Структура "кубического графита" — простой кубический фуллерит C_{24}

© В.В. Покропивный, А.В. Покропивный

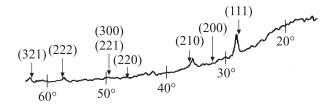
Институт проблем материаловедения Национальной академии наук Украины, 03142 Киев, Украина

E-mail: pokr@ipms.kiev.ua

(Поступила в Редакцию 11 февраля 2003 г. В окончательной редакции 8 июля 2003 г.)

Установлена структура одной из промежуточных фаз углерода, так называемого "кубического графита". Совпадение рассчитанных и экспериментальных значений постоянной решетки ($A=0.5545 \, \mathrm{nm}$), плотности ($\rho=2.80 \, \mathrm{g/cm^3}$) и всех линий рентгенограммы Дебая свидетельствует о том, что это — простая кубическая решетка кополимеризованных квадратными гранями молекул фуллерена C_{24} .

Существование промежуточных фаз углерода и, в частности, так называемого "кубического графита" (КГ) показано экспериментально многими авторами [1-5], однако их структура до сих пор не расшифрована. Возможность существования молекулы С24 и других трехмерных сетей углерода, а в сущности фуллеренов, высказана в работе [6]. В обстоятельном обзоре Станкевича и др. дофуллереновой эры констатируется, что "наряду с алмазом и графитом, структура которых хорошо изучена, в литературе описано несколько других модификаций углерода: до восьми карбиновых форм, металлический углерод, углерод C_8 (и C_{24}) и др., структура которых пока не установлена..." [7]. Подобные фазы, промежуточные по плотности между алмазоподобным сфалеритом и графитоподобным BN, наблюдаются и в нитриде бора [8-10], структура которых также дискутируется в литературе [2-4,11].


Впервые КГ синтезировали Ауст и Дрикамер [1] из обычного графита при низких температурах (T=77 и 296 K) и давлении $P>150\,\mathrm{kbar}$, что обнаруживалось по резкому возрастанию электросопротивления. Установлено, что КГ имеет кубическую сингонию с постоянной решетки $A=0.5545\,\mathrm{nm}$, плотностью $\rho=2.80\,\mathrm{g/cm^3}$ и числом атомов в элементарной ячейке Z=24. Федосеев и др. [3] синтезировали КГ при наращивании ультрадисперсных алмазных порошков из метана и других углеводородов. Поликристаллы графита октаэдрической и кубической формы обнаружены в земной коре [4] и в метеоритах.

Недавно Смоляр и др. [5] на специально созданной аппаратуре высокого давления при $T>1000^{\circ}$ С и P<1 GPa синтезировали фазу углерода кубической сингонии со средними параметрами A=0.56 nm и $\rho=2.78$ g/cm³. Это непрозрачные кристаллы октаэдрической и кубической формы с промежуточной твердостью 1-5 GPa. В таблице приведены межплоскостные расстояния, а на рис. 1 — рентгенограмма, полученная от образца 2 [5]. Там же для сравнения приведены общепринятые экспериментальные данные [12] и углы отражения рентгенограммы, рассчитанные по формуле Вульфа—Брэгга $n\lambda=2d_{hkl}\sin\Theta$,

при n=1 и $\lambda=0.15405$ nm (для $K_{\alpha 1}$ — Cu), $d_{hkl}=A/(h^2+k^2+l^2)^{1/2}$, $h,\,k,\,l$ — индексы Миллера. Сравнение показывает, что: а) данные работ [1] и [5] хорошо согласуются между собой, т.е. соответствуют фазе КГ; b) в приведенных образцах присутствуют с той или иной интенсивностью все теоретические углы отражения КГ, а также линии от других промежуточных фаз углерода.

