммония, вводимого в реакционную смесь при синтезе, атомное соотношение Pb: Se остается практически неизменным, соответствующим стехиометрии соединения PbSe, в то время как концентрация иода относительно свинца растет нелинейно с увеличением содержания иодида аммония в реакционной смеси до 0.25 mol/L. Кроме того, распределение иода по поверхности пленок неравномерно, о чем свидетельствуют результаты анализов, выполненных на различных участках поверхности, представляющих собой мелкие и крупные агломераты микрокристаллитов PbSe.


Присутствие серы в пленках объясняется введением в состав реакционной смеси при гидрохимическом синтезе серосодержащего антиоксиданта (Na_2SO_3) с целью подавления разложения селенокарбамида при контакте с кислородом воздуха.

Отметим, что линия кислорода, который является важнейшей акцепторной примесью в селениде свинца, ответственной за формирование его фоточувствительных свойств [7–10], практически отсутствовала в EDX-спектрах легированных и не легированных иодом слоев PbSe до проведения их термообработки.


4. Фазовый состав и микроструктура пленок PbSe(0) и PbSe(I)

Внешний вид рентгенограмм химически осажденных пленок селенида свинца, легированных и не легированных иодом, приведен на рис. 2. Видно, что все

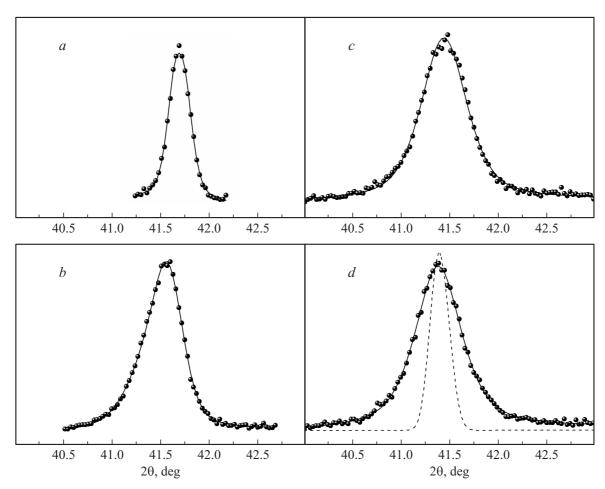

полученные слои многофазны. Фазовый анализ обнаружил, что на рентгенограммах присутствуют рефлексы по крайней мере четырех фаз. Именно в такой четырехфазной модели при уточнении профилей рентгенограмм

Рис. 2. Ренттенограммы пленки PbSe, осажденной в отсутствие иодсодержащей добавки (1), и пленок PbSe(I), полученных из реакционной смеси, содержащей 0.05 (2), 0.10 (3), 0.25 mol/L (4) иодида аммония. Необозначенные рефлексы — отражения от фаз PbSO₃, PbO₂, а также от ситалловой подложки.

Рис. 3. Экспериментальные данные и рассчитанный в четырехфазной модели теоретический профиль рентгенограммы пленки PbSe без добавки иода. На вставке показан фрагмент рентгенограммы. Точки — экспериментальные данные, огибающая сплошная линия — расчетный профиль, нижняя линия — разностная кривая между расчетом и экспериментом. Ряды штрихов обозначают фазы (сверху вниз): PbSe, PbO₂, PbSO₃, TiO₂.

Рис. 4. Экспериментальный (точки) и расчетный (огибающая линия) профили рефлекса (220) фазы PbSe в нелегированных (a), а также в легированных иодом пленках при концентрации NH_4I в реакционной смеси 0.05~(b), 0.10~(c) и 0.25~mol/L~(d). Штриховая линия — теоретический профиль эталонного образца.

было достигнуто хорошее согласие между расчетом и экспериментом (для примера на рис. 3 показаны экспериментальный и рассчитанный в четырехфазной модели профили рентгенограмм пленки PbSe, не легированной иодом). Основной фазой в пленках является кубический селенид свинца со структурой NaCl (пр.гр. $Fm\bar{3}m$) (PDF Card N 03-065-0133). Побочными фазами являются PbSO₃ (PDF Card N 01-080-1070) и PbO₂ (PDF Card N 01-072-2440). Кроме того, зарегистрированы рефлексы от ситалловой подложки, основой которой является рутил TiO_2 (PDF Card N 01-071-4513).

Присутствие в пленках примесных фаз вполне объяснимо. Так, наличие в них сульфита свинца $PbSO_3$ связано с его возможным выделением в виде малорастворимой фазы за счет взаимодействия в водном растворе ионов Pb^{2+} с хорошо растворимой добавкой антиоксиданта селенокарбамида (Na_2SO_3). Вхождение в состав пленок PbO_2 является следствием включения оксидных и гидроксидных соединений свинца в объем и поверхностные слои материала при химическом осаждении из водных растворов [18]. Кроме того, поверхность пленок PbSe склонна к окислению при хранении на воздухе.

