Мощные светодиоды на основе гетероструктур InGaAsP/InP

© V. Rakovics*, А.Н. Именков † , В.В. Шерстнев † , О.Ю. Серебренникова † , Н.Д. Ильинская † , Ю.П. Яковлев * ¶

1121 Budapest, Hungary

194021 St. Petersburg, Russia

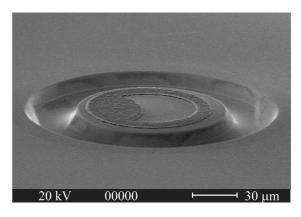
(Получена 13 мая 2014 г. Принята к печати 20 мая 2014 г.)

На основе гетероструктур InGaAsP/InP созданы мощные светодиоды с диаметром мезы 100, 200 и 300 мкм. Форма мез близка к форме усеченного конуса с наклоном образующей $\sim 45^{\circ}$ в окрестности активной области светодиода, при этом вытравленное вокруг мезы кольцо служит отражателем. Исследованы спектры и диаграммы направленности излучения таких светодиодов в широком интервале плотностей тока и показано, что излучательная рекомбинация преобладает вплоть до плотности тока $\sim 5000\,\mathrm{A/cm^2}$, что делает эти структуры перспективными для создания мощных светодиодов. Получена в непрерывном режиме мощность излучения $\sim 14\,\mathrm{mBt}$ ($I = 0.2\,\mathrm{A}$, $\lambda = 1.1\,\mathrm{mkm}$), а в импульсном режиме 77 мВт ($I = 2\,\mathrm{A}$, $\lambda = 1.1\,\mathrm{mkm}$), что соответствует внешнему квантовому выходу излучения 6.2 и 3.4 соответственно.

1. Введение

Гетероструктуры InGaAsP/InP отличаются отсутствием пассивно поглощающих областей [1] и поэтому особенно перспективны для создания высокоэффективных светодиодов мезаконструкции.

В настоящее время светодиоды на гетеропереходах InGaAsP/InP играют большую роль в развитии портативной спектроскопии в ближней инфракрасной области спектра, где лежат линии поглощения жидких сред организма, таких как кровь и т. д. [2]. На основе InGaAsP/InPгетероструктур были созданы светодиоды плоской конструкции для спектрального диапазона 1-1.7 мкм, мощность излучения которых при постоянном токе составляла $2.8-1.4\,\mathrm{MBT}$ ($I=100\,\mathrm{MA}$) и уменьшалась с увеличением длины волны [3,4]. При этом квантовый выход излучения уменьшался в этом диапазоне длин волн от 2.5 до 1.9%. В работе [3] была достигнута в той же конструкции импульсная мощность 60 мВт при токе 3 А на длине волны 1.125 мкм, что соответствует внешнему квантовому выходу излучения 1.8%. Это показывает перспективность создания мощных светодиодов на основе гетероструктур InP/InGaAsP/InP. Однако исследованные светодиодные чипы имели форму параллелепипеда, где почти все излучение поглощалось из-за явления полного внутреннего отражения. Роль безызлучательной ожерекомбинации не исследовалась.


Цель данной работы заключалась в достижении более высокой мощности излучения за счет создания специальной формы светодиодного чипа, которая облегчает вывод излучения из кристалла, и исследовании роли оже-рекомбинации.

2. Методика эксперимента

Двойные гетероструктуры InGaAsP/InP для создания светодиодов были выращены в автоматизированном ап-

парате жидкофазной эпитаксии, оборудованном многослайдовой лодочкой. Выращивание проводилось из сильно пересыщенных однофазных сплавов. На n-InP (100) подложке сначала выращивался нелегированный InGaAsP активный слой (1.5-1.6 мкм), затем ограничительный слой p-InP (9-10 мкм) и контактный слой p^+ -InP (0.5 мкм). Температура выращивания составляла 590° С. После выращивания структуры раскалывались и промывались в растворе K_3 Fe(CN)6, чтобы выявить структуру слоев и качество гетеропереходов с использованием электронного микроскопа.

Светодиодные чипы размером 500×500 мкм формировались методами стандартной фотолитографии и жидкостного химического травления. На p^+ -InP слое были сформированы кольцевые контакты с внешним диаметром 80, 180 и 280 мкм и шириной 10 мкм (рис. 1), состав контакта AuZn-Au. Со стороны подложки был создан сплошной контактный слой AuGe-Ni-Au. Вжигание проводилось в потоке водорода в течение 30 с при температуре 360° С. Кольцевые контакты были утолщены за счет гальванического осаждения золота (~ 2 мкм).

