05,11

Особенности магнитных свойств при мартенситном переходе $M \leftrightarrow L2_1$ в сплавах $Ni_{2+x}Mn_{1-x}$ Ga

© А.В. Королев 1 , Н.И. Коуров 1 , В.Г. Пушин 1,2

¹ Институт физики металлов УрО РАН,

Екатеринбург, Россия

² Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург, Россия

E-mail: kourov@imp.uran.ru

(Поступила в Редакцию 22 июля 2014 г.)

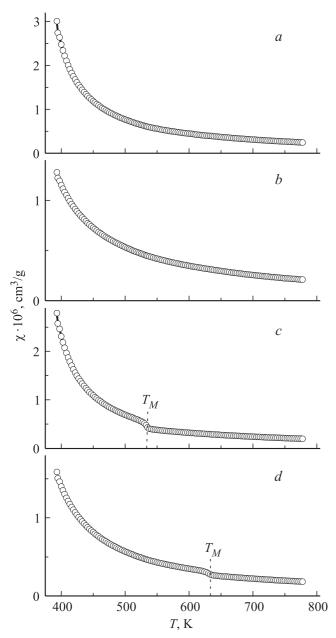
В интервале температур 400—800 К при H=5 кОе проведены измерения парамагнитной восприимчивости сплавов $\mathrm{Ni}_{2+x}\mathrm{Mn}_{1-x}\mathrm{Ga}$ с x=0.12,~0.16,~0.19,~0.21,~0.23,~0.24,~0.27,~0.3,~0.33,~0.36 и 0.39. Показано, что в интервале 0.27 < x < 0.3, когда число валентных электронов на атом $e/a \sim 7.7$, аномально резко изменяются как степень тетрагонального искажения c/a, так и параметры, характеризующие электронную (χ_0) и магнитную $(\theta_P$ и $\mu_{\mathrm{eff}}^2)$ подсистемы сплавов.

Работа выполнена при частичной поддержке РФФИ (проект № 14-02-00379).

В последние годы большое внимание уделяется исследованию сплавов Гейслера со структурой $L2_1$ на основе стехиометрического состава Ni_2MnGa , в которых реализуются управляемые магнитным полем эффекты памяти формы (ЭПФ) (см., например, обзоры [1,2], а также работы [3–6]). Исследования проводятся с целью получения материалов с наилучшими функциональными свойствами: с параметрами, удобными для практического использования магнитоуправляемых ЭПФ, а также с высокой обратимой магнитодеформацией и большой величиной магнитокалорического эффекта. Успешный поиск таких материалов требует комплексного исследования атомно-кристаллической структуры, а также электронных и магнитных свойств.

Выполненные ранее исследования показали [2,3], что в тройных сплавах $Ni_{2+x+v}Mn_{1-x}Ga_{1-v}$ при изменении соотношения концентрации компонентов, а следовательно, и числа валентных электронов на атом e/a температура Кюри изменяется менее значительно $300 < T_{\rm C} < 400 \, {\rm K}$, чем температура мартенситного перехода $40 < T_M < 650 \, \mathrm{K}$. При этом начиная от некоторого концентрационного соотношения компонентов сплава, когда величина $e/a \sim 7.7$ и имеет место равенство критических точек $T_{\rm C}=T_{M}$, температура T_{M} становится больше, чем $T_{\rm C}$. Именно сплавы в ближайшей окрестности этой особой точки на фазовой диаграмме обладают рядом необычных физических свойств. В частности, на концентрационной зависимости величины тетрагонального искажения имеет место скачок c/a, природа которого до сих пор не установлена.

В настоящей работе представлены результаты и исследования парамагнитной $(T>T_{\rm C})$ восприимчивости χ тройных квазибинарных сплавов ${\rm Ni}_{2+x}{\rm Mn}_{1-x}{\rm Ga}$ в окрестности особой точки $e/a\sim7.7$ в интервале $0.12\leq x\leq0.39$. При этом предполагалось, что изменения параметров кристаллической структуры долж-


ны сопровождаться перестройкой электронной зонной структуры и магнитных характеристик сплавов. Измерения $\chi(T)$ проводились в Отделе магнитных измерений Института физики металлов УрО РАН на вибромагнитометре VSM (LAKE SHORE, USA) в интервале температур $400 < T < 800\,\mathrm{K}$ при $H = 5\,\mathrm{kOe}$ для образцов с $x = 0.12,\ 0.16,\ 0.19,\ 0.21,\ 0.23,\ 0.24,\ 0.27,\ 0.3,\ 0.33,\ 0.36$ и 0.39.