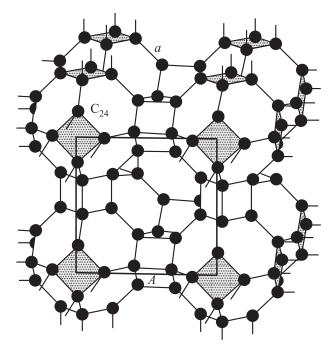
Расшифровка структуры КГ связана с экспериментальными трудностями, которые до сих пор не преодолены. Поэтому обратимся к теории и ее следствиям. Строить стабильные молекулярные кристаллы из ковалентно-связанных икосаэдрических фуллеренов, например C_{20} и C_{60} , бесперспективно, за исключением квазикристаллов фуллеренов.

Все возможные кубические элементарные ячейки, содержащие 24 атома углерода, можно построить как: 1) решетку алмаза из восьми кластеров C_3 ; 2) решетку лонсдейлита из четырех кластеров C_6 ; 3) ГЦК решетку из четырех кластеров C_6 ; 4) ОЦК решетку из двух кластеров C_{12} ; 5) ПК решетку из одной молекулы C_{24} . Квантово-химические расчеты, выполненные нами и другими авторами [13–15], показывают, что энергетически выгодными и стабильными конфигурациями кластеров C_3 и C_6 являются либо линейные цепочки, либо кольца. Из них можно построить только молекулярные кристаллы, связанные слабыми силами ван-дер-Ваальса, или полимеры. Их плотность будет ниже плотности графита, поэтому случаи 1, 2 и 3 как кандидаты на структуру КГ должны быть отброшены. Остальные кластеры C_N ,

Рис. 1. Рентгенограмма кубического графита, полученная на образце фирмы ООО Карбекс, Ltd (Киев), по газовому методу при $T < 1000^{\circ}$ С и P < 1 ГПа коллективом авторов [5].

hkl	$d_{hkl} \\ [1,10]$	d_{hkl} [3]	<i>d_{hkl}</i> [5], образец 1	<i>d_{hkl}</i> [5], образец 2	<i>d_{hkl}</i> [5], образец 3	d_{hkl} расчет	$2\Theta_{hkl}$ расчет
111	0.3208	0.3192	0.322	0.318	0.316	0.32014	27.84
200	0.2770	0.2730	0.282	0.277	0.287	0.27725	32.26
210	0.2467		0.233	0.252	0.249	0.24798	36.19
220	0.1961	0.1985		0.209	0.1965	0.19605	46.27
221; 300	0.1844	0.1834	0.181		0.182	0.18483	49.26
222	0.1600		0.1653	0.1607	0.1655	0.16007	57.73
321	0.1485	0.1450		0.1451		0.14820	62.63

Межплоскостные расстояния d_{hkl} (nm) кубического графита и расчетные углы отражения $2\theta_{hkl}$ рентгенограммы ПКФ $-C_{24}$


начиная с призмана C_8 (полиэдра, содержащего восемь вершин [14]), могут образовывать объемные клетки, но только начиная с додекаэдра N=20, они становятся стабильными [15]. Поэтому молекулы C_{12} , в частности икосаэдр, также следует отбросить как метастабильные и, кроме того, не имеющие нужных граней, необходимых для сопряжения в решетки.

Следовательно, только молекула фуллерена С24 остается единственным кандидатом на структуру КГ (рис. 2). В результате учета релаксации, выполненного нами методом MNDO [16], а также Станкевичем и др. методом MINDO [17], ее конфигурация слегка искажается из-за уравновешивания между связями, но остается стабильной. Кроме того, молекула С₂₄ — наименьшая, удовлетворяющая правилу изолированных квадратов, которое, как и правило изолированных пентагонов, для бакминстерфуллерена С₆₀ служит правилом стабильности, вытекающим из сохранения валентности 4 для всех атомов молекул. Параметры молекулы: симметрия T_h , энергия атомизации на пару атомов $E_a=11.875\,\mathrm{kcal/mole}$, длины связей, общих двум гексагонам и гексагон-квадрату, равны $a_{6.6} = 0.138$ и $a_{6.4} = 0.1503$ nm соответственно [17], средний радиус $R = (5/2)^{1/2} a_{\rm CC}$, радиус от центра молекулы до центра квадратной и гексагональной грани $R_4 = (2)^{1/2} a_{\rm CC}$ й $R_6 = (3/2)^{1/2} a_{\rm CC}$ соответственно, где а_{СС} — длина С-С связи.

