01.4

Теория нуклеации и политипизм III—V нитевидных нанокристаллов

© В.Г. Дубровский

Санкт-Петербургский Академический университет Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики E-mail: dubrovskii@mail.ioffe.ru

Поступило в Редакцию 17 сентября 2014 г.

Проведен основанный на теории нуклеации анализ политипизма между кубической и гексагональной фазами в III—V нитевидных нанокристаллах. Расчеты произведены для параметров нитевидных нанокристаллов GaAs, выращиваемых по механизму "пар—жидкость—кристалл" с Аu-катализатором. Получены новые результаты, касающиеся критических химических потенциалов и зависимости процентного содержания вюрцитной фазы от концентрации элемента группы III (Ga) в капле. Данные результаты использованы для интерпретации некоторых экспериментальных данных по кристаллической фазе Аu-каталитических нитевидных нанокристаллов GaAs в различных эпитаксиальных технологиях.

Удивительный эффект формирования гексагональной вюрцитной (WZ) кристаллической фазы в III—V нитевидных нанокристаллах (ННК) [1–3] объясняется меньшей поверхностной энергией боковых граней WZ ННК по сравнению с кубическими (ZB) и меньшим барьером нуклеации двумерных (2D) зародышей WZ при нуклеации на тройной линии (TPL) [4–6]. В работе [4] сформулированы 2 условия образования фазы WZ в ННК, растущих по механизму "пар—жидкость—кристалл" (ПЖК): 1) равновесное условие на поверхностные энергии в системе ПЖК, приводящее к преимущественной нуклеации на TPL; 2) кинетическое условие на химический потенциал полупроводникового материала в капле, отвечающее преимущественной нуклеации 2D-зародыша в ориентации WZ.

Этот взгляд получил широкое признание и используется для контроля кристаллической фазы III—V ННК [6–9] и даже для создания гетероструктур типа WZ/ZB в одиночных ННК [10]. Вместе

в тем ряд вопросов (например, конкуренция нуклеации на TPL и в центре (C), зависимость кристаллической фазы от радиуса HHK, влияние концентрации Ga в капле и потока As на политипизм) требуют дополнительного исследования. Развитие теории политипизма III-V HHK на основе теории нуклеации и интерпретация некоторых новых экспериментальных данных [6-9] и являются целью данной работы.

Согласно классической теории нуклеации [3–5,11], активационные барьеры нуклеации 2D-зародыша в ориентации ZB и WZ равны

$$\Delta G_{ZB}^* = \frac{c_1^2}{4c_2} \Omega_s h \frac{\Gamma_{ZB}^2}{\Delta \mu}; \quad \Delta G_{WZ}^* = \frac{c_1^2}{4c_2} \Omega_s h \frac{\Gamma_{WZ}^2}{\Delta \mu - \psi}. \tag{1}$$

Здесь, c_1 и c_2 есть константы формы (2D-зародыш с линейным размером r имеет периметр c_1r и площадь поверхности c_2r^2), Ω_s — объем на III—V пару в твердом теле, h — высота монослоя, $\Delta\mu$ — разность химических потенциалов на 2 атома группы III и V в жидком растворе Au III—V и в стехиометрическом кристалле III—V [12] и ψ — разность объемных энергий образования WZ и ZB кристалла III—V [13]. Для обеих фаз (j=WZ,ZB) эффективная поверхностная энергия Γ_j определяется согласно [4]

$$\Gamma_i = (\gamma_i - \gamma_{LV} \sin \beta) x + \gamma_{SL} (1 - x). \tag{2}$$

Здесь γ_j — поверхностная энергия боковых граней ННК (зависящая от фазы), γ_{LV} — поверхностная энергия капли, β — контактный угол капли, γ_{SL} — поверхностная энергия на боковой границе 2D-зародыша, окруженного жидкостью, и x — доля периметра зародыша на TPL. Очевидно, случай x=0 отвечает нуклеации в положении C, при этом $\Gamma_j=\gamma_{SL}$ предполагается независимым от фазы. Сравнивая активационные барьеры в положениях TPL и C, приходим к условию для преимущественной нуклеации на TPL вида [4]

$$\gamma_i < \gamma_{SL} + \gamma_{LV} \sin \beta. \tag{3}$$

Очевидно, (3) накладывает ограничение снизу на поверхностную энергию капли γ_{LV} . Естественно, рассматриваются усредненный по достаточно большому времени роста химический потенциал и прочие термодинамические величины, что дает возможность пренебречь влиянием осцилляции пересыщения при образовании монослоев [14].