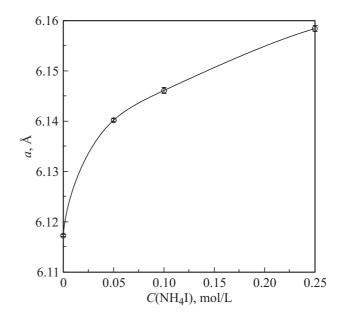
Отметим еще несколько особенностей дифракционных картин. Во-первых, обращает на себя внимание то, что введение иода в пленку приводит к изменению преимущественной ориентации микрокристаллитов PbSe. Для не легированного иодом селенида свинца ярко выражена текстура в направлении [200] (рис. 2, дифрактограмма I), в то время как для легированных иодом слоев более характерен рост кристаллитов в направлении [220] (рис. 2, дифрактограмма 2). В то же время с увеличением концентрации иодида аммония в реакционной смеси до 0.25 mol/L вновь наблюдается тенденция к переориентации частиц в прежнем направлении [200] (рис. 2, дифрактограммы 3,4). Очевидно, изменение текстуры связано с изменением условий осаждения селенида свинца в присутствии NH_4I .

Во-вторых, следует отметить, что рефлексы на рентгенограммах синтезированных пленок достаточно сильно уширены и смещаются с увеличением концентрации NH₄I в водном растворе в область ближних углов (рис. 4, на котором приведены экспериментальные и расчетные профили рефлекса (220)). На рис. 4, *d* для наглядности показаны экспериментальный уширенный

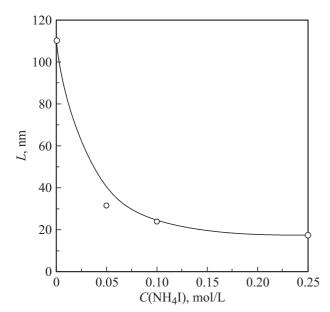
Параметр	Концентрация NH ₄ I, mol/L					
	0	0.05	0.10	0.25		
Фаза PbSe						
$a, \mathrm{\AA}$	6.1173(2)	6.1402(3)	6.1461(6)	6.1584(6)		
Размер ОКР (L) , nm	109.6	31.4	23.9	17.3		
Φ аза $PbSO_3$						
$a, \mathrm{\AA}$	7.8679(6)	7.8543(6)	7.856(1)	7.8651(7)		
$b, \mathrm{\AA}$	5.4693(5)	5.4722(6)	5.472(1)	5.471(1)		
c, Å	6.7921(5)	6.7766(4)	6.7776(6)	6.7711(6)		
Размер ОКР (L) , nm	52.3	25.1	21.5	18.3		
		Фаза РьО2				
$a, \mathrm{\AA}$	4.9361(4)	4.9319(8)	4.932(1)	4.9274(9)		
$b, \mathrm{\AA}$	5.9570(7)	5.961(1)	5.963(1)	5.949(1)		
c, Å	5.4376(6)	5.3925(9)	5.396(1)	5.399(1)		
Размер ОКР (L) , nm	57.0	22.9	17.4	11.7		

Таблица 2. Структурные параметры пленок PbSe(0) и PbSe(I) при различном количестве NH₄I в реакционной смеси

рефлекс пленки PbSe(I) с элементным соотношением Pb:I=5.2 и дополнительно его теоретический аналог, рассчитанный с использованием профиля эталонного образца для дифрактометра Дрон-4. Из сравнения с эталоном (рис. 4,d) видно, что изменяются и ширина, и форма линии.


Для выяснения причин этого мы выполнили анализ экспериментальных рентгенограмм с помощью компьютерной программы "FullProf". Она позволяет с помощью угловой зависимости уширения рефлексов с использованием функции приборного разрешения для эталонного образца разделить вклады в изменение ширины и формы рефлекса от внутренних микронапряжений и размера областей когерентного рассеяния (ОКР) на основе использования метода Уильямсона—Холла [19–21] и расчета размера ОКР по формуле Селякова—Шеррера [22,23].

Уточненные структурные параметры различных фаз, присутствующих в пленках, в зависимости от концентрации легирующей добавки иодида аммония в растворе для химического осаждения приведены в табл. 2.


