12,13,05

Твердофазный синтез нанокомпозита ZnO−Fe₃O₄: структурные и магнитные свойства

© Л.Е. Быкова¹, В.Г. Мягков¹, И.А. Тамбасов¹, О.А. Баюков¹, В.С. Жигалов¹, К.П. Полякова¹, Г.Н. Бондаренко², И.В. Немцев¹, В.В. Поляков¹, Г.С. Патрин^{1,3}, Д.А. Великанов^{1,3}

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Институт химии и химической технологии СО РАН,

Красноярск, Россия

³ Сибирский федеральный университет,

Красноярск, Россия

E-mail: lebyk@iph.krasn.ru

(Поступила в Редакцию 21 июля 2014 г.)

Представлены результаты исследования структурных и магнитных свойств нанокомпозитов $ZnO-Fe_3O_4$, полученных с помощью твердофазной реакции $Zn+3Fe_2O_3 \rightarrow ZnO+2Fe_3O_4$ путем отжига пленок $Zn/\alpha-Fe_2O_3$ при температуре $450^{\circ}C$ в вакууме. Синтезированы ферримагнитные нанокластеры Fe_3O_4 со средним размером зерна 40 nm и намагниченностью ~ 430 emu/cm³ при комнатной температуре, окруженные слоем ZnO с большой площадью контакта. Приведены магнитные характеристики нанокомпозита $ZnO-Fe_3O_4$ в области температур 10-300 K.

1. Введение

Среди гибридных структур, содержащих ферромагнетик (ферримагнетик) с высокой спиновой поляризацией и полупроводник, Fe₃O₄/ZnO гетероструктуры и нанокомпозиты привлекают внимание в связи с их возможным использованием в устройствах оптоэлектроники, спинтроники [1–12], микроволнового поглощения [13], в фотокатализе [8], иммунотерапии рака [14] и для детоксикации воды [15]. Основными требованиями к таким устройствам являются высокая температура Кюри и высокая спиновая поляризация Fe₃O₄, а также хороший контакт между Fe₃O₄ и ZnO. Оксид железа Fe₃O₄ является полуметаллом [16,17], при комнатной температуре обладает высокими значениями спиновой поляризации, которая определяет величину магнитосопротивления — основную характеристику магнитных туннельных переходов [18], и имеет высокую температуру Кюри $(T_C = 858^{\circ}\text{C})$ [19]. Оксид цинка ZnO — широкозонный $(E_g = 3.37 \, \text{eV})$ полупроводниковый материал с энергией связи экситона 60 meV и электронной проводимостью п-типа, обладающий уникальными оптическими и электрическими свойствами [20].

Для изготовления магнитных наномкомпозитов $ZnO-Fe_3O_4$ используются различные химические методы [3–11]. Импульсно-лазерное осаждение и молекулярно-лучевая эпитаксия являются основными методами эпитаксиального выращивания Fe_3O_4 на подложках ZnO (001) при формировании гетероструктур Fe_3O_4/ZnO [8–14]. Однако новые недорогие и простые методы получения, увеличивающие функциональные возможности магнитных нанокомпозитов $ZnO-Fe_3O_4$, крайне востребованы для практического применения.

В настоящей работе проведено исследование структурных и магнитных свойств пленочного нанокомпозита

 $ZnO-Fe_3O_4$, полученного путем отжига двухслойной пленочной системы Zn/Fe_2O_3 .

2. Методика экспериментов и приготовление образцов

Синтез нанокомпозитных пленок $ZnO-Fe_3O_4$ был проведен с помощью твердофазной реакции

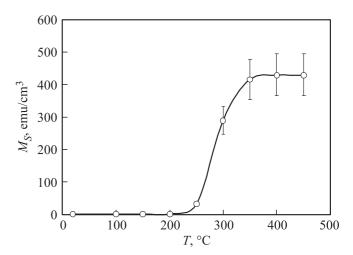
$$Zn + 3Fe_2O_3 \rightarrow ZnO + 2Fe_3O_4$$
 (1)

и состоял из двух этапов.