Скорости роста ННК радиусом R в различных фазах определим по упрощенным моноцентрическим формулам [3]

$$P_C = \pi R^2 J_0 \exp(-\Delta G^*/k_B T), \quad P_{TPL} = 2\pi R r_c J_0 \exp(-\Delta G^*/k_B T).$$
 (4)

Здесь основная зависимость определяется значением активационного барьера нуклеации, предэкспонента J_0 считается независимой от фазы, а множитель с критическим радиусом $r_c=(c_1/2c_2)\Omega_s\Gamma_{WZ}/(\Delta\mu-\psi)$ появляется потому, что нуклеация на TPL может происходить только внутри кольца с шириной, равной критическому радиусу [3]. Пренебрегая в первом приближении корреляциями в образовании монослоев WZ и ZB [15], процентное содержание фазы WZ в HHK (или, более точно в данном приближении, процент WZ HHK в полном ансамбле HHK) можно рассчитать по формуле

$$p_{WZ} = \frac{P_{WZ}^{TPL} + P_{WZ}^{C}}{P_{WZ}^{TPL} + P_{WZ}^{C} + P_{ZB}^{TPL} + P_{ZB}^{C}},$$
 (5)

учитывающей 4 различных ростовых сценария.

Можно показать, что вероятность нуклеации зародыша WZ в положении C пренебрежимо мала по сравнению с TPL. В этом случае выражение (5) упрощается и может быть представлено в безразмерном виде

$$p_{WZ} = \frac{1}{1+\alpha},$$

$$\alpha = \frac{R}{R_{WZ}}(f-1) \exp\left[U_0 \frac{T_0}{T} \frac{1}{(f-1)f} \left(1 - \frac{f}{f_C}\right)\right]$$

$$+ \frac{\Gamma_{ZB}}{\Gamma_{WZ}} \frac{(f-1)}{f} \exp\left[V_0 \frac{T_0}{T} \frac{1}{(f-1)f} \left(1 - \frac{f}{f_{TPL}}\right)\right]. \tag{6}$$

Здесь $f \equiv \Delta \mu/\psi$ есть безразмерный химический потенциал капли, Γ_{ZB} и Γ_{WZ} определены в (2), а остальные параметры равны

$$f_C = \frac{1}{1 - (\Gamma_{WZ}/\gamma_{SL})^2}, \quad f_{TPL} = \frac{1}{1 - (\Gamma_{WZ}/\Gamma_{ZB})^2},$$

$$U_0 = \frac{c_1^2}{4c_2} \Omega_S h \frac{\gamma_{SL}^2}{k_B T_0 \psi}, \quad V_0 = \frac{c_1^2}{4c_2} \Omega_S h \frac{\Gamma_{ZB}^2}{k_B T_0 \psi}, \quad R_{WZ} = \frac{c_1}{c_2} \frac{\Omega_S}{\Psi} \Gamma_{WZ}. \quad (7)$$

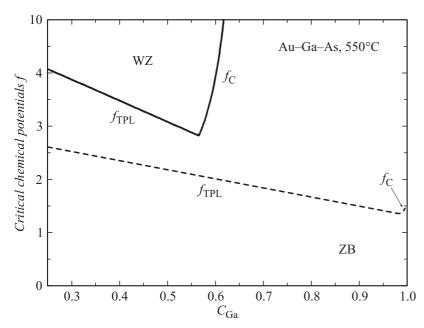
Таблица 1. Параметры ПЖК системы Au-Ga-As, использованные при получении кривых на рис. 2

c _{Ga}	γ_{LV} , J/m^2	γ _{SL} , J/m ²	Γ_{WZ} , J/m^2	Γ_{ZB} , J/m^2	fc	f_{TRL}	U_0	V_0	R _{WZ} , nm
0.35	1.05	0.84	0.67	0.74	2.9	4.9	1216	952	55
0.52	0.95	0.64	0.57	0.64	4.2	4.2	733	712	47
0.60	090	0.56	0.53	0.61	7.7	4.0	550	647	43
0.65	0.88	0.52	0.49	0.58	25	3.9	470	585	40

