Краткие сообщения

08

Изучение профилей распределения атомов по глубине свободных нанопленочных систем типа Si—Me

© Б.Е. Умирзаков, З.А. Исаханов, М.К. Рузибаева, З.Э. Мухтаров, А.С. Халматов

Институт ионно-плазменных и лазерных технологий АН РУзбекистан, 100125 Ташкент, Узбекистан e-mail: isakhanov@aie.uz

(Поступило в Редакцию 16 апреля 2014 г.)

Приведены результаты по изучению состава, кристаллической структуры и профилей распределения атомов по глубине свободной пленки $\operatorname{Cu}(100)$ с поверхностной нанопленкой Si различной толщины. Показано, что при толщине кремниевой пленки $d_{\operatorname{Si}}=5.0\,\mathrm{nm}$ атомы кремния и меди образуют соединение типа $\operatorname{Cu}_x\operatorname{Si}_y$. С ростом толщины $(d_{\operatorname{Si}}>5.0\,\mathrm{nm})$ на поверхности силицида формируется пленка кремния. После прогрева на границе $\operatorname{Si}/\operatorname{Cu}$ образуется переходной слой силицида $\operatorname{Cu}_2\operatorname{Si}_3$ толщиной $d=8.0-10.0\,\mathrm{nm}$.

Введение

В последние годы широко исследуется кремний с нанопленкой и нанокристаллами силицидов металлов, а также нанопленочные многослойные системы Si-Me-Si-Me, на основе которых разрабатываются современные приборы микро- и наноэлектроники, спинтроники, оптоэлектроники, солнечной энергетики и т. д. [1]. В частности, соединения 3d-металлов Fe, Co, Mn и их интерметаллические соединения с кремнием имеют перспективы при синтезе магнитных наноразмерных структур [2]. Кремний с наноразмерными кристаллами активных металлов (Ba, Na, Mg) применяется как в создании барьерных слоев и омических контактов, так и в получении наноразмерных МДП (металл-диэлектрикполупроводник)-, ПДП (полупроводник-диэлектрикполупроводник)-структур. В настоящее время изучению состава и структурных свойств нанопленочных систем типа Si-Me посвящено большое число работ. Однако свободные тонкопленочные структуры Si/Me до сих пор остаются малоизученными. Ранее нами [3-6] и другими авторами [7,8] всесторонне изучены состав и структура свободных тонких моно- и поликристаллических пленок Си и Ag толщиной от 20.0 до 100.0 nm, используя методы электронной оже-спектроскопии (ЭОС), спектроскопии характеристических потерь энергии электронов (СХПЭЭ), вторичной ионной масс-спектроскопии (ВИМС) и спектроскопии ионов, прошедших через свободные тонкие пленки.

Показано, что в случае монокристаллической пленки в спектре прошедших ионов обнаруживаются три ярко выраженных пика, обусловленных осевым, плоскостным каналированием и ионами, прошедшими пленку беспорядочным (диффузным) образом.

В настоящей работе впервые приведены экспериментальные результаты по изучению состава, кристаллической структуры и профилей распределения атомов по

глубине свободной пленки $\mathrm{Cu}\,(100)$ с поверхностной нанопленкой Si различной толщины $(d_{\mathrm{Si}}=50-500\,\mathrm{nm}).$

