Связь динамики атомов кислорода и кинетики окисления твердых растворов на основе Bi₂Sr₂CaCu₂O₈

© А.В. Кнотько, А.В. Гаршев, М.Н. Пулькин, В.И. Путляев, С.И. Морозов*

Московский государственный университет им. М.В. Ломоносова,

119992 Москва, Россия

* ГНЦ РФ "Физико-энергетический институт",

249033 Обнинск, Калужская обл., Россия

E-mail: knotko@inorg.chem.msu.ru

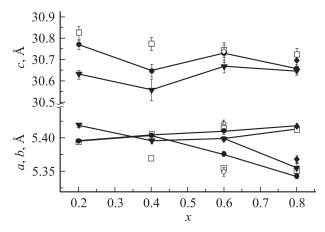
(Поступила в Редакцию 24 июля 2003 г.)

Кинетика окисления твердых растворов $Bi_{1.3}Pb_{0.8}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_{8+\delta}$ при различных температурах и $p_{O_2}=0.21$ atm исследована методом термогравиметрии и сопоставлена с ранее исследованным случаем твердых растворов $Bi_{1.5}Pb_{0.6}Sr_2CaCu_2O_{8+\delta}$. Обнаружено, что замещенеие Ca на Y значительно замедляет начальную стадию процесса, связанную с кислородной диффузией.

Методом неупругого рассеяния нейтронов на спектрометре прямой геометрии ДИН–2ПИ были исследованы фононные спектры указанных твердых растворов. Предложена возможная модель взаимосвязи наблюдаемых различий в высокочастотных частях спектров плотности фононного состояния (> 50 meV), связанных с кислородными колебаниями, в иттрийсодержащих и безиттриевых твердых растворах с различиями в их кинетике окисления.

Работа выполнена при поддержке Российской государственной программы "Актуальные направления в физике конденсированных сред" по направлениям "Нейтронные исследования вещества", а также Российского фонда фундаментальных исследований (проект № 02-03-33270-а).

Введение


Фазовые превращения в сверхпроводящих материалах с образованием композита "матрица сверхпроводниканесверхпроводящее включение" являются перспективным методом создания эффективных центров пиннинга магнитного потока. Так, для одного из наиболее перспективных для практического применения сверхпроводника Bi₂Sr₂CaCu₂O₈ (Bi-2212) эффективными центрами пиннинга магнитного потока могут быть выделения, образующиеся на начальном этапе распада твердых растворов на основе указанной фазы. Эффективность таких центров определяется равномерностью распределения выделений и близостью их размеров к длине когерентности сверхпроводника. Однако из-за малой скорости катионного перераспределения практическое применение для этой цели фазового распада в случае заместителей с постоянной степенью окисления сильно затруднено [1], а поэтому значительный интерес представляет применение для создания неоднородностей в матрице Ві-2212 окислительно-восстановительных процессов, что может обеспечить значительное ускорение фазового распада из-за существенно большей скорости кислородной диффузии по сравнению с катионной (D) около 10^{-8} и $10^{-10}\,\mathrm{cm}^2/\mathrm{s}$ по порядку величины соответственно при температурах около 650°C [2]).

Поскольку окисление меди, входящей в состав купрата Ві–2212, приводит к значительному понижению температуры сверхпроводящего перехода (см., например, обзор [3]), основной интерес представляют фазовые превращения в твердых растворах, полученных замещением Ві на Рb (или Sb), связанные со спе-

цифичностью данной кристаллохимической позиции по отношению к электронному строению катиона (Bi^{3+} в $\mathrm{Bi-2212}$ может быть замещен на Pb^{2+} ; при окислении же свинца до Pb^{+4} происходит выделение вторых фаз (($\mathrm{Pb,Bi}$) $_3(\mathrm{Sr,Ca})_5\mathrm{CuO}_2$) [4]), а также одновременным замещением в несколько кристаллографических позиций (например, замещением Bi на Pb и Ca и/или Sr на $\mathrm{P3}$ Э). Менее интересными представляются твердые растворы с замещением Ca и Sr на $\mathrm{P3}$ Э с переменной степенью окисления (Pr , Tb , Ce).