Известно [7], что парамагнитная восприимчивость является физической характеристикой, зависящей как от электронных зонных параметров, так и от магнитного состояния сплавов. Обычно в пределах погрешности измерений она описывается обобщенным законом Кюри—Вейсса

$$\chi = \chi_0 + N\mu_{\text{eff}}^2 / 3k_{\text{B}}(T - \theta_P). \tag{1}$$

Здесь N — число Авогадро, $k_{\rm B}$ — константа Больцмана, $\mu_{\rm eff}$ — эффективный магнитный момент, θ_P — константа Вейсса. Согласно спин-флуктуационной теории магнетизма, первый член χ_0 в (1) необходимо отнести за счет отрицательного диамагнитного χ_d и положительного паулевского χ_P вкладов. Второй член определяется вкладом Кюри—Вейсса от моментов, локализованных на магнитоактивных атомах.

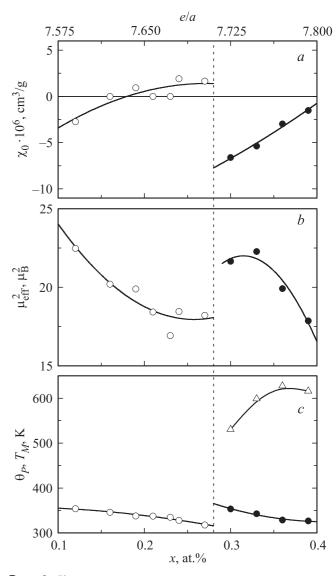

На рис. 1 представлены характерные температурные зависимости $\chi(T)$ для некоторых исследованных образцов. Видно, что весь исследованный интервал разбивается на две области концентраций. В сплавах с $x \geq 0.3$ на кривых $\chi(T)$ наблюдается скачок при $T \sim 530\,\mathrm{K}$ и выше. Учитывая диаграмму состояний этих сплавов [2,3], можно заключить, что он соответствует точке мартенситного превращения. При увеличении концентрации x величина T_M возрастает. Напротив, в сплавах с $x \leq 0.27$ во всем исследованном интервале температур имеет место обычное "кюри-вейссовское" поведение $\chi(T)$, что свидетельствует об отсутствии в этих сплавах мартенситного превращения в парамагнитной области температур.

Рис. 1. Температурные зависимости парамагнитной восприимчивости сплавов $Ni_{2+x}Mn_{1-x}Ga$: x=0.12 (a), 0.27 (b), 0.3 (c) и 0.39 (d).

На рис. 2 приведены концентрационные зависимости физических параметров, определенных в результате обработки экспериментальных данных $\chi(T)$ согласно выражению (1): для образцов с $x \ge 0.3$ — в интервале $T_{\rm C} < T < T_{M}$, а в случае $x \le 0.27$ — при $T > T_{\rm C}$ и T_{M} . Видно, что в интервале 0.27 < x < 0.3, когда число валентных электронов на атом $e/a \sim 7.7$, параметры, характеризующие электронную (χ_{0}) и магнитную (θ_{P} и $\mu_{\rm eff}^{2}$) подсистемы, изменяются практически скачком. При этом необходимо подчеркнуть, что сплавы с $x \le 0.27$ во всем исследованном интервале температур находятся в состоянии $L2_{1}$ -фазы. Однако сплавы с

 $x\geq 0.3$ имеют $L2_1$ -структуру только при $T>T_M$, а при $T\leq T_M$ они находятся в M-состоянии тетрагональной мартенситной фазы. Следовательно, аномальное изменение параметров, определенных с помощью данных $\chi(T)$ согласно (1), в интервале 0.27 < x < 0.3 связано со структурным превращением $M \leftrightarrow L2_1$. Отметим, что измерения величины тетрагональных искажений c/a также проводились в области перехода $M \leftrightarrow L2_1$ [2,3]. Отсюда можно заключить, что именно изменение структурного состояния сплавов $\mathrm{Ni}_{2+x+y}\mathrm{Mn}_{1-x}\mathrm{Ga}_{1-y}$ при $e/a \sim 7.7$ сопровождается аномалиями на концентрационных зависимостях не только величины c/a, но и параметров электронной χ_0 и магнитной θ_P и μ_{eff}^2 подсистем.