В-третьих, ни на одной из рентгенограмм пленок PbSe(I) не было обнаружено рефлексов от фаз PbI_2 или Pb(OH)I, образование которых из водного реакционного раствора, содержащего одновременно ионы Pb²⁺ и I⁻, весьма вероятно. По-видимому, иодид-ионы, способные образовывать в водном растворе с ионами свинца и различными его комплексными формами труднорастворимые соединения, лишь выступают в роли инициаторов спонтанной кристаллизации на начальных этапах зарождения пленок, не формируя при этом собственных фаз. Но это значит, что возможно образование твердых растворов замещения или внедрения. Из данных табл. 2 видно, что наиболее сильно зависимость параметра кристаллической решетки от содержания иода выражена для фазы PbSe. Соответствующая зависимость приведена на рис. 5, который наглядно показывает, что с увеличением

концентрации иодида аммония в реакционной смеси параметр кристаллической решетки PbSe монотонно увеличивается от ~ 6.11 до ~ 6.16 Å. Это факт может быть объяснен вхождением в решетку PbSe бо́льших по размеру ионов иода ($R_{\rm I^{-1}}=0.22\,{\rm nm}$) по сравнению с меньшими ионами селена ($R_{\rm Se^2-}=0.20\,{\rm nm}$) [24].

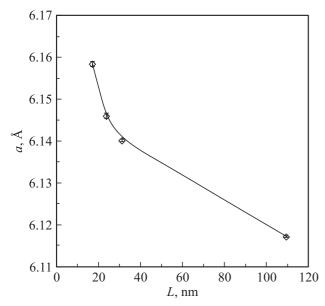

На рис. 4 была показана трансформация формы и ширины рефлекса (220) фазы PbSe в зависимости от концентрации NH_4I в водном растворе. Как отмечено выше, отчетливо наблюдается сдвиг максимума по углу, а также уширение линий при введении соли NH_4I в реакционную смесь и увеличении ее концентрации. В соответствии с результатами анализа профилей рент-

Рис. 5. Зависимость параметра решетки фазы PbSe от концентрации NH₄I в реакционной смеси.

Рис. 6. Зависимость размера зерна (OKP) фазы PbSe от концентрации NH_4I в реакционной смеси.

Рис. 7. Зависимость периода кристаллической решетки фазы PbSe от размера зерен кристаллитов (ОКР).

генограмм последнее интерпретируется как измельчение зерна (ОКР) пленок при вхождении иода в структуру селенида свинца (табл. 2). Вычисленные размеры ОКР фазы PbSe в пленках при различном содержании иодида аммония в реакционной смеси представлены на рис. 6. Как видно, при введении иодида аммония в раствор для синтеза размеры ОКР сначала резко снижаются, а при увеличении концентрации NH₄I до 0.25 mol/L остаются практически неизменными.

Размеры микрокристаллитов, определенные методом SEM-EDX при большом увеличении (рис. 1), составляющие от нескольких десятков до $\sim 100\,\mathrm{nm}$ в зависи-

мости от концентрации иода, хорошо согласуются с результатами расчета размеров ОКР фазы PbSe по данным рентгеновских исследований, в соответствии с которыми в отсутствие иода размеры зерна (ОКР) составляют около $110\,\mathrm{nm}$, а при введении иода уменьшаются до $20-30\,\mathrm{nm}$ (рис. 6).

Наблюдаемое уменьшение размера зерен селенида свинца при введении иода в его структуру коррелирует с изменением величины параметра кристаллической решетки. Зависимость периода кристаллической решетки PbSe от размеров микрокристаллитов изображена на рис. 7. Видно, что при размере зерна от ~ 110 до 30 nm имеет место почти линейная зависимость параметра от размера. При дальнейшем измельчении зерен меньше 20 nm период решетки резко увеличивается. Очевидно, что это является одним из проявлений размерного эффекта в тонких поликристаллических пленках [25].

В целом возникновение размерного эффекта в пленках PbSe, легированных иодом, является закономерным следствием изменения механизма зарождения и роста слоев селенида свинца в присутствии иодид-ионов при химическом осаждении. Как уже отмечалось, размер микрокристаллитов пленок уменьшается из-за возможности спонтанного образования большого числа зародышей в объеме раствора и на поверхности подложек в присутствии в реакционной смеси NH₄I. Поэтому синтез на начальных этапах роста пленок протекает в условиях массовой кристаллизации.

5. Заключение

Химическое осаждение пленок PbSe с введением в реакционную смесь иодсодержащей добавки в виде иодида аммония оказывает сильное влияние на их микроструктуру, сохраняя неизменным фазовый состав (PbSe, PbSO $_3$, PbO $_2$).

Увеличение в реакционной смеси концентрации иодида аммония до $0.25\,\text{mol/L}$ приводит к постепенному изменению преимущественной ориентации кристаллитов PbSe в направлении [220] и монотонному повышению содержания иода в пленках до атомного соотношения Pb: I=5.2.