Как показали ранее проведенные исследования твердых растворов $\mathrm{Bi}_{2-x}\mathrm{Pb}_x\mathrm{Sr}_2\mathrm{Ca}\mathrm{Cu}_2\mathrm{O}_8$ [5], при больших содержаниях свинца окисление происходит в две стадии, причем первая стадия может быть связана с кислородным перераспределением в исходно однородном твердом растворе, а вторая — с более медленным катионным, сопровождающимся выделением указанных выше вторых фаз. Первая стадия окислительного распада твердого раствора происходит по спинодальному механизму с последующим огрублением образовавшейся микроструктуры.

Двойное гетеровалентное замещение в структуре Bi-2212 может позволить за счет изменения эффективных электрических зарядов тех или иных кристаллохимических слоев управлять и кинетикой окисления таких твердых растворов, и образующимися при этом микроструктурами. Для понимания механизма окисления твердых растворов на основе Bi-2212 и влияния гетеровалентного замещения значительный интерес представляет сравнительное исследование на одних и тех же образцах скорости набора кислорода образцом и колебательных состояний кислородных атомов.

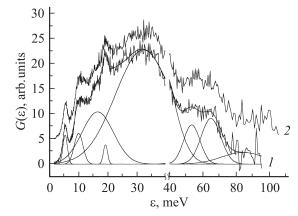
Рис. 1. Параметры элементарной ячейки исследуемых твердых растворов (светлые ромбы — $Pb_{0.6}Bi_{1.5}Sr_2CaCu_2O_z$, темные — $Pb_{0.8}Bi_{1.3}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z$) в сравнении с параметрами элементарной ячейки твердых растворов $Pb_xBi_{2.1-x}Sr_2Ca_{1-y}Y_yCu_2O_z$, полученными в [6]: треугольники — $Pb_xBi_{2.1-x}Sr_2Ca_{0.6}Y_{0.4}Cu_2O_z$, круги — $Pb_xBi_{2.1-x}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z$, квадраты — $Pb_xBi_{2.1-x}Sr_2Ca_{0.2}Ca_z$

Постановка эксперимента и обработка результатов

Образцы $Bi_{2.1-x}Pb_xSr_2Ca_{1-y}Y_yCu_2O_{8+\delta}$ (x=0.6, y=0; x=0.8, y=0.2) были синтезированы из нитратно-оксинитратных смесей, полученных растворением Bi_2O_3 , $SrCO_3$, CuO, $Pb(NO_3)_2$ –ЧДА $CaCO_3$, Y_2O_3 –ОСЧ в 20% азотной кислоте с последующим упариванием полученного раствора. Выбранные составы отвечают одинаковой средней степени окисления меди, обусловленной гетеровалентностью замещения (Bi^{3+} на Pb^{2+} и Ca^{2+} на Y^{3+}). Синтез образцов включал разложение солевой смеси на воздухе при 750° С и несколько последующих стадий отжига в токе азота (остаточное $p_{O_2} = 10^{-3}$ atm) при температуре 760° С длительностью $24\,h$ с промежуточным помолом.

Рентгенофазовый анализ синтезированных образцов, проведенный с использованием дифрактометра ДРОН-3М (Cu- $K_{\alpha,cp}$ -излучение, для расчета параметров элементарной ячейки в качестве внутреннего стандарта использовался кремний), показал, что их состав соответствует твердым растворам на основе $Bi_2Sr_2CaCu_2O_8$. Уточненные по методу наименьших квадратов параметры элементарных ячеек приведены на рис. 1 в сравнении с параметрами элементарных ячеек аналогичных твердых растворов по данным [6].

Микроструктура полученных образцов исследовалась на просвечивающем электронном микроскопе JEM-2000FXII (Jeol, Япония) при ускоряющем напряжении $200\,\mathrm{kV}$, материал катода — LaB_6 .