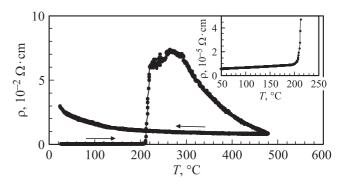
- 1. Получение двухслойных пленок Zn/α - Fe_2O_3 , которое включало:
- а) термическое осаждение пленок Fe толщиной $\sim 100\,\mathrm{nm}$ в вакууме $10^{-6}\,\mathrm{Torr}$ на стеклянные подложки толщиной $0.18\,\mathrm{mm};$
- б) образование пленок $\alpha\text{-Fe}_2\mathrm{O}_3$ в результате окисления на воздухе слоев Fe при температуре 350°C в течение 10 min;
- с) термическое осаждение слоя Zn толщиной $\sim 25~\text{nm}$ в вакууме $10^{-6}\,\text{Torr}$ на поверхность пленки $\alpha\text{-Fe}_2O_3.$ Для предотвращения неконтролируемой реакции между слоями Zn и $\alpha\text{-Fe}_2O_3$ осаждение Zn производилось при комнатной температуре.
- 2. Отжиг полученных образцов Zn/α - Fe_2O_3 в вакууме 10^{-6} Torr в температурном интервале от 50 до $450^{\circ}C$ с шагом $50^{\circ}C$ и выдержкой при каждой температуре в течение 30 min.

Рентгеноспектральный флуоресцентный анализ был использован для определения толщин слоев Zn и Fe. Измерение намагниченности производилось на вращательном магнитометре после отжига пленки в вакууме 10^{-6} Torr по методике, приведенной в работе [21].

Температурная зависимость удельного сопротивления пленки Zn/α-Fe₂O₃ была измерена четырехзондовым методом с прижимными контактами в вакууме 10⁻⁶ Torr со скоростью нагрева ~ 5 градусов в минуту. Фазовый состав исследовался методом рентгеновской дифракции на дифрактометре ДРОН-4-07 с использованием излучения CuK_{α} (длина волны 0.15418 nm). Мессбауэровский спектр синтезированного нанокомпозита ZnO-Fe₃O₄ был измерен при комнатной температуре на спектрометре MS-1104Em с источником Co⁵⁷(Cr) в режиме постоянных ускорений. В области температур от 4 до 300 К измерение температурной зависимости намагниченности M_S пленок нанокомпозита ZnO-Fe₃O₄ проводилось на SQUID-магнитометре MPMS-XL в поле 500 Ое, приложенном в плоскости пленки, а измерение кривых перемагничивания — с помощью магнитооптического магнитометра Nano MOKE 2 в магнитном поле до 1 kOe.


Экспериментальные результаты и их обсуждение

Исходные образцы Zn/α - Fe_2O_3 представляли собой двухслойную пленочную систему, что подтверждалось рентгеновским спектром, который содержал только отражения от фаз Zn и α - Fe_2O_3 (в работе не приведен).


На рис. 1 представлена зависимость намагниченности насыщения M_S пленочного образца $\mathrm{Zn}/\alpha\text{-Fe}_2\mathrm{O}_3$ от температуры отжига. Исходные образцы Zn/α - Fe_2O_3 обладали низкой намагниченностью $\sim 2\,\mathrm{emu/cm^3}$, близкой к намагниченности насыщения фазы α -Fe₂O₃ [22]. При отжигах до температуры 200° С значение M_S не менялось, что указывает на отсутствие перемешивания и формирования соединений на интерфейсе Zn/α-Fe₂O₃. При температурах отжига выше 250° С намагниченность M_S резко возрастала и при 400°C принимала максимальное значение, которое не изменялось до 450°C (рис. 1). Возрастание намагниченности M_S выше 200°C однозначно указывает на начало твердофазной реакции (1) между слоями Zn и α-Fe₂O₃ и формирование магнитных соединений. При температуре отжига 450°C реакция заканчивается полностью.