Впервые возможность образования кубических решеток из молекул $B_{12}N_{12}$ и C_{24} , в том числе простой кубической, высказана Покропивным и др. [18,19]. Фуллерен С₂₄ — наименьший из многогранников, обладающих числом граней (шесть квадратов и восемь гексагонов), достаточным для образования кубических решеток, в том числе и простой кубической, в которой молекулы С₂₄ связаны между собой ковалентными связями, возникающими между смежными квадратными гранями при кополимеризации (рис. 2). Естественно назвать такую решетку простым кубическим фуллеритом — ПКФ-С₂₄. При сближении под давлением двойные $s p^2$ -связи смежных гексагонов размыкаются и образуются четыре гибридизированные $s p^3$ -связи между соседними молекулами. В итоге все атомы углерода в ПКФ-С24, как и в алмазе, связаны $s p^3$ -гибридизированными связями.

Рассчитаем параметры ПК Φ - C_{24} . Приняв для промежуточной фазы промежуточную длину связи

 $a_{\rm CC}=0.14484\,{\rm nm},\,$ среднюю между $a_{6,6}$ и $a_{6,4}$ в $C_{24},$ получим постоянную ПК-решетки $A = 2R_4 + a_{CC}$ $= 0.5545 \,\mathrm{nm}$ и плотность $ho = Zm_{\mathrm{C}}/A^3 = 2.808 \,\mathrm{g/cm^3},$ где $m_{\rm C}=19.94522\cdot 10^{-24}g$ — масса атома углерода. Согласие расчетных значений A и ρ с экспериментальными почти идеальное. Это не может быть случайным совпадением. Наоборот, совпадение постоянной решетки, плотности и линий рентгенограмм следует рассматривать как веское доказательство того, что структура КГ — это ПК Φ -С $_{24}$. Стерические углы между связями ($\sim 90^{\circ} {
m C}$ и $\sim 120^{\circ} {
m C}$) отличаются от равновесного 109.47°, поэтому возникает вопрос о стабильности. Предварительные расчеты, выполненные из первых принципов методом FLAPW без оптимизации структуры, указывают на ПКФ-С24 как на стабильную фазу углерода, поскольку зависимость полной энергии от длины связи $a_{\rm CC}$ близка к таковой для алмаза и

Рис. 2. Элементарная ячейка простой кубической решетки из молекулы фуллерена C_{24} [18,19]. A — постоянная решетки, a — длина связи в молекуле. Кружками меньшего размера указаны атомы второго слоя.

имеет минимум. Расхождение между теоретической и экспериментальной длиной связи несущественно и связано с погрешностями.

В [18,19] предсказана также возможность образования "гипералмаза" с решеткой типа алмаза и лонсдейлита, в узлах которой расположены молекулы C_{24} , а также объемно-центрированного кубического фуллерита ОЦКФ-Me $_2-$ B $_{12}$ N $_{12}$ и ОЦКФ-Me $_2-$ C $_{24}$ (легированного легким донором Me = Li, Be и т.п.) с плотностью ($\rho=4.11-5.28\,\mathrm{g/cm^3}$) выше, чем у алмаза. Кроме того, предсказана возможность образования и других кубических форм нитрида бора и углерода из молекул фуллерена B_{24} N $_{24}$ и C_{48} , образующих ПК, ОЦК и ГЦК решетки, которые ждут своего открытия.

