05

Влияние легирования медью на напряжение мартенситного сдвига пористых сплавов TiNi(Mo,Fe,Cu)

© В.Н. Ходоренко, М.И. Кафтаранова, В.Э. Гюнтер

НИИ медицинских материалов и имплантатов с памятью формы Сибирского физико-технического института им. академика В.Д. Кузнецова Национального исследовательского Томского государственного университета, Томск E-mail: soldatovam@sibmail.com

Поступило в Редакцию 13 октября 2014 г.

Исследованы пористые сплавы на основе никелида титана с добавками меди. Установлено, что легирование медью пористых сплавов, полученных методом самораспространяющегося высокотемпературного синтеза, приводит к значительному снижению напряжения мартенситного сдвига (менее 30 MPa). Низкое значение напряжения мартенситного сдвига пористых сплавов σ_{\min} позволяет моделировать медицинские имплантаты сложной конфигурации для различных областей медицины, в частности челюстно-лицевой хирургии. Определена оптимальная концентрация легирующих добавок меди от 3 до 6 at. % для получения высоких характеристик пористого сплава на основе никелида титана.

Развитие имплантологии с применением металлических материалов и сплавов диктует необходимость создания биосовместимых материалов, по свойствам подобных живым тканям организма [1]. Пористые сплавы на основе никелида титана характеризуются высоким уровнем биосовместимости, позволяя им длительно функционировать в организме не отторгаясь, обеспечивать стабильную регенерацию клеток и надежную фиксацию с тканями организма путем образования и роста ткани в порах имплантата [1]. Одними из основных характеристик данных сплавов при практическом применении в медицине являются температурный интервал проявления эффекта памяти формы и критические напряжения мартенситного сдвига σ_{\min} , σ_{\max} , изменение которых зависит от эволюции элементов внутренней структуры при

6 81

Сплав	Химические элементы, at. %					
	Ni	Mo	Fe	Cu	Ti	
Nº 1	49.9	0.1	0.1	_	баланс	
Nº 2	48.9	0.1	0.1	1	баланс	
Nº 3	46.9	0.1	0.1	3	баланс	
Nº 4	43.9	0.1	0.1	6	баланс	

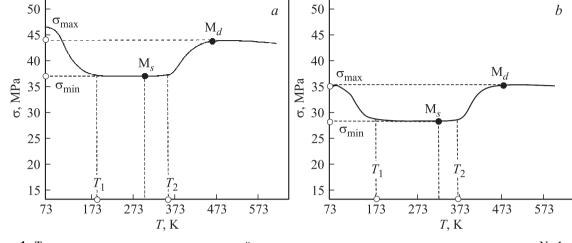
Таблица 1. Состав пористых сплавов на основе никелида титана

отклонении состава сплавов от области гомогенности, проведения термомеханических обработок и легирования [1,2].

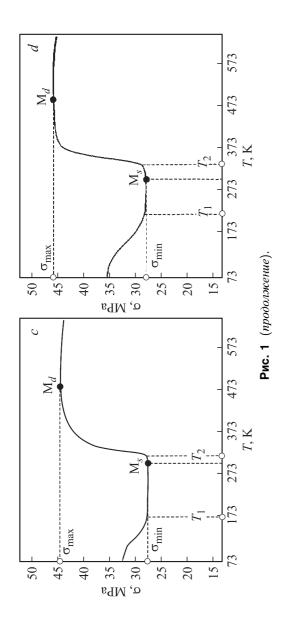
Легирование Mo, Fe, Al позволяет эффективно и направленно управлять величиной накопленной деформации, интервалами мартенситных превращений, прочностными и пластическими свойствами сплавов [3]. Однако в ряде конкретных случаев для пористых сплавов на основе никелида титана напряжение мартенситного сдвига σ_{\min} , отвечающее за жесткость материала, не соответствует желаемому уровню значений. Это ограничивает гибкость имплантатов и возможность их моделирования применительно к конфигурации замещаемых тканевых дефектов. В монолитных сплавах TiNi указанные проблемы могут быть решены легированием сплавов медью. Пористые материалы из-за фазовохимической неоднородности представляют собой конгломерат областей, различных по составу, близких к структуре литых сплавов. По аналогии с монолитными сплавами возможно решать отмеченные проблемы и на пористых материалах. Задачей данного исследования является изучение влияния различных добавок меди на основные характеристики пористых сплавов с целью создания пористого материала с оптимальным набором физико-механических свойств.