Результаты измерения удельного электрического сопротивления ρ от температуры отжига образца ${\rm Zn}/\alpha\text{-Fe}_2{\rm O}_3$ приведены на рис. 2 и согласуются с температурными измерениями намагниченности насыщения M_S этих образцов (рис. 1). Из рис. 2 (вставка) следует, что до $\sim 200^{\circ}{\rm C}$ сопротивление пленки ${\rm Zn}/\alpha\text{-Fe}_2{\rm O}_3$ носит металлический характер, который определяется верхним слоем цинка. После $\sim 200^{\circ}{\rm C}$ сопротивление пленки резко возрастает, что указывает на быструю взаимную миграцию атомов ${\rm Zn}$ и $\alpha\text{-Fe}_2{\rm O}_3$ и начало реакции (1). Медленное возрастание с небольшими колебаниями сопротивления до температуры $\sim 300^{\circ}{\rm C}$ отражает неустойчивый и неравновесный режим формирования композита ${\rm ZnO-Fe}_3{\rm O}_4$. Ниспадающий участок температурной зависимости сопротивления до $\sim 450^{\circ}{\rm C}$,

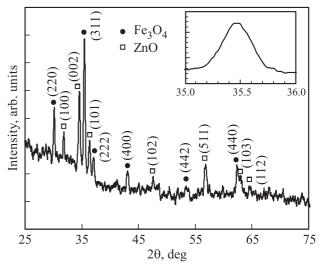

вероятно, связан с постреакционными релаксационными процессами, такими как рост размеров и кристаллического совершенства зерен композита ZnO-Fe₃O₄. При охлаждении зависимость удельного сопротивления

Рис. 1. Намагниченность M_S пленки Zn/Fe₂O₃ в зависимости от температуры отжига.

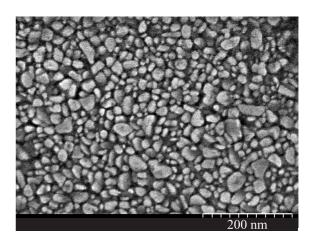
Рис. 2. Удельное сопротивление пленки Zn/Fe_2O_3 в зависимости от температуры отжига.

Рис. 3. Дифрактограмма пленки нанокомпозита ZnO-Fe₃O₄.

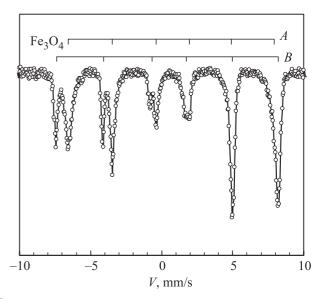
Мессбауэровские параметры пленок нанокомпозита $ZnO-Fe_3O_4$, измеренные при комнатной температуре

		QS, mm/s (±0.02)		S, % (±0.33)	Позиция
0.26	488	-0.03 -0.04	0.27	0.33	Fe ³⁺ (A)
0.61	454		0.36-0.57	0.67	Fe ^{2.5+} (B)

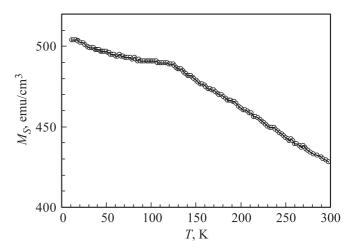
Примечание. IS — изомерный химический сдвиг относительно α -Fe, H — сверхтонкое поле, QS — квадрупольное расщепление, W — ширина линий, S — заселенность позиции.


пленки имеет полупроводниковый ход. Из зависимостей намагниченности (рис. 1) и удельного электросопротивления (рис. 2) от температуры отжига следует, что температура инициирования твердофазной реакции (1) равна $\sim 200^{\circ}\mathrm{C}$.