Значения U_0 и V_0 взяты при некоторой фиксированной ростовой температуре T_0 , Таким образом, в (6) в явном виде выделена температурная зависимость, а также зависимость от химического потенциала f. Последний является функцией температуры и 2 концентраций атомов типа III (Ga) c_{III} и V (As) c_{V} , растворенных в капле [12]. В стационарном приближении можно избавиться от зависимости от химического потенциала As (или $c_{V})$ в жидком растворе, выразив последний через измеряемую скорость удлинения ННК и газовый поток As [16]. Формулы (6) и (7) являются основным теоретическим результатом данной работы. Дальнейшее представляет собой их анализ для параметров ПЖК системы Au-Ga-As, обсуждение основных физических следствий и качественное сопоставление с некоторыми экспериментальными данными.

Теоретический анализ выражений (6) и (7) приводит к следующим выводам:

- 1. Параметр α в выражении (6) для процентного содержания фазы WZ содержит 2 слагаемых: первое описывает конкуренцию нуклеации на TPL зародыша WZ и нуклеации С зародыша ZB, а второе конкуренцию нуклеации на TPL зародышей 2 фаз.
- 2. Для большинства систем ПЖК (см. данные для системы Au-Ga-As в табл. 1) значения безразмерных параметров U_0 и V_0 огромны порядка нескольких сотен единиц. Следовательно, фаза ZB превалирует, когда химический потенциал f меньше обоих критических значений f_C и f_{TPL} . Фаза WZ образуется при выполнении неравенства $f > \max(f_C, f_{TPL})$. Иными словами, поверхностная энергия для сценария нуклеации (WZ, TPL) Γ_{WZ} должна быть меньше, чем для ZB в положении C (γ_{SL}) и TPL (Γ_{ZB}), а химический потенциал капли должен


Таблица 2. Расчетные значения поверхностных энергий боковых граней ННК GaAs

	Поверхностная энергия γ_j , J/m^2						
Грань	Сибирев и др. [18]	Rosini and Magri [19]	Pankoke et al. [20]				
ZB(110)	1.543	0.825	0.798				
ZB(211)	1.79	1.07	1.07				
$WZ(1\bar{1}00)$	1.30	0.693	0.700				
$WZ(11\bar{2}0)$	1.543	0.730	0.706				

быть достаточно большим для преодоления разности объемных энергий образования ψ .

- 3. В промежуточной области значений f между 2 критическими значениями химического потенциала ожидается преимущественно структура ZB с включениями фазы WZ, что сопровождается дефектами упаковки.
- 4. Поскольку первый член в выражении (6) для α содержит отношение R/R_{WZ} , фаза ZB всегда восстанавливается в формальном пределе $R \to \infty$, т.е. для очень широких ННК.