Кинетика окисления полученных твердых растворов исследовалась термогравиметрическим методом с использованием дериватографа Q-1500D (МОМ, Венгрия). Исследуемый образец нагревался на воздухе до темпера-

туры $650-750^{\circ}$ C со скоростью 20° /min с последующей изотермической выдержкой. Базовая линия дериватографа определялась при съемке в том же режиме образца стандарта (Bi_2O_3).

Эксперименты по неупругому рассеянию нейтронов проводились на спектрометре прямой геометрии ДИН-2ПИ, установленном на реакторе ИБР-2 (ОИЯИ, г. Дубна) [7]. Спектры регистрировались по времени пролета в режиме приобретения энергии E с начальной энергией нейтрона $E_0=7.90\,\mathrm{meV}$ при комнатной температуре в диапазоне углов рассеяния $42-134^\circ$ (на детекторах, расположенных при меньших углах, наблюдался значительный поток нейтронов с энергиями $>100\,\mathrm{meV}$, соответствующий тепловому фону). Разрешение спектрометра составляло $\Delta E/E\approx5-8\%$ в области передач энергии $\varepsilon=E-E_0=0-100\,\mathrm{meV}$, при этом переданный нейтрону импульс лежал в пределах $Q=1.8-4.2\,\mathrm{\mathring{A}}^{-1}$ для $\varepsilon=6\,\mathrm{meV}$ и $Q=5.9-8.7\,\mathrm{\mathring{A}}^{-1}$ для $\varepsilon=100\,\mathrm{meV}$. Нормировка спектров проводилась по упругому пику ваналия

Обработка спектров велась в некогерентном приближении с учетом многофононного рассеяния [8]. После введения обычных поправок на эффективность детекторов и ослабление потока нейтронов образцом спектры неупругого рассеяния нейтронов, полученные в диапазоне углов рассеяния $42-134^\circ$, обрабатывались до уровня функции $G(\varepsilon)$ — спектра частот кристаллической решетки, взвешенного на множителе $\Sigma \exp(-2W_i) \cdot c_i \cdot \sigma_i \langle |\xi_i(\varepsilon)|^2 \rangle / m_i$, где c_i , σ_i , m_i и $\langle |\xi_i(\varepsilon)|^2 \rangle$ — концентрация, сечение рассеяния, масса и средний квадрат векторов поляризации i-го атома, а $\exp(-2W_i)$ — фактор Дебая—Валлера (так называемая нейтроно-взвешенная спектральная плотность колебательных состояний).

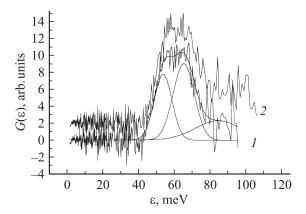
Усредненные по измерениям на всех детекторах в диапазоне углов рассеяния $42-134^{\circ}$ нейтроно-взвешенные спектры частот для исследуемых образцов приведены на рис. 2. Для численной оценки различий в спектрах плотности состояний фононов в образцах с различным

Рис. 2. Обобщенные спектры частот $G(\varepsilon)$ твердых растворов $\mathrm{Bi}_{2.1-x}\mathrm{Pb}_x\mathrm{Sr}_2\mathrm{Ca}_{1-y}\mathrm{Y}_y\mathrm{Cu}_2\mathrm{O}_z$ (I-x=0.6, y=0; 2-x=0.8, y=0.2). Под спектром I показана его аппроксимация функциями (I).