Период кристаллической решетки PbSe прямо пропорционален концентрации вводимой в реакционную смесь добавки NH4I и увеличивается от $\sim 6.11\,\mathrm{\AA}$ для нелегированных образцов до $\sim 6.16\,\mathrm{\AA}$ в пленках с соотношением Pb: I = 5.2. Поскольку в легированных иодом пленках не обнаружено отдельных иодсодержащих фаз, иод может входить в кристаллическую решетку фазы PbSe в виде примеси замещения или внедрения, вызывая изменение периода ее структуры.

С повышением концентрации NH_4I в реакционной смеси до $0.25\,\text{mol/L}$ наблюдается уменьшение размера микрокристаллитов (OKP) PbSe от $\sim 100\,\text{nm}$ до нескольких десятков нанометров и агломерирование микрочастиц с одновременным увеличением параметра решетки PbSe от $\sim 6.11\,$ до $\sim 6.16\,$ Å, что является проявлением

размерного эффекта в тонких поликристаллических слоях PbSe при химическом осаждении.

Возникновение размерного эффекта в пленках PbSe, легированных иодом, можно объяснить изменением механизма зарождения и роста пленок в присутствии иодид-ионов, способных образовывать с ионами свинца в водном растворе зародыши малорастворимых иодсодержащих фаз, приводя к эффекту массового зародышеобразования и резкому снижению размеров микрокристаллитов.

Список литературы

- [1] Т. Мосс, Г. Баррел, Б. Эллис. Полупроводниковая оптоэлектроника. Мир, М. (1976). 431 с.
- [2] Н.П. Анисимова, Н.Э. Тропина, А.Н. Тропин. ФТП 44, 12, 1602 (2010).
- [3] D. Parker, D.J. Singh, Q. Zhang, Z. Ren. J. Appl. Phys. **111**, *12*, 123 701 (2012).
- [4] Т.А. Гаврикова, В.А. Зыков, С.А. Немов. ФТП **30**, *4*, 717 (1996).
- [5] В.Ф. Марков, Л.Н. Маскаева, Г.А. Китаев. ЖПХ 73, 8, 1256 (2000).
- [6] В.Ф. Марков, А.В. Шнайдер, М.П. Миронов, В.Ф. Дьяков, Л.Н. Маскаева. Перспективные материалы *3*, 28 (2008).
- [7] M.C. Torquemada, M.T. Rodrigo, G. Vergara, F.J. Sánchez, R. Almazán, M. Verdú, P. Rodríguez, V. Villamayor, L.J. Gómez, M.T. Montojo. J. Appl. Phys. 93, 3, 1778 (2003).
- [8] Н.В. Голубченко, М.А. Иошт, В.А. Мошников, Д.Б. Чеснокова. Перспективные материалы *3*, 31 (2005).
- [9] Н.В. Голубченко, В.А. Мошников, Д.Б. Чеснокова. Неорган. материалы **42**, *9*, 1040 (2006).
- [10] Н.В. Голубченко, В.А. Мошников, Д.Б. Чеснокова. ФХС 32, 3, 464 (2006).
- [11] Е.В. Мараева, В.А. Мошников, Ю.М. Таиров. ФТП **47**, *10*, 1431 (2013).
- [12] В.Ф. Марков, Л.Н. Маскаева, И.В. Зарубин, Н.В. Замараева. Вода: химия и экология *6*, 80 (2012).
- [13] Г.А. Китаев, А.Ж. Хворенкова. ЖПХ 72, 9, 1440 (1999).
- [14] H.M. Ali, S.A. Saleh. Thin Solid Films 556, 552 (2014).
- [15] D. Khokhlov. Lead chalcogenides: physics & applications / Ed. D. Khokhlov. Taylor & Francis, NY (2003). 697 p.
- [16] H.M. Rietveld. J. Appl. Cryst. 2, 2, 65 (1969).
- [17] Н.Г. Полянский. Свинец. Наука, М. (1986). 357 с.
- [18] В.Ф. Марков, Л.Н. Маскаева. Бутлеров. сообщ. **24**, *2*, 42 (2011).
- [19] W.H. Hall. Proc. Phys. Soc., London A 62, 11, 741 (1949).
- [20] W.H. Hall, G.K. Williamson. Proc. Phys. Soc., London B 64, 11, 937 (1951).
- [21] G.K. Williamson, W.H. Hall. Acta Met. 1, 1, 22 (1953).
- [22] М.А. Кривоглаз. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Наук. думка, Киев (1983). 407 с.
- [23] Я.С. Уманский, А.Н. Иванов. Кристаллография, рентгенография и электронная микроскопия. Металлургия, М. (1982). 631 с.
- [24] В.С. Урусов. Теоретическая кристаллохимия. Изд-во МГУ, М. (1987). 275 с.
- [25] Н.Ф. Уваров, В.В. Болдырев. Успехи химии **70**, **4**, 307 (2001).