После отжига при 450°C дифракционные отражения содержали только пики от поликристаллических фаз ZnO и Fe_3O_4 (рис. 3). Размер зерен Fe_3O_4 оценивался по уширению рефлексов Fe₃O₄ (311) (рис. 3, вставка) с помощью формулы Шерера $d = k\lambda/\beta \cos \theta$, где d средний размер кристаллического зерна, β — ширина дифракционного максимума на половине высоты, λ длина волны рентгеновского излучения (0.15418 nm), θ — дифракционный угол, отвечающий максимуму пика, k = 0.9. Полученное расчетное значение размера кристаллических зерен Fe_3O_4 составило $38 \pm 2\,\mathrm{nm}$, что хорошо согласуется с данными, полученными с помощью сканирующего электронного микроскопа Hitachi S5500 (рис. 4). Из результатов электронно-микроскопических исследований (рис. 4) следует, что зерна Fe₃O₄ композита ZnO-Fe₃O₄ окружены ZnO-оболочкой.


Мессбауровские исследования подтвердили формирование магнетита Fe_3O_4 в пленках Zn/α - Fe_2O_3 после отжига при 450°C (рис. 5). Мессбауэровский спектр содержал два секстета (см. таблицу). Первый секстет имеет изомерный химический сдвиг относительно α -Fe IS = 0.26 mm/s, квадрупольное расщепление $QS = -0.03 \,\text{mm/s}$ и сверхтонкое поле $H = 488 \,\text{kOe}$, что соответствует тетраэдрическим позициям (A) магнетита. Второй секстет имеет IS = 0.61 mm/s, QS = -0.04 mm/s, $H = 454 \,\mathrm{kOe}$, что соответствует железу смешанной валентности — октаэдрическим позициям (В) магнетита. Известно, что для стехиометрического магнетита отношение тетраэдрических и октаэдрических позиций равно 1:2. Из таблицы следует, что синтезированный композит ZnO-Fe₃O₄ имеет состав, близкий к стехиометрическому. Никакие другие фазы на основе Fe, кроме фазы Fe₃O₄, в продуктах реакции не обнаружены.

Следует отметить, что представленный выше способ синтеза был успешно использован для создания композитных пленок $Fe-In_2O_3$ [23], где вместо цинка использовался индий.


На рис. 6 приведена температурная зависимость на-магниченности M_S пленок нанокомпозита ZnO-Fe $_3$ O $_4$ в

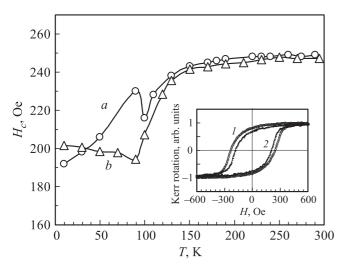

Рис. 4. Снимок поверхности пленки нанокомпозита $ZnO-Fe_3O_4$, полученный с помощью сканирующего электронного микроскопа.

Рис. 5. Мессбауэровский спектр пленки нанокомпозита $ZnO-Fe_3O_4$.

Рис. 6. Температурная зависимость намагниченности M_S пленок нанокомпозита $ZnO-Fe_3O_4$.

Рис. 7. Кривые перемагничивания пленок нанокомпозита $ZnO-Fe_3O_4$ при температурах 290 (*I*) и 90 K (*2*), полученные в режиме ZFC (на вставке), и температурные зависимости коэрцитивной силы, полученные в режимах охлаждения FC (кривая *a*) и ZFC (кривая *b*).

поле 500 Ое, приложенном в плоскости пленки. Магнитная структура магнетита Fe_3O_4 хорошо изучена [24,25]. Fe_3O_4 является ферримагнетиком при температурах ниже температуры $T_C=858~\mathrm{K}$ и в результате изменения кристаллической структуры испытывает переход Вервея (переход металл—изолятор) при температуре $T_V\approx 123~\mathrm{K}$. На кривой температурной зависимости намагниченности (рис. 6) в области температуры $\sim 120~\mathrm{K}$ существует аномалия, которая соответствует переходу Вервея, что также подтверждает наличие магнетита Fe_3O_4 в синтезированных образцах.