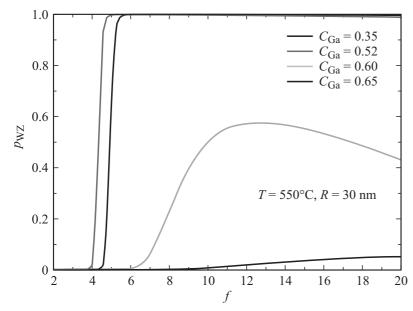

Далее, приведем значения параметров для системы Au-Ga-As. Количество As, растворенного в жидком Au, всегда мало [2,3,12], поэтому поверхностная энергия капли γ_{IV} определяется только концентрацией Ga в ней. Для этой зависимости в случае системы Au-Ga-As будем использовать линейную аппроксимацию между известными значениями для чистых Au и Ga при данной температуре, например, $\gamma_{\rm Au}=1.248\,{
m J/m^2}$ и $\gamma_{\rm Ga}=0.675\,{
m J/m^2}$ при 550°C [3]. Величина γ_{SL} также была оценена в 2 точках путем непрямых измерений: $\gamma_{SL}=1.0\,\mathrm{J/m^2}$ при $c_{\rm III}=c_{\rm Ga}=0.2$ [4] и $\gamma_{SL}=0.123\,{
m J/m^2}$ при $c_{\rm Ga}=1$ (Ga капля при самокаталитическом росте) [17]. Мы будем брать линейную аппроксимацию для зависимости $\gamma_{SL}(c_{\mathrm{Ga}})$ между двумя значениями. Структурные параметры кристаллического GaAs равны: $\Omega_S = 0.00452 \, \text{nm}^3$, $h = 0.326 \,\mathrm{nm}$ [3]. Разность объемных энергий образования WZ и ZB GaAs $\psi = 24 \,\mathrm{meV}$ на пару GaAs [13]. Будем использовать геометрическую модель зародыша в виде правильного теругольника [4] с x = 1/3, $c_1 = 3, \ c_2 = \sqrt{3}/4$ при типичном значении контактного угла капли $\beta = 110^{\circ}$. Наконец, различные расчетные значения поверхностных энергий боковых граней ZB и WZ HHK GaAs, растущих в направлении

Рис. 1. Критические химические потенциалы для фазового перехода ZB—WZ в Аи-каталитических HHK GaAs как функции $c_{\rm Ga}$, полученные при значениях поверхностных энергий боковых граней (110) ZB и (1 $\bar{1}$ 00) WZ HHK из работы Сибирева и др. [18] (сплошные линии) и Pankoke et al. [20] (пунктирные линии).

(111) с сечением в виде правильного шестиугольника, приведены в табл. 2. Эти данные показывают, что данные работы [18], основанные на подсчете плотности оборванных связей, дают существенно более высокие значения поверхностных энергий, чем ab initio вычисления работ [19,20].

На рис. 1 представлены расчеты критических химических потенциалов для приведенных выше параметров ПЖК системы Au-Ga-As при 550°C, полученные по соответствующим формулам (7) при значениях поверхностных энергий низкоэнергетических (110)ZB и (1 $\bar{1}$ 00)WZ боковых граней ННК из работ Сибирева и др. [18] и Pankoke et al. [20]. Видно, что значения Сибирева и др. [18] дают так называемый "WZ треугольник" в левом верхнем углу на плоскости (c_{Ga} , f), составленный

Рис. 2. Процент фазы WZ в HHK GaAs в зависимости от безразмерного химического потенциала f для значений параметров, приведенных в табл. 1.

из 2 ветвей критических химических потенциалов. Структура WZ превалирует внутри треугольника. При малых концентрациях Ga политипизм определяется конкуренцией нуклеации на TPL зародышей фаз WZ и ZB в положении TPL, а в диапазоне $c_{\rm Ga}$ от 0.56 до 0.66 — конкуренцией TPL нуклеации WZ и C нуклеации ZB зародышей. При $c_{\rm Ga}>0.66$ образуется чистая фаза ZB, поскольку нуклеация TPL запрещена энергетически [6], как в случае чисто катализатора Ga [17]. Для низких значений поверхностных энергий, полученных в работах [19,20], и при прежних значениях прочих параметров "WZ треугольник" фактически пропадает. Поэтому объяснение экспериментальных результатов работ [6,8,9] по чисто ZB структуре GaAs и других III—V ННК при высоких скоростях роста (соответствующих высоким концентрациям Ga в капле) становится затруднительным.

На рис. 2 показаны зависимости процентного содержания фазы WZ в ННК GaAs, выращиваемых с Au-катализатором при 550°С и имеющих

радиус R=30 nm, от безразмерного химического потенциала f. Кривые получены из формулы (6) при значениях параметров, приведенных в табл. 1. Для поверхностных энергий боковых граней ННК (110) и $(1\bar{1}00)$ использовались значения Сибирева и др. [18]. Приведенные кривые позволяют сделать следующие важные выводы.

- 1. При достаточно низких концентрациях Ga в капле $(c_{\rm Ga} < 0.52)$ увеличение f ведет к резкому переходу от чистой фазы ZB к чистой фазе WZ, как в первоначальной модели [4].
- 2. При $c_{\text{Ga}} = 0.6$, увеличение f выше критического значения сопровождается переходом от чисто фазы ZB к дефектной структуре ZB—WZ, а дальнейшее увеличение f возвращает фазу HHK к преимущественно ZB. Таким образом, в данном случае зависимость процента фазы WZ от химического потенциала немонотонно, чего не было в модели [4].
- 3. Когда $c_{\rm Ga}$ достигает критического значения ~ 0.66 , выше которого нуклеация в положении TPL запрещена, процент WZ остается менее 10% для всех разумных f.
- 4. Поскольку значения $c_{\rm Ga}$ фиксированы на каждой из кривых на рис. 2, увеличение химического потенциала может достигаться увеличением потока As.