Параметры функций Гаусса (1), суперпозиция которых описывает полученные обобщенные спектры частот твердых растворов $Bi_{2.1-x}Pb_xSr_2Ca_{1-y}Y_yCu_2O_z$

x, y		1	2	3	4	5	6	7	8
x = 0.6, y = 0	$arepsilon_c, ext{meV} \ w, ext{meV} \ A, ext{a.u.}$	1.53	3.02	10.9	1.44	19.4	9.84	11.8	26
x = 0.8, y = 0.2	ε_c , meV W, meV A, a.u.	1.55	2.81	11.3	1.63	19.9	9.69	16.0	23

катионным составом низкочастотная ($\varepsilon < 50\,\mathrm{meV}$) часть данных спектров была аппроксимирована суперпозицией функций Гаусса


$$I = A/(w(\pi/2)^{1/2}) \exp(-2(\varepsilon - \varepsilon_c)/w)^2,$$
 (1)

где I — интенсивность; ε — энергия; A, w, ε_c — параметры. Вычитанием из спектра $G(\varepsilon)$ суммы функций, описывающих низкочастотную часть, была выделена часть спектра, отвечающая, согласно литературным данным, колебаниям кислорода в слоях ${\rm CuO_2}$ и ${\rm SrO}$ (рис. 3), которая также была аппроксимировна функциями (1). Параметры функций Гаусса для всех образцов приведены в таблице, а графики данных функций, описывающих спектр $G(\varepsilon)$ образца ${\rm Bi_{1.5}Pb_{0.6}Sr_2CaCu_2O_8}$, приведены на рис. 2 и 3.

2. Обсуждение результатов

На рис. 4 приведены кинетические кривые окисления на воздухе при 650 и 700°C твердых растворов исследуемых составов. Приведенные на данном рисунке результаты по окислению образцов $Bi_{1.5}Pb_{0.6}Sr_2CaCu_2O_{8+\delta}$ получены ранее [5]. Как можно видеть, при окислении твердого раствора $Bi_{1,3}Pb_{0,8}Sr_2Ca_{0,8}Y_{0,2}Cu_2O_{8+\delta}$ наблюдается значительное замедление (по сравнению с не содержащими У образцами) начальной стадии процесса окисления при почти неизменной скорости второй стадии. Как уже отмечалось, начальная стадия окисления Рь-замещенного Ві-2212 связана главным образом с кислородным перераспределением в твердом растворе, а последующая — с катионным. Таким образом, можно сделать вывод о существенном замедлении кислородной диффузии в Ү-содержащих образцах при одной и той же средней степени окисления меди, обусловленной гетеровалентностью замещения. Электронномикроскопические исследования (для не содержащих У твердых растворов по данным [5]) образцов до и после окисления показали, что начальная стадия процесса включает в себя расслаивание твердого раствора (как кислородное, так и, по-видимому, катионное) с образованием ламеллярной микроморфологии, характерной для спинодального распада и благоприятной для эффективного пиннинга магнитного поля. В случае безиттриевых составов при дальнейшем окислении происходит огрубление полученной микроструктуры [5]. Для твердого раствора $\mathrm{Bi_{1.3}Pb_{0.8}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_{8+\delta}}$ было обнаружено, что образующаяся ламеллярная структура характеризуется существенно меньшим периодом (около 3 nm по сравнению с $10\,\mathrm{nm}$ для безиттриевого твердого раствора [5]), а ее огрубление значительно замедленно. Таким образом, использование приема двойного гетеровалентного замещения позволяет управлять микроструктурой, образующейся при окислительном распаде тверодого раствора на основе $\mathrm{Bi-2212}$.

Исследование колебательных спектров рассматриваемых твердых растворов было предпринято с целью уточнения механизма замедления кислородной диффузии в Pb-содержащем Bi-2212 при замещении в нем Са на Y. Соотнесение той или иной части полученных спектров

Рис. 3. Высокочастотная часть спектров $G(\varepsilon)$ твердых растворов $\mathrm{Bi}_{2.1-x}\mathrm{Pb}_x\mathrm{Sr}_2\mathrm{Ca}_{1-y}\mathrm{Y}_y\mathrm{Cu}_2\mathrm{O}_z$ ($I-x=0.6,\ y=0;$ $2-x=0.8,\ y=0.2$) (после вычета суммы функций (I)), описывающих пики I–5. Под спектром I показана его аппроксимация функциями (I).