Рис. 1. Фото мезы, вытравленной со стороны эпитаксиального слоя гетероструктуры InGaAsP/InP.

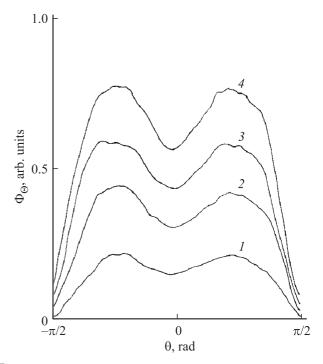
^{*} Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences,

[†] loffe Physicotechnical Institute, Russian Academy of Sciences,

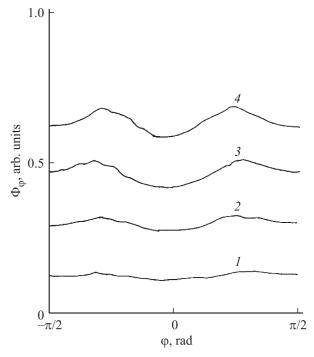
[¶] E-mail: Yak@iropt1.ioffe.ru

Затем были сформированы круглые мезы с диаметрами 100, 200 и 300 мкм. Ширина вытравленного кольца вокруг мез составила 40 мкм, а глубина 15 мкм. Активная область располагалась на глубине ~ 10 мкм. Форма мезы близка к форме усеченного конуса с наклоном образующей $\sim 45^{\circ}$ в окрестности активной области и p-области, при этом вытравленное вокруг мезы кольцо служит отражателем.

После разделения структуры на чипы каждый отдельный чип припаивался подложечной стороной на светодиодный кристаллодержатель ТО-18 с плоским столиком или с углублением.


Измерялись спектры и диаграммы направленности электролюминесценции при комнатной температуре. Дифракционный монохроматор МДР-2, на котором измерялись спектры излучения, был прокалиброван в единицах мощности излучения.

Для измерения диаграмм направленности излучения светодиод вращался, а фотоприемник оставался неподвижным. В одном случае светодиод вращался вокруг оси, проходящей перпендикулярно через одну из боковых граней чипа. Угол поворота θ отсчитывался от нормали к активной области. Во втором случае он вращался вокруг оси, проходящей перпендикулярно через плоскость активной области. Угол поворота ϕ отсчитывался от плоскости, содержащей ось вращения и нормаль к одной из боковых граней кристалла. В первом случае фотоприемник располагался в плоскости, проходящей через чип перпендикулярно оси вращения. Во втором случае направление от чипа на фотоприемник составляло угол $\theta = 60^\circ$ с осью вращения. Излучение регистрировалось фотосопротивлением из PbS с шириной фоточувствительной площадки 0.87 мм на расстоянии 35 мм, что обеспечивало угловое разрешение 1.5°. Светодиод питался импульсами тока с длительностью 0.8 мкс и частотой повторения 31 кГц. Питание прерывалось с заполнением 0.5 и частотой 330 Гц, на которой проводилось синхронное детектирование сигнала.


3. Экспериментальные результаты и их обсуждение

3.1. Диаграммы направленности

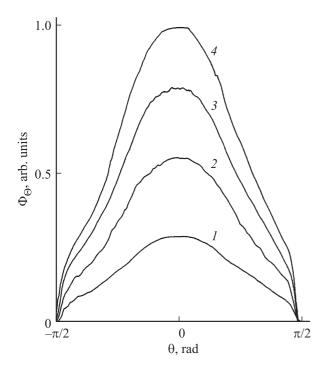

На рис. 2 и 3 показаны диаграммы направленности излучения InGaAsP/InP светодиода с диаметром мезы 200 мкм, смонтированного на кристаллодержателе TO-18 с плоским столиком, при различных токах. Аналогичные диаграммы направленности имеют светодиоды с другими величинами диаметра мезы. Максимумы интенсивности излучения (рис. 2) наблюдаются под углом 45° к плоскости мезы ($|\theta|=\pi/4$). Перпендикулярно плоскости мезы ($\theta=0$) интенсивность на 30–40% меньше. Такую направленность можно объяснить совокупностью условий выхода излучения из кристалла. Во-первых, оно выходит через боковые поверхности мезы, имеющей форму усеченного конуса с наклоном образующей под