Гексагональные плотноупакованные кристаллы из молекул C_{36} с межмолекулярным расстоянием 0.668 nm синтезировали Зетл и др. [20], но их структуру они также не расшифровали, по их мнению, из-за большого фактора формы тонких пластинчатых образцов.

Безусловно, полученные в настоящей работе результаты могут стать ключом для окончательного доказательства структуры КГ и расшифровки других фаз углерода и нитрида бора.

Подобно цеолитам, структура $\Pi K\Phi - C_{24}$ включает двумерную решетку цилиндрических нанопор диаметром D=0.41 nm, которая может быть использована в качестве молекулярных сит. Как и в мезопористом кремнии, вследствие размерного эффекта, возникающего при $\lambda \sim R$, могут возникнуть необычные оптические свойства, но в рентгеновском диапазоне. Вероятно, проявление этого маскирующего квантового эффекта и затрудняет расшифровку структуры фуллереноподобных кристаллов. Можно не сомневаться, что указанные фуллереноподобные фазы углерода и нитрида бора будут обладать новыми интересными свойствами и найдут разнообразные применения.

Список литературы

- [1] R.B. Aust, H.C. Drickamer, Science **140**, 817 (1963).
- [2] F.P. Bundy, J.S. Kasper. J. Chem. Phys. 46, 3437 (1967).
- [3] Д.В. Федосеев, В.В. Дерягин, В.П. Варнин, С.П. Внуков, И.Г. Теремецкая, Н.Д. Полянская. ДАН СССР 228, 371 (1976).
- [4] В.В. Слодкевич. ДАН СССР 253, 697 (1980).
- [5] А.С. Смоляр, И.Ю. Созин, В.А. Бархоленко, С.Н. Малоштан, В.А. Куц, В.Г. Гурин, А.П. Архипов, А.Ю. Герасимов, Н.А. Развадовский, А.Н. Тиленко. Сверхтвердые материалы 2, 79 (2002).
- [6] A.T. Balaban, C.C. Rentia, E. Ciupitu. Rev. Roum. de Chimie 13, 2, 231 (1968).
- [7] И.В. Станкевич, М.В. Никеров, Д.А. Бочвар. Успехи химии 53, 1101 (1984).
- [8] А.В. Курдюмов, А.Н. Пилянкевич. В кн.: Бор. Получение, структура и свойства. Наука, М. (1984). С. 181.
- [9] T. Akashi, H.R. Pack, A.B. Sawaoka. J. Mater. Sci. 21, 4060 (1986).

- [10] S.S. Batsanov, L.J. Kopaneva, E.V. Lazareva. Propellants, Explosives, Pyrotechnics 18, 352 (1993).
- [11] А.С. Смоляр. Сверхтвердые материалы 5, 13 (1996).
- [12] Алмаз. Справочник / Под ред. Н.В. Новикова. Наук. думка, Киев (1981). 78 с.
- [13] K. Raghavachari, J.S. Binkley. J. Chem. Phys. 87, 219 (1987).
- [14] L.A. Openov, V.E. Elesin. Pis'ma v ZhETF. 68, 695 (1998).
- [15] R.O. Jones, G. Seifert. Phys. Rev. Lett. 79, 443 (1997).
- [16] D.M. Sheichenko, A.V. Pokropivny, V.V. Pokropivny. Semiconductor Physics, Quantum Electronics & Optoelectronics 3, 4, 545 (2000).
- [17] И.В. Станкевич, А.Л. Чистяков, Е.Г. Гальперн, Н.П. Гамбарян. ЖСК 36, 976 (1995).
- [18] В.В. Покропивный, А.В. Покропивный, В.В. Скороход, А.В. Курдюмов. Доповіді НАН України 4, 112 (1999).
- [19] V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.M. Sheichenko. J. Solid State Chem. 154, 214 (2000).
- [20] C. Piskoti, J. Yargert, A. Zettl. Nature 393, 773 (1998).