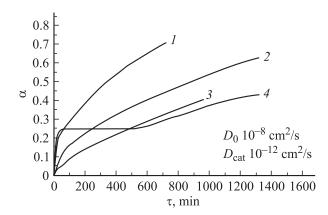
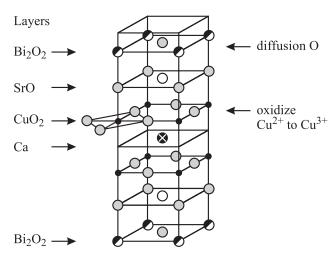



Рис. 4. Кинетические кривые окисления ординатах превращения относительно полного окисления свинца ДО Pb^{4+} времени) $Pb_xBi_{2.1-x}Sr_2Ca_{1-y}Y_yCu_2O_z$ твердых растворов температурах: $Pb_{0.6}Bi_{1.5}Sr_2CaCu_2O_z$ различных 1 — 2 — Pb_{0.8}Bi_{1.3}Sr₂Ca_{0.8}Y_{0.2}Cu₂O_z при 700°C, $Pb_{0.8}Bi_{1.3}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_z$ при 650°C, Pb_{0.6}Bi_{1.5}Sr₂CaCu₂O_z при 650°.

Рис. 5. Структура $Bi_2Sr_2CaCu_2O_8$ (схематично, половина элементарной ячейки в тетрагональной установке).

 $G(\varepsilon)$ с колебаниями различных атомов в различных кристаллохимических слоях структуры В_і-2212 проводилось, как и в работах [10,11], сравнением данных эксперимента с результатами [12-15] для твердых растворов $Bi_2Sr_2Ca_{1-x}Y_xCu_2O_{8+\delta}$ и незамещенного $Bi_2Sr_2CaCu_2O_8$. Выводы из данного соотнесения также были аналогичны сделанным в [10,11], а именно пик I относится к колебаниям атомов Ві, пик 2 — к колебаниям Sr, пики 3 и 4 к колебаниям Си и катионов в слое Са, пик 5 является результатом наложения колебаний Си и нескольких типов колебаний атомов кислорода (главным образом в слое Bi_2O_2), пики 6 и 7 соответствуют колебаниям кислорода в слое SrO, а пик δ — колебаниям кислорода в слое CuO₂. Предложенное в [13] обратное соотнесение пиков 6, 7 и 8 с колебаниями кислорода в слоях SrO и CuO₂ представляется маловероятным в связи со значительным ковалентным связыванием кислорода и меди в слое CuO₂. В многочисленных работах по исследованию фононного спектра Ві-2212 методом спектроскопии комбинационного рассеяния (КР) пик с максимальной частотой чаще всего относят к колебаниям кислорода в слое SrO [16], однако модельные расчеты [17] показываеют, что более высокочастотные пики колебаний кислорода в слое CuO₂ не могут наблюдаться в КР спектрах (являются активными в спектрах поглощения или отражения (моды A_{2u} и E_u)), поэтому колебания с частотами 627 и $656\,\mathrm{cm}^{-1}$ (что соответствует энергиям фононов 75.2 и 78.7 meV), наблюдавшиеся авторами [16], скорее всего, соответствуют пикам 6 и 7 в нашем случае. Таким образом, наибольший интерес для исследования влияния гетеровалентного замещения на подвижность кислородных атомов в структуре Ві-2212 представляет сравнение пиков 6, 7 и 8 в спектрах $G(\varepsilon)$ исследуемых образцов.