Рис. 2. Зависимость интенсивности излучения Φ_{θ} от угла θ между нормалью к плоскости мезы и направлением на фотоприемник для смонтированного на кристаллодержателе TO-18 с плоским столиком светодиода InGaAsP/InP с диаметром мезы 200 мкм, измеренная при различных токах, мА: I=50, I=100, I=100,

Рис. 3. Зависимость интенсивности излучения Φ_{φ} от угла φ , отсчитываемого в плоскости чипа от нормали к боковой грани, для смонтированного на кристаллодержателе TO-18 с плоским столиком InGaAsP/InP светодиода с диаметром мезы 200 мкм, измеренная при различных токах, мА: I — 50, 2 — 100, 3 — 150, 4 — 200. Угол θ = 60° .

Рис. 4. Зависимость интенсивности излучения Φ_{θ} от угла θ между нормалью к плоскости мезы и направлением на фотоприемник для смонтированного на кристаллодержателе TO-18 с лункой светодиода InGaAsP/InP с диаметром мезы 100 мкм.

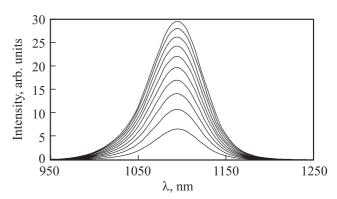
углом $\sim 45^\circ$ к плоскости активной области. При этом часть излучения отражается от противоположной стенки канавки, а часть снова входит в чип и может выходить через боковые стенки чипа. Во-вторых, излучение выходит также через свободную от контактов лицевую плоскость мезы. Наличие сигнала под углом $|\theta|=\pi/2$ свидетельствует, что излучение выходит и через боковые сколотые грани чипа. Это подтверждает наличие минимумов интенсивности Ψ_{φ} при углах $\varphi=0$ и $|\varphi|=\pi/2$ (рис. 3).

Тот факт, что излучение достигает боковых граней кристалла, показывает наличие отражения от омических контактов n-области.

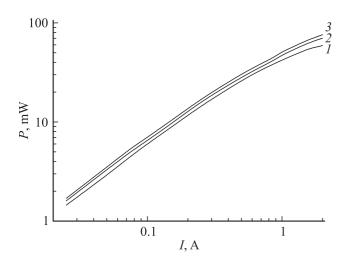
Импульсный внешний квантовый выход излучения, вычисленный интегрированием по диаграмме направленности, при малых токах ($100\,\mathrm{mA}$), составил $\sim 5, 6.5$ и 7% для светодиодов с диаметром мезы соответственно 100, 200 и $300\,\mathrm{mkm}$.

Светодиоды InGaAsP/InP, смонтированные на кристаллодержателе TO-18 с углублением в виде лунки, дают угловое распределение излучения с максимумом в направлении, перпендикулярном плоскости чипа (рис. 4). Ширина светового потока на половине от максимума составляет 100° . Стенки лунки дают затенение вблизи угла $|\theta|=\pi/2$ в пределах 10° . Внешний квантовый выход излучения, определенный из диаграмм направленности, оказывается в 1.5 раза меньше, чем в светодиодах, смонтированных на кристаллодержателе с плоским столиком. Возможно, это снижение внешнего квантового выхода

излучения вызвано в основном недостаточно высоким коэффициентом отражения поверхности кристаллодержателя.


Таким образом, исследование диаграмм направленности показало, что в чипе с мезой в виде усеченного конуса, окруженного канавкой, имеются условия для вывода излучения из кристалла за счет переотражения света от криволинейной конусообразной поверхности чипа, которые позволяют значительно повысить внешний квантовый выход излучения.

3.2. Спектры излучения


На рис. 5 показаны спектры излучения светодиода InGaAsP/InP с диаметром мезы $300\,\mathrm{mkm}$, полученые при комнатной температуре в импульсном режиме, обеспечивающем неизменность температуры светодиода в процессе измерений (длительность импульсов $0.6\,\mathrm{mkc}$, заполнение 10^{-3}).