Рис. 2. Концентрационные зависимости паулевской составляющей χ_0 (a), квадрата эффективного момента $\mu_{\rm eff}^2$ (b), температуры мартенситного превращения T_M (треугольники), и константы Вейсса θ_P (c), определенных для сплавов ${\rm Ni}_{2+x}{\rm Mn}_{1-x}{\rm Ga}$ согласно (1). Светлыми кружками показаныт значения, полученные в $L2_1$ -состоянии при $T>T_{\rm C}$ и T_M , а темными — в M-состоянии при $T_M>T>T_{\rm C}$.

Из рис. 1 видно, что на температурных зависимостях χ при структурном превращении $M \leftrightarrow L2_1$ в точке T_M для сплавов с $x \ge 0.3$ также имеет место аномальное изменение. Обработка зависимостей $\chi(T)$ согласно (1) показывает, что для этих сплавов в точке T_M происходит скачок как величины χ_0 , так и кюри-вейссовских констант θ_P и $\mu_{\rm eff}^2$.

Известно [7], что составляющая χ_0 несет информацию о параметрах электронного спектра на уровне Ферми $E_{\rm F}$. В сплавах переходных металлов она определяется в основном слабо зависящей от температуры паулевской парамагнитной восприимчивостью, которую можно записать в виде

$$\chi_p = 2\mu_{\rm B}^2 n(E_{\rm F}) \left\{ 1 - \frac{\pi^2}{6} \left[\left(\frac{n'(E_{\rm F})}{n(E_{\rm F})} \right)^2 - \frac{n''(E_{\rm F})}{n(E_{\rm F})} \right] k_{\rm B}^2 T^2 \right\}, \tag{2}$$

где $\mu_{\rm B}$ — магнетон Бора, $k_{\rm B}$ — консатнта Больцмана, $n(E_{\rm F})=n_s+n_d$ — суммарная плотность электронных состояний на уровне Ферми, состоящая из плотностей состояний s- и d-зон; $n'(E_{\rm F})$ и $n''(E_{\rm F})$ — первая и вторая производные от функции плотности состояний в точке $E=E_{\rm F}$. Обычно вклад χ_p имеет положительный знак. Однако из эксперимента следует, что в случае M-состояния сплавов $\mathrm{Ni}_{2+x}\mathrm{Mn}_{1-x}\mathrm{Ga}$ величина $\chi_0<0$ (рис. 2).

Наличие большого по величине диамагнитного вклада в магнитную восприимчивость может быть следствием определяющей роли легких носителей, имеющих эффективную массу m^* , меньшую, чем масса свободных электронов m_0 ($m^* < \sqrt{3}m_0$) [7]. В этом случае парамагнитная паулевская составляющая, пропорциональная плотности состояний на уровне Ферми, подавляется диамагнетизмом Ландау [$\chi_d = -(m_0/m^*)^2\chi_p/3$] электронов проводимости и диамагнетизмом ионного остова. Как видно из рис. 2, составляющая χ_0 становится положительной только при переходе к сплавам, упорядоченным по типу $L2_1$. Это свидетельствует о существенной перестройке электронной зонной структуры вблизи $E_{\rm F}$ при структурном превращении $M \leftrightarrow L2_1$.

Скачок величины квадрата эффективного момента $\Delta\mu_{\rm eff}^2=4.7g^2\mu_{\rm B}^2$, наблюдаемого на рис. 2 при переходе $M\leftrightarrow L2_1$, указывает на изменение степени локализации моментов магнитных атомов. Квадрат магнитного момента сплавов ${\rm Ni}_{2+x}{\rm Mn}_{1-x}{\rm Ga}$, определяемый из результатов измерений $\chi(T)$ согласно (1), в общем случае равен

$$\mu_{\text{eff}}^2 = [(2+x)\mu_{\text{Ni}}^2 + (1-x)\mu_{\text{Mn}}^2 + \mu_{\text{Ga}}^2]g^2\mu_{\text{B}}^2,$$
 (3)

где g=2 — гиромагнитное отношение. Можно считать, что полный квадрат эффективного магнитного момента в исследуемых сплавах определяется в основном квадратом момента атомов марганца, так как величина момента атома галлия $\mu_{\rm Ga}^2=0$, а момент никеля много меньше момента марганца: $\mu_{\rm Ni}^2\ll\mu_{\rm Mn}^2$, т. е. можно полагать, что $\mu_{\rm Ni}^2\approx0$. В свою очередь

$$\mu_{\rm Mn}^2 = S(S+1)g^2\mu_{\rm B}^2,\tag{4}$$

где S — спин марганца.