Пористые сплавы $\text{TiNi}_{49.9-x}\text{Mo}_{0.1}\text{Fe}_{0.1}\text{Cu}_x$ (где $x=0,\ 1,\ 3,\ 6$ at.%) получены методом самораспространяющегося высокотемпературного синтеза (СВС) с использованием порошков титана ПТМ, ПТОМ, никеля ПНК-10Т2, ПНК-1Л5 и порошка меди (табл. 1).

Легирование пористых сплавов проводили методом замещения части никеля медью от 1 до 6 at.%. Изначально порошки титана, никеля и меди сушили в вакуумном шкафу при температуре 350—360 K,


затем смешивали в смесителе. Шихту засыпали в кварцевую колбу, методом аппаратной утряски уплотняли и помещали в электрическую печь. При достижении температуры начала синтеза $T=747\,\mathrm{K}$, которая подбирается экспериментально и зависит от объема шихты, однородности смеси, размеров частиц порошков, толщины кварцевого стекла реактора, а также требуемой пористости готового продукта, инициировали CBC [1,4].

Для исследования свойств сплавов на электроэрозионном станке вырезали образцы размером $2.5 \times 2.5 \times 35\,\mathrm{mm}$. Минимальные и максимальные напряжения мартенситного сдвига σ_{\min} , σ_{\max} определяли с помощью температурной зависимости напряжений мартенситного сдвига $\sigma(T)$ [5,6]. Для этого в широком интервале температур от 73 до 600 К пористые образцы деформировали ниже интервала температур мартенситных превращений и, не разгружая в заневоленном состоянии, вели нагрев, одновременно измеряя уровень напряжений, развиваемых образцом при своем стремлении восстановить исходную форму.


Анализ температурной зависимости $\sigma(T)$ показал, что для пористого сплава № 1 характерен широкий температурный интервал проявления эффектов памяти формы $(T_1-T_2)\sim 170\,\mathrm{K}$ (рис. 1,a). Это связано с неоднородностью структуры пористого сплава, полученного методом СВС. Структура представлена большим количеством частиц $\mathrm{Ti}_2\mathrm{Ni}$ и TiNi_3 размером от 1 до $4.3\,\mu\mathrm{m}$, не участвующих в процессе превращения (рис. 2,a). Фазовая неоднородность сплава приводит к тому, что весь процесс мартенситного превращения растянут в некоторой температурной области, так как фазовые превращения начинаются в различных областях при разных температурах [7,8].

Высокое значение минимального напряжения мартенситного сдвига $\sigma_{\min} \sim 40$ Мра для сплава № 1 ограничивает гибкость имплантатов и возможность их моделирования применительно к конфигурации замещаемых тканевых фрагментов (рис. 1,a). Получение пористых сплавов с более низким уровнем критических напряжений мартенситного сдвига в интервале температур от 283 до 313 К открывает широкие возможности их использования для замещения дефектов тканей [9].

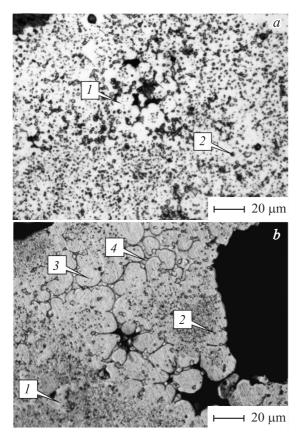

Изменение структурного состояния пористых сплавов при легировании медью приводит к сужению температурного интервала (T_1-T_2) до $\sim 120\,\mathrm{K}$. Формирование крупных, редко встречаемых ликвационных образований — дендритов в сплавах с увеличением легирующей добавки Cu, а также меньшее количество фаз выделений $\mathrm{Ti}_2\mathrm{Ni}$ и $\mathrm{Ti}\mathrm{Ni}_3$

Рис. 1. Температурные зависимости напряжений мартенситного сдвига пористых сплавов: a — сплав № 1; b — сплав № 2; c — сплав № 3; d — сплав № 4.

Письма в ЖТФ, 2015, том 41, вып. 6

Рис. 2. Структура пористых сплавов на основе никелида титана: a — сплав № 1, b — сплав № 4; I — матрица, 2 — частицы Ti_2Ni , 3 — тело дендрита, 4 — междендритная прослойка.

приводит к значительному очищению матричной фазы, ответственной за развитие мартенситного превращения (рис. 2,b). Вовлечение дендрита, близкого по составу к составу матричной фазы, в процесс превращения увеличивает объем участвующего материала (рис. 2,b, табл. 2). Начало и конец превращения во всем объеме материала наблюдается практически одновременно.