На рис. 5 схематично (с равными расстояниями между кристаллохимическими слоями и без учета несоразмерной модуляции в слоях Bi_2O_2 и SrO) приведена кристаллическая структура Bi-2212 и послойная локализация в

ней протекающих при окислении процессов (см., например, [3]). Кислородная нестехиометрия локализована в кристаллохимическом слое Ві₂О₂. Диффузия кислорода в структуре Ві-2212 также происходит вдоль слоев Ві2О2, что связано с несоразмерной базовой субъячейкой модуляцией положений атомов в этом слое, благодаря которой в нем появляются дополнительные позиции, заполняемые кислородом. В этом же слое локализовано и гетеровалентное замещение Ві на Рь. В случае замещения Са на Ү (благодаря малому ионному радиусу Ү³⁺ по сравнению со Sr^{2+} — 1.22 и 1.45 Å для KY = 9 (катион в слое SrO) соответственно [18]) можно ожидать локализацию иттрия в кристаллохимическом слое Са, но возможно и перераспределение катионов Са, Sr и Y по слоям Са и SrO, подобное наблюдавшемуся для твердых растворов на основе Bi-2212, содержащих Nd, La [1] или Pr [19]. В Рb-содержащих твердых растворах на основе Ві-2212 изменять степень окисления могут медь, свинец и висмут, однако, как было показано методом РФЭС [20], висмут в данной структуре находится в степени окисления +3, причем нахождение его в степени окисления +5 представляется маловероятным в силу высокой специфичности координационного окружения для ионов, содержащих неподеленную 6s²-электронную пару. Свинец при переходе $Pb^{+2} \rightarrow Pb^{+4}$, как было показано в [4,5], выделяется из матрицы Ві-2212 в виде второй фазы $((Pb,Bi)_3(Sr,Ca)_5CuO_z)$ после предварительной стадии расслаивания твердого раствора. Таким образом, можно полагать, что изменение степеней окисления элементов при окислении твердого раствора локализовано главным образом в кристаллохимическом слое CuO₂ (ввиду металличности этого слоя можно говорить только об изменении положения в нем уровня Ферми). Меньшую скорость кислородной диффузии в твердом растворе $Bi_{1.3}Pb_{0.8}Sr_2Ca_{0.8}Y_{0.2}Cu_2O_{8+\delta}$ по сравнению с $Bi_{1.5}Pb_{0.6}Sr_2CaCu_2O_{8+\delta}$ нельзя объяснить изменением катионного состава кристаллохимического слоя Ві₂О₂ структуры Ві-2212, поскольку замещение ${\rm Bi}^{3+}$ на изоэлектронный ион с меньшим зарядом (${\rm Pb}^{2+}$) должно уменьшать прочность связи атома кислорода с катионным окружением. Усиление связывания кислорода в слое Ві₂О₂ могло бы иметь место при нахождении значительной части Y в кристаллохимическом слое SrO (при одновременном перераспределении атомов Са и Sr по позициям в кристаллической структуре), однако это сопровождалось бы и усилением связывания кислорода в слое SrO, и как следстие сдвигом пиков 6 и 7 в спектре $G(\varepsilon)$ в сторону больших энергий, чего в нашем случае не наблюдалось. Кроме того, как уже указывалось, нахождение большого количества иттрия в слое SrO структуры Bi-2212 представляется маловероятным в связи с большим различием ионных радиусов стронция и иттрия.

Лучше согласуется с имеющимися экспериментальными данными, на наш взгляд, механизм замедления кислородной диффузии при замещении в Рb-содержащем Bi–2212 Са и Y, предполагающий нахождение иттрия в слое Са структуры Bi–2212. При этом, очевидно,

увеличивается положительный электростатический заряд этого слоя. С другой стороны, окисление данного твердого раствора приводит к переходу $\mathrm{Cu}^{+2} \to \mathrm{Cu}^{+3}$ в слое CuO_2 . При этом, хотя суммарный заряд этого слоя и остается отрицательным, локализация дырок на атомах меди (образование ионов Cu^{3+}) оказывается менее выгодным для итррий-замещенного твердого раствора изза электростатического отталкивания со слоем Ca , что и может являться причиной наблюдаемого замедления диффузии кислорода. При нахождении Y в слое Ca структуры Bi –2212 связь атомов кислорода в слое CuO_2 с катионами координационного окружения усиливается, что приводит к наблюдавшемуся в нашем эксперименте сдвигу в сторону больших энергий пика (8) в спектре $G(\varepsilon)$.