При комнатной температуре синтезированный композит $ZnO-Fe_3O_4$ имеет намагниченность насыщения $\sim 430\,\mathrm{emu/cm^3}$ (рис. 1). Это значение выше намагниченности насыщения композитов $ZnO-Fe_3O_4$, приготовленных химическими методами [5–11]. Однако оно ниже намагниченности насыщения массивных образцов ($\sim 480\,\mathrm{emu/cm^3}$), что связано с неколлинеарностью спинов на интерфейсе Fe_3O_4/ZnO [6].

Измерение кривых перемагничивания в плоскости пленки в области температур от 4 до 300 К проводилось с помощью магнитооптического магнитометра Nano MOKE 2 в магнитном поле до 1 kOe (рис. 7). Охлаждение образцов осуществлялось в двух режимах: в отсутствие внешнего магнитного поля (ZFC) и в постоянном магнитном поле (FC) 1 kOe, приложенном в плоскости пленки. На рис. 7 (вставка) представлены ZFC-кривые перемагничивания пленок при температурах 290 К (кривая 1) и 90 К (кривая 2). Из кривых перемагничивания были получены значения коэрцитивной силы при различных температурах измерения. На рис. 7 показаны зависимости коэрцитивной силы от температуры для режимов охлаждения FC (кривая а) и ZFC (кривая b). Как видно, различие в характере

температурных зависимостей наблюдается в области температур 10-130 К. При этом коэрцитивная сила уменьшается с понижением температуры в обоих случаях. Температура 130 К близка к температуре перехода Вервея в магнетите ($T_V \approx 123 \, \mathrm{K}$). Влияние магнитной предыстории на магнитные свойства магнетита известно и связано с изменением кристаллической симметрии и магнитной анизотропии в области перехода Вервея. Направление оси одноосной магнитокристаллической анизотропии при охлаждении ниже температуры Вервея в монокристалле задается магнитным полем, приложенным в направлении одного из ребер кубического кристалла [26]. В связи с этим можно предполагать влияние магнитного поля на характер температурной зависимости коэрцитивной силы в композитных пленках ZnO-Fe₃O₄. При комнатной температуре полученные пленки являются в магнитном отношении изотропными. При охлаждении в магнитном поле через точку Вервея легкой осью магнитной анизотропии одноосной симметрии в поликристалле может быть любое из выбранных направлений, совпадающих с направлением приложенного поля. При охлаждении без магнитного поля можно ожидать отсутствие выделенного направления магнитной одноосной анизотропии. Следует отметить, что знак изменения коэрцитивной силы с понижением температуры в обоих режимах охлаждения в наших пленках является противоположным знаку изменения коэрцитивной силы для большинства магнитных материалов, в том числе и для эпитаксиальных гетероструктур Fe_3O_4/ZnO [27].

Необычное поведение коэрцитивной силы, а именно ее уменьшение с понижением температуры, в полученных пленочных композитах $ZnO-Fe_3O_4$ может быть связано с аномалиями температурной зависимости магнитной кристаллографической анизотропии [6] и влиянием композитной структуры полученных пленок.

4. Заключение

Отметим основные результаты проведенных исследований. Получены ферримагнитные композитные пленки $ZnO-Fe_3O_4$ при использовании твердофазной реакции (1) в слоистой структуре Zn/Fe_2O_3 . Определена температура инициирования реакции ($\sim 200^{\circ}C$). Комплекс проведенных структурных исследований однозначно указывает на образование в продуктах реакции магнетита Fe_3O_4 и ZnO. На температурных зависимостях намагниченности насыщения и коэрцитивной силы синтезированных композитных пленок $ZnO-Fe_3O_4$ обнаружены особенности поведения вблизи температуры Вервея. Твердофазный метод может быть расширен путем получения других композитных пленок, содержащих ферримагнитные кластеры Fe_3O_4 , помещенные в металлические или более сложные оксиды.

