Корреляции термодинамических характеристик щелочно-галоидных кристаллов с энергией связи диполонов

© Г.А. Розман

Псковский государственный педагогический институт, 180760 Псков, Россия

E-mail: info@pgpi.pskov.ru

(Поступила в Редакцию 5 декабря 2002 г. В окончательной редакции 7 февраля 2003 г.)

Рассматриваются термодинамические свойства щелочно-галоидных кристаллов. Установлена связь между температурой плавления, энергией плавления, скачком энтропии при плавлении и энергией связи диполонов в шестнадцати щелочно-галоидных кристаллах.

Теоретическое исследование свойств дефектов кристаллической решетки, в том числе диполонов [1] — нейтральных пар вакансий в щелочно-галоидных кристаллах (ЩГК), имеет практическое значение, так как ионные кристаллы являются модельными объектами в физике твердого тела. Установлено, что диполоны вносят основной вклад в диэлектрические процессы и внутреннее трение чистых ЩГК, участвуют в образовании центров окраски, в электропроводности и диффузионных процессах и т. д. [2].

Основной характеристикой диполона является его энергия связи. Автором была разработана методика определения этой величны для всех шестнадцати ЩГК [3]. Она основана на анализе графиков трансцендентного уравнения

$$c = A \exp\left(-\frac{E - \gamma c}{2kT}\right),\tag{1}$$

где c — концентрация всех вакансий, как одиночных, так и ассоциированных в диполоны, E — энергия образования двух изолированных вакансий разных знаков, $\gamma = 2\alpha U \exp U/kT$, U — энергия связи диполона, α — ориентационный множитель, определяющий различные положения диполона в кристаллической решетке. При U=0 из (1) следует обычная формула для концентрации только одиночных вакансий: $c=A \exp(-E/2kT)$.

В настоящей работе представлены энергии связи всех ЩГК [3], их температуры плавления $T_{\rm melt}$ [4], а также

рассчитанные нами скачки энтропии ΔS_{melt} и энергии плавления ΔQ в процессе фазового перехода первого рода кристалл-расплав (см. таблицу). Известно, что при фазовом переходе первого рода энтропия S кристалла испытывает скачок в соответствии с формулой второго начала термодинамики

$$\Delta S_{\text{melt}} = \frac{\Delta Q_{\text{melt}}}{T_{\text{melt}}}.$$
 (2)

Для расчета скачка $\Delta S_{\rm melt}$ всех ЩГК (с решеткой NaCl) использованы данные работы [5], в которой теоретически показано, что определяющую роль в термодинамических соотношениях галогенидов щелочных металлов играют размеры аниона.

Наши расчеты показали существование взаимосвязи скачка энтропии ΔS_{melt} и энергии плавления ΔQ_{melt} с энергией связи диполонов U в ЩГК.

Из сравнения данных, приведенных в строках 1 и 4 таблицы видна пропорциональность между "прочностью" диполона U и энергией плавления кристаллов, что физически оправдано, так как оба этих параметра определяются энергией взаимодействия структурных частиц решетки.

Сравнение строк 1 и 3 обнаруживает обратную тенденцию для энергии связи диполонов и скачков энтропии, что находится в соответствии с формулой (2) с учетом возрастания температуры плавления при возрастании прочности кристалла.

Корреляция термодинамических характеристик ЩГК с энергией связи диполонов

№ п/п	Параметр	LiI	LiBr	LiCl	LiF	NaI	NaBr	NaCl	NaF	KI	KBr	KCl	KF	RbI	RbBr	RbCl	RbF
1	<i>U</i> , eV [1]	0.38	0.56	0.67	0.85	0.38	0.45	0.58	0.76	0.48	0.56	0.62	0.78	0.57	0.63	0.68	0.74
2	$T_{\text{melt}}, K [4]$	719	820	879	1143	934	1013	1073	1268	959	1003	1043	1130	915	955	990	1048
3	ΔS_{melt}^{calc} , kcal / (mol·K)	6.36	6.23	6.10	5.15	6.47	5.99	5.81	4.89	6.02	6.02	5.83	5.28	5.48	5.48	5.73	5.50
4	$\Delta Q_{ m melt}^{ m calc}$, kJ/mol	19.1	21.3	22.4	24.6	25.2	25.4	26.0	26.0	24.1	25.3	25.4	25.0	20.1	21.8	23.7	24.0
5	ΔQ_{melt} , kJ/mol [4]	_	12.95	13.4	26.4	_	_	28.8	33.6	_	24.8	25.5	27.2	_	_	18.4	17.3
6	$ \Delta Q_{ m melt}^{ m calc}/U $	50	38	33	28	95	56	44	34	50	45	40	32	21	34	34.8	32
7	$ \Delta S_{ m melt}^{ m calc}/U $	16.7	11.1	9.1	6.1	17.0	13.3	10.0	6.4	12.5	10.7	9.4	6.8	9.4	8.7	8.4	7.4

4* 243

244 Г.А. Розман

Строки 6 и 7 дополнительно свидетельствуют о наличии корреляций соответствующих отношений в каждом семействе ЩГК.

Рассчитанные нами значения скачков энтропии при фазовом переходе кристалл-расплав в ЩГК могут применяться при составлении бинарных кристаллов. Установленные корреляции подтверждают общую тенденцию взаимосвязи различных термодинамических характеристик кристаллических тел, в том числе энергии связи диполона, с энергией фазового перехода кристалл-расплав и скачком энтропии при этом переходе.

Последний вывод может свидетельствовать об участии в фазовом переходе кристалл—расплав диполонов, концентрация которых возрастает вблизи фазового перехода. Это утверждение кажется нам важным потому, что до сих пор нет единой теории плавления ЩГК.

Список литературы

- [1] Г.А. Розман. ФТТ 19, 9, 1840 (1977).
- [2] Материалы Всесоюз. конф. "Физика диэлектриков и перспективы ее развития". Л. (1973). Т. 1,2; Материалы Междунар. конф. "Физика диэлектриков". Тула (1997); Материалы Междунар. конф. "Физика диэлектриков". СПб (2000).
- [3] Г.А. Розман. Деп. в ВИНИТИ, рег. № 2325-76.
- [4] Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. Атомиздат, М. (1976).
- [5] Я.С. Шенкин. ФТТ 23, 9, 1896 (1981).