Заключение

Итак, замещение Ca на Y в Pb-содержащих твердых растворах на основе $Bi_2Sr_2CaCu_2O_8$ приводит к заметному замедлению кислородной диффузии в них, что значительно облегчает наноструктурную модификацию указанных твердых растворов с использованием приема внутреннего окисления.

Анализ высокочастотной части колебательного спектра (относящейся к атомам кислорода в кристаллохимических слоях SrO и CuO_2 структуры $Bi_2Sr_2CaCu_2O_8$) позволяет сделать вывод об изменении электростатического взаимодействия слоев Ca и CuO_2 данной структуры как о причине замедления кислородной диффузии.

Список литературы

- А.В. Кнотько, А.В. Гаршев, А.Г. Вересов, В.И. Путляев, Ю.Д. Третьяков. Материаловедение 1, 42 (2000).
- [2] А.А. Фотиев, Б.В. Слободин, В.А. Фотиев. Химия и технология высокотемпературных сверхпроводников. Екатеринбург, ИХТТ УрО РАН (1994). С. 250.
- [3] P. Majewski. Adv. Matter. 6, 6, 460 (1994).
- [4] H.-L. Su, P. Majewski, F. Aldinger. Physica C **249**, 3–4, 241 (1995).
- [5] A. Veresov, M. Pulkin, A. Knotko, V. Putlyaev, E.K.H. Salje. In: MRS symp. proc. MRS (2001). Vol. 659. P. II9.6.1.
- [6] A. Veresov, A. Knotko, M. Pulkin, A. Garshev, V. Putlayev. In abstracts of conference "Solid State Chemistry 2001". Oslo, Norway (2001). P. 108.
- [7] В.А. Парфенов, П.С. Клемышев, И.Г. Морозов, А.Ф. Павлов. Neutr. Inelast. Scatt. IAEA, Vienna (1978). Vol. 1. P. 81.
- [8] В.Ф. Турчин. Медленные нейтроны. Госатомиздат, М. (1963).
- [9] А.В. Кнотько, А.В. Гаршев, В.И. Путляев, С.И. Морозов. ФТТ 42, 9, 1537 (2000).
- [10] А.В. Кнотько, В.И. Путляев, С.И. Морозов. ФТТ 44, 7, 1174 (2002).
- [11] B. Renker, F. Gompf, D. Ewert, P. Adelmann, H. Schmidt, E. Gering, H. Mutka. Z. Phys. B 77, 1, 65 (1989).
- [12] D. Shimada, N. Tsuda, U. Paltzer, F. W. de Wette. Physica C 298, 3-4, 195 (1998).

- [13] П.П. Паршин, М.Г. Землянов, А.В. Иродова. ФНТ **22**, *5*, 564 (1996).
- [14] П.П. Паршин, М.Г. Землянов, А.В. Иродова, П.И. Солдатов, С.Х. Сулейманов. ФТТ **38**, *6*, 1665 (1996).
- [15] M. Kakihana, M. Osada, M. Kall, H. Mazaki, H. Yasuoka, M. Yashima, M. Yoshimura, L. Borjesson. Phys. Rev. B 53, 17, 11796 (1996).
- [16] Физические свойства высокотемпературных сверхпроводников / Под ред. Д.М. Гинзберга. Мир, М. (1990. С. 411.
- [17] R.D. Shannon, C.T. Prewitt. Acta Crystallogr. B 25, 5, 935 (1969).
- [18] А.В. Кнотько, А.В. Гаршев, В.И. Путляев. Тез. конф. по неорганической химии и радиохимии, посвященной 100-летию В.И. Спицына. М. (2002). С. 52.
- [19] C. Hinnen, C. Nguyen van Huong, P. Marcus. Journal of Electron Spectroscopy and Related Phenomena. **73**, *3*, 293 (1995).