Из рис. 2 видно, что при уменьшении концентрации марганца величина $\mu_{\rm eff}^2$ снижается: в M-состоянии от значения 22.5 до 17, в $L2_1$ -фазе от 21.7 до 18. Оценки, проведенные согласно (3) и (4), показывают, что эти экспериментальные значения $\mu_{\rm eff}^2$ соответствуют примерно 3d-состоянию марганца с $S\approx 2$, а скачок момента $\Delta\mu_{\rm eff}^2$ при переходе $M\leftrightarrow L2_1$ сопровождается изменением спинового состояния атомов марганца $\Delta S\approx 1$.

Проведенные выше оценки изменения состояния марганца в области перехода $M \leftrightarrow L2_1$ согласуются с результатами определения величины константы Вейсса $\theta_P(x)$, показанными на рис. 2. Известно [7,8], что константа θ_P , как и точка Кюри $T_{\rm C}$, определяется величиной квадрата магнитных моментов атомов и обменным взаимодействием между ними

$$\theta_P = \frac{2zJS(S+1)}{3k_B} = T_C. \tag{5}$$

В предположении, что при мартенситном переходе $M \leftrightarrow L2_1$ число ближайших соседей магнитоактивного атома z и константа обменного взаимодействия J в выражении (5) остаются практически постоянными, экспериментально обнаруженный скачок величины константы Вейсса необходимо отнести за счет изменения спинового состояния марганца. Из рис. 2 видно, что действительно при переходе из $L2_1$ - в M-состояние скоррелированно возрастают как $\mu_{\rm eff}^2 \approx S(S+1)$, так и θ_P .

Таким образом, проведенные исследования парамагнитной восприимчивости $\chi(T)$ сплавов $\mathrm{Ni}_{2+x}\mathrm{Mn}_{1-x}\mathrm{Ga}$ в интервале $0.12 \leq x \leq 0.39$ показывают, что при числе валентных электронов на атом $e/a \sim 7.7$ (x=0.267) происходят существенные изменения параметров решеточной, электронной и магнитной подсистем, обусловленные структурным $M \leftrightarrow L2_1$ -превращением.

Авторы благодарны Д.А. Шишкину и А.В. Протасову за проведение измерений парамагнитной восприимчивости сплавов $Ni_{2+x}Mn_{1-x}Ga$.

Список литературы

- P.J. Webster, R.A. Ziebeck, S.L. Town, M.S. Peak. Phil. Mag. B 49, 295 (1984).
- [2] А.Н. Васильев, В.Д. Бучельников, Т. Тагаки, В.В. Ховайло, Э.И. Эстрин. УФН 173, 577 (2003).
- [3] A.N. Vasil'ev, A.D. Bozhko, B.B. Khovailo, I.E. Dikshtein, V.G. Shavrov, V.D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, J. Tani. Phys. Rev. B 59, 1113 (1999).
- [4] В.Г. Пушин, Н.И. Коуров, А.В. Королев, В.В. Марченков, Е.Б. Марченкова, В.А. Казанцев, Н.Н. Куранова, А.Г. Попов. ФТТ **55**, *12*, 2297 (2013).
- [5] Н.И. Коуров, В.Г. Пушин, А.В. Королев, В.В. Марченков, Е.Б. Марченкова, В.А. Казанцев, Н.Н. Куранова, А.Г. Попов. ФТТ 55, 12, 2351 (2013).
- [6] Н.И. Коуров, В.В. Марченков, В.Г. Пушин, А.В. Королев, Е.Б. Марченкова, Н.W. Weber. ФТТ 50, 11, 2037 (2008).
- [7] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- 8] Дж. Смарт. Эффективное поле в теории магнетизма. Мир, М. (1968). 271 с.