Таким образом, предложенная модель позволяет качественно интерпретировать следующие экспериментальные данные.

- 1. В случае молеклярно-пучковой эпитаксии ННК GaAs с Аикатализатором, скорости роста и соответствующие концентрации Ga в капле невелики, поэтому работает классический механизм политипизма [4]: переход ZB–WZ происходит при увеличении химического потенциала. Это может достигаться увеличением концентрации элемента группы V, что объясняет результаты работы [7]: структура WZ проявляется при увеличении потока As.
- 2. В случае химических эпитаксий (МОС-гидридной [9] или хлоридной [6]), потоки Ga и As, скорости роста ННК и соответствующие концентрации Ga и As в капле высоки, что приводит к чистой фазе ZB, как в случае Ga-каталитического роста ННК GaAs.
- 3. Конкретные расчеты химических потенциалов при росте с данными параметрами должны проводиться на основе модели [12] с соответствующими условиями самосогласования [16], что является целью наших дальнейших исследований.

Данная работа выполнена при поддержке гранта Российского научного фонда N 14-22-00018 по приоритетному направлению деятельно-

сти РНФ "Проведение фундаментальных научных исследований и поисковых научных исследований коллективами существующих научных лабораторий".

Список литературы

- [1] Persson A.I., Larsson M.W., Stengstrom et al. // Nature Mater. 2004. V. 3. P. 677.
- [2] Дубровский В.Г., Цырлин Г.Э., Устинов В.М. // ФТП. 2009. Т. 43. С. 1585.
- [3] Dubrovskii V.G. // Nucleation theory and growth of nanostructures. Heidelberg— New York—Dordrecht-London: Springer, 2014.
- [4] Glas F., Harmand J.C., Patriarche G. // Phys. Rev. Lett. 2007. V. 99. P. 146 101.
- [5] Дубровский В.Г. // Письма в ЖТФ. 2011. Т. 37. В. 2. С. 1.
- [6] Gil E., Dubrovskii V.G., Avit G. et al. // Nano Lett. 2014. V. 14. P. 3938.
- [7] Dheeraj D.L., Munshi A.M., Scheffler M. et al. // Nanotechnology. 2013. V. 24. P. 015 601.
- [8] Joyce H.J., Gao Q., Tan H.H. et al. // Nano Lett. 2009. V. 9. P. 695.
- [9] Ren X., Huang H., Dubrovskii V.G. et al. // Semicond. Sci. Technol. 2011. V. 26. P. 014 034.
- [10] Dick K.A., Thelander C., Samuelson L. et al. // Nano Lett. 2010. V. 10. P. 3494.
- [11] Kukushkin S.A., Osipov A.V. // Prog. Surf. Sci. 1996. V. 51. P. 1.
- [12] Glas F. // J. Appl. Phys. 2010. V. 108. P. 073 506.
- [13] Yeh C.-Y., Lu Z.W., Froyen S. et al. // Phys. Rev. B. 1992. V. 46. P. 10086.
- [14] Dubrovskii V.G. // Phys. Rev. B. 2013. V. 87. P. 195 426.
- [15] Priante G., Harmand J.C., Patriarche G. et al. // Phys. Rev. B. 2014. V. 89. P. 241 301(R).
- [16] Dubrovskii V.G. // Appl. Phys. Lett. 2014. V. 104. P. 053 110.
- [17] Glas F., Ramdani M.R., Patriarche G. et al. // Phys. Rev. B. 2013. V. 88. P. 195 304.
- [18] Сибирёв Н.В., Тимофеева М.А., Большаков А.Д. и др. // ФТТ. 2010. Т. 52. С. 1428.
- [19] Rosini M., Magri R. // Nano Lett. 2010. V. 10. P. 6021.
- [20] Pankoke V., Kratzer P., Sakong S. // Phys. Rev. B. 2011. V. 84. P. 075 455.