Таблица 2. Элементный состав пористых сплавов на основе никелида титана, легированных медью

Элемент		Состав, ат.%		
		Матрица	Тело дендрита	
Ti	Сплав № 2	49.7	49.9	
Ni		48.4	48.7	
Cu		1.9	1.4	
Ti	Сплав № 3	48.7	49.1	
Ni		49.4	47.6	
Cu		1.9	3.3	
Ti	Сплав № 4	48.5	49.6	
Ni		49.0	45.4	
Cu		2.5	5.0	

Таблица 3. Характеристики пористых сплавов на основе никелида титана

Сплав	Сплав № 1	Сплав № 2	Сплав № 3	Сплав № 4
$\sigma_{\min}, ext{MPA}$	37	28	27	27
$\sigma_{ m max}$, MPa	44	35	45	47

Добавки меди в состав пористого сплава № 1 от 1 до 6 аt. % приводят к тому, что в области рабочих температур от 283 до 313 К для сплавов наблюдается снижение минимального напряжения мартенситного сдвига σ_{\min} менее 30 MPa (рис. 1, b-d, табл. 3). Наиболее приемлемыми для практического применения в медицине являются сплавы, легированные от 3 до 6 at. % Сu, для которых минимальное напряжение мартенситного сдвига составляет менее 30 MPa в области температур от 283 до 313 К и разность напряжений $\sigma_{\max} - \sigma_{\min}$, характеризующая степень восстановления формы, имеет максимальные значения. Из литературы известно, что с увеличением разницы $\sigma_{\max} - \sigma_{\min}$ за счет увеличения вклада мартенситной деформации наблюдается рост общей деформации материала [1].

Полученный результат имеет большую практическую ценность, поскольку с точки зрения реконструктивной хирургии снижение минимального напряжения мартенситного сдвига менее 30 MPa позволит более точно моделировать объемные и сложные по конфигурации имплантаты применительно к дефектам живой ткани. Следует подчеркнуть, что дальнейшее увеличение добавки меди свыше 6 at. % приводит к резкому сужению интервала проявления эффектов памяти формы $(T_1 - T_2)$.

Таким образом, на основании проведенных исследований можно сделать следующий вывод. Легирование пористого сплава на основе никелида титана медью существенно оптимизирует свойства пористых сплавов и позволяет получать пористые материалы с характеристиками, приемлемыми для использования в челюстно-лицевой хирургии. Наиболее приемлемыми для практического применения в медицине являются сплавы, легированные от 3 до 6 at. % Cu, для которых минимальное напряжение мартенситного сдвига составляет менее 30 МРа в области температур от 283 до 313 К. Полученный результат является новым и представляет несомненный научный и практический интерес.

Работа выполнена в рамках "Программы повышения конкурентоспособности Томского государственного университета".

Список литературы

- [1] *Гюнтер В.Э., Ходоренко В.Н., Чекалкин Т.Л.* Медицинские материалы и имплантаты с памятью формы. Т. 1. / Под ред. В.Э. Гюнтера. Томск: Изд-во МИЦ, 2011. 534 с.
- [2] *Гюнтер В.Э., Ходоренко В.Н., Чекалкин Т.Л.* // Имплантаты с памятью формы. 2011. № 1–2. С. 5–15.
- [3] Ооцука К., Симидзу К., Судзуки Ю. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
- [4] Итин В.И., Найбороденко Ю.С. Высокотемпературный синтез интерметаллических соединений. Томск: Изд-во Томского ун-та, 1989. 214 с.
- [5] Малеткина Т.Ю., Гюнтер В.Э. // Имплантаты с памятью формы. 1995. № 1. С. 15–23.
- [6] Пат. № 1698688, РФ. Способ определения температурной зависимости предела текучести сплавов / В.Э. Гюнтер, Т.Ю. Серикова, Л.А. Монасевич, Ю.И. Паскаль. Опубл. в БИ. 1991. № 46.

- [7] Ясенчук Ю.Ф., Артюхова Н.В., Гюнтер В.Э. // Биосовместимые материалы и новые технологии в стоматологии. Томск, 2012. С. 230–236.
- [8] *Ясенчук Ю.Ф., Гюнтер В.Э., Ходоренко В.Н.* и др. // Имплантаты с памятью формы. 2006. № 1–2. С. 5–19.
- [9] Дамбаев Г.Ц., Гюнтер В.Э., Радионченко А.А. Сверхэластичные пористые имплантаты с памятью формы в хирургии. Томск: Изд.-во ТПУ, 1996. 174 с.