Действительно, длина волны в максимуме (1095 нм) не изменяется в интервале амплитуд тока от 0.25 до 2 А. Ширина спектра остается близкой к 70 нм. Аналогичные результаты были получены для светодиодов с мезами меньших диаметров. На основании этих измерений была построена зависимость мощности излучения P от амплитуды тока в импульсе I (рис. 6).

В интервале токов 0.1-0.25 А $P \propto I$. При дальнейшем увеличении тока до 2 А зависимость P от I постепенно насыщается, стремясь к корневой зависимости $P \propto I^{0.5}$. Это можно объяснить тем, что к излучательной рекомбинации постепенно добавляется безызлучательная ожерекомбинация. В светодиодах с диаметром мезы 100 мкм излучательная рекомбинация остается преимущественной до тока 0.4 А. В светодиодах с диаметром мезы 200 и 300 мкм — до тока 0.5 А. Близость величин упомянутого тока, несмотря на сильное различие площадей активных слоев, можно объяснить зависимостью степени растекания тока по p-области от диаметра мезы. При диаметре мезы 100 мкм растекание наилучшее. В этих светодиодах плотность тока, при которой скорости излучательной

Рис. 5. Спектры излучения InGaAsP/InP светодиода с диаметром мезы $300\,\mathrm{mkm}$, полученные в импульсном режиме питания при различных амплитудах тока от $0.25\,\mathrm{do}\,2\,\mathrm{A}$ (длительность импульса $0.6\,\mathrm{mkc}$, заполнение 10^{-3}).

Рис. 6. Зависимости импульсной мощности излучения P от тока в импульсе I (длительность импульса $0.6\,\mathrm{mkc}$, заполнение 10^{-3}) для светодиода InGaAsP/InP с различными диаметрами мезы, мкм: I —100, 2 — 200, 3 — 300.

и безызлучательной оже-рекомбинации равны, составляет $5000\,\mathrm{A/cm^2}$.

Импульсный внешний квантовый выход излучения при малых токах $(0.2\,\mathrm{A})$ составил 5.3, 5.7 и 6.2% для светодиодов с мезами диаметром 100, 200 и 300 мкм соответственно, что близко к результатам, полученным из измерения диаграмм направленности. Мощность излучения соответственно составила 12, 13 и 14 мВт. При увеличении тока до 2A внешний квантовый выход излучения постепенно снижается в \sim 2 раза, а импульсная мощность увеличивается в \sim 10 раз, достигая 77 мВт для светодиода с диаметром мезы 300 мкм.

Таким образом, исследование спектров излучения показало, что излучательная рекомбинация в светодиодах InGaAsP/InP преобладает до плотностей тока 5000 A/см². Преобладание излучательной рекомбинации до столь больших плотностей тока позволяет создавать мощные высокоэффективные светодиоды.

4. Заключение

На основе InGaAsP/InP-гетероструктур созданы светодиодные чипы с мезами диаметром 100, 200 и 300 мкм. Форма мез близка к форме усеченного конуса с наклоном образующей 45° в окрестности активной области светодиода.

Исследование диаграмм направленности и спектров излучения сформированных фотолитографией чипов показало, что излучательная рекомбинация в InP/InGaAsP/InP-гетероструктурах может преобладать до токов плотностью 5000 A/см², что делает эти структуры перспективными для создания мощных светодиодов.

Получена в непрерывном режиме мощность излучения $\sim 14\,\mathrm{MBT}$ $(I=0.2\,\mathrm{A})$, а в импульсном режиме 77 мВт $(I=2\,\mathrm{A})$, что соответствует внешнему квантовому выходу излучения 6.2 и 3.4 соответственно.

Список литературы

- Ж.И. Алфёров, В.М. Андреев, Д.З. Гарбузов, Н.Ю. Давидюк, Б.В. Пушный, Л.Т. Чичуа. Письма ЖТФ, 3, 657 (1977).
- [2] T. Hyvarien, M. Aliko, E. Herrala, J. Malimen. Proc. SPIE, 2084, 224 (1993).
- [3] V. Rakovics, J. Balazs, S. Puspoki, C. Frigeri. Mater. Sci. Eng. B, 80, 18 (2001).
- [4] V. Rakovics, S. Puspoki, J. Balazs, I. Reti, C. Frigeri. Mater. Sci. Eng. B, 91–92, 491 (2002).

Редактор Т.А. Полянская