Список литературы

- A. Roychowdhury, A.K. Mishra, S.P. Pati, D. Das. AIP Conf. Proc. 1447, 283 (2012).
- [2] R. Master, R.J. Choudhary, D.M. Phase. J. Appl. Phys. 108, 103 909 (2010).
- [3] P. Zou, X. Hong, X. Chu, Y. Li, Y. Liu. J. Nanosci. Nanotechnol. 10, 1992 (2010).
- [4] A. Hasanpour, M. Niyaifar, M. Asan, J. Amighian. J. Magn. Magn. Mater. 334, 41 (2013).
- [5] H.L. Liua, J.H. Wub, J.H. Minb, X.Y. Zhanga, Y.K. Kimb. Mater. Res. Bull. 48, 551 (2013).
- [6] A. Roychowdhurya, S.P. Pati, A.K. Mishra, S. Kumar, D. Das. J. Phys. Chem. Solids 74, 811 (2013).
- [7] M. Machovskya, I. Kuritkaa, Z. Kozakova. Mater. Lett. 86, 136 (2012).
- [8] J. Xia, A. Wang, X. Liu, Z. Su. Appl. Surf. Sci. 257, 9724 (2011).
- [9] A. Kostopoulou, F. Tétiot, I. Tsiaoussis, M. Androulidaki, P.D. Cozzoli, A. Lappas. Chem. Mater. 24, 2722 (2012).
- [10] J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Wang, H. Zhao, Y. Sui, X. Zhou, W. Zhao, Y. Leng, H. Zhao, H. Chen, X. Qi. Mater. Sci. Eng. B 175, 56 (2010).
- [11] J. Wan, H. Li, K. Chen. Mater. Chem. Phys. 114, 30 (2009).
- [12] P. Li, B.L. Guo, H.L. Bai. J. Appl. Phys. 109, 013 908 (2011).
- [13] Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang. RSC Adv. 3, 3309 (2013).
- [14] N.-H. Cho, T.-C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.-S. Yang, S. Kim, Y.K. Kim, S.-Y. Seong. Nature. Nanotechnol. 6, 675 (2011).
- [15] S. Singh, K.C. Barick, D. Bahadur. J. Mater. Chem. A 1, 3325 (2013).
- [16] Z. Zhang, S. Satpathy. Phys. Rev. B 44, 13319 (1991).
- [17] Y. Dedkov, U. Rudiger, G. Gutherodt. Phys. Rev. B 65, 914 428 (2002).
- [18] M. Julliere. Phys. Lett. A 54, 225 (1975).
- [19] S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant. Proc. IEEE 91, 661 (2003).
- [20] A.B. Djurisic, A.M.C. Ng, X.Y. Chen. Progr. Quant. Electron. 34, 191 (2010).
- [21] S. Chikazumi. J. Appl. Phys. 32, S81 (1961).
- [22] R. Skomski, J.M.D. Coey. Permanent magnetism. Institute of Physics, Bristol (1999). 404 p.
- [23] V.G. Myagkov, I.A. Tambasov, O.A. Bayukov, V.S. Zhigalov, L.E. Bykova, Yu.L. Mikhlin, M.N. Volochaev, G.N. Bondarenko. J. Alloys Comp. 612, 189 (2014).
- [24] C.G. Shull, E.O. Wollan, W.C. Koehler. Phys. Rev., 84, 912 (1951).
- [25] К.П. Белов. УФН 163, 53 (1993).
- [26] Я. Смит, Х. Вейн. Ферриты. ИЛ, М. (1962). 505 с.
- [27] M. Paul, D. Kufer, A. Müller, S. Brück, E. Goering, M. Kamp, J. Verbeeck, H. Tian, G. Van Tendeloo, N.J.C. Ingle, M. Sing, R. Claessen. Appl. Phys. Lett. 98, 012 512 (2011).