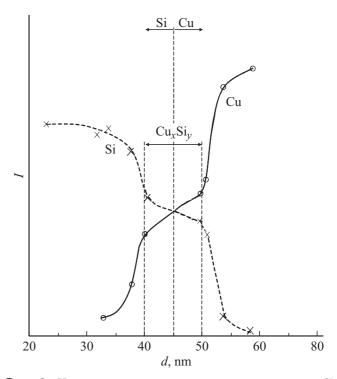

1. Методика эксперимента

Тонкие монокристаллические пленки меди получены методом вакуумного испарения на поверхности искусственно выращенного кристалла NaCl(100) при $T = 350-450 \,\mathrm{K}$ в вакууме не хуже $10^{-5} \,\mathrm{Pa}$ [4]. В этой же установке для устранения различных дефектов получаемую пленку отжигали в вакууме при $T = 650 - 700 \, \mathrm{K}$ в течение 1.5-2h, затем полученная пленка с подложкой опускалась в дистиллированную воду, отделялась от подложки и вылавливалась медной сеткой с прозрачностью 90-95%. В основном использовались пленки Cu(100) с $d \approx 4.50$ nm, с неоднородностью по толщине не более 3%. Пленка кремния напылялась на поверхность пленки Cu (100) методом распыления Siэлектронной бомбардировкой. Толщина пленки кремния варьировалась в пределах 5.0-50.0 nm. Толщина пленок Cu и Si определялась по скорости нанесения пленки, по зафиксированному времени осаждения (сначала проводились контрольные измерения на эталонных пленках). Скорость нанесения пленки Си составляла ~ 2.0 nm/s, а Si — 0.8-1 nm/s, что обеспечивало получение незагрязненной и качественной пленки при вакууме $\sim 10^{-5}$ Pa.

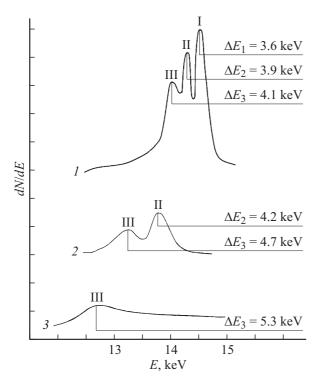
Исследование проводилось методами ЭОС, СХПЭЭ и получением энергетических зависимостей ионов Na^+ , прошедших через свободные пленки.

2. Экспериментальные результаты и их обсуждение

Были исследованы свободные тонкие пленки Cu (100) с поверхностной нанопленкой Si толщиной 5.0, 10.0 и


Рис. 1. Спектры ХПЭЭ для системы Si/Cu (100). Толщина пленки кремния $d_{\rm Si}$: I — 0, 2 — 5.0, 3 — 10.0, 4 — 25.0 nm. Во всех случаях $d_{\rm Cu}=450$ nm. Энергия первичных электронов $E_p=500$ eV.

 $20.0\,\mathrm{nm}$. Перед измерением каждый образец обезгаживался при $T=700-750\,\mathrm{K}$ в течение $2-3\,\mathrm{h}$ при вакууме $10^{-5}\,\mathrm{Pa}$. Исследования проводились при вакууме $P\leq 10^{-6}\,\mathrm{Pa}$.


Сначала было исследовано влияние напыления пленок кремния на спектры XПЭЭ Cu (100) толщиной 45.0 nm. Из спектров, полученных при энергии первичных электронов $E_p = 500 \,\mathrm{eV}$ (рис. 1), видно, что при толщине $d_{\mathrm{Si}} \approx 5.0\,\mathrm{nm}$ высота пика объемного плазмона меди резко уменьшается и появляется новый пик объемного плазмона, характерный для силицида металла. При этом в спектре практически не обнаруживаются пики ХПЭЭ для Si. При толщине пленки кремния 10.0 nm в спектре появляются пики поверхностного и объемного ($\hbar\omega_s$ и $\hbar\omega_v$) плазмонов чистого кремния. При увеличении толщины от 10.0 до 20.0 nm интенсивность пика поверхностного плазмона кремния заметно не меняется, а объемного плазмона увеличивается в 1.5 раза. Исходя из этих данных, можно полагать, что при $d_{\mathrm{Si}} \approx 5.0\,\mathrm{nm}$ основная часть атомов Si, перемешиваясь с атомами меди, образует соединение типа $Cu_x Si_v$. При $d_{Si} > 5.0$ nm с ростом толщины на поверхности этого силицида формируется пленка кремния.

На рис. 2 приведены профили распределения атомов кремния и меди по глубине для системы $\mathrm{Si/Cu}$ ($d_{\mathrm{Si}}\approx 40.0\,\mathrm{nm}$), полученные после прогрева при $T=800-850\,\mathrm{K}$. Видно, что, вследствие взаимной диффузии атомов Si и Cu на границе $\mathrm{Si/Cu}$ образуется переходной слой силицида $\mathrm{Cu}_x\mathrm{Si}_y$ толщиной $d=8.0-10.0\,\mathrm{nm}$. При этом глубина проникновения атомов кремния в медь и атомов меди в кремнии доходит до $10.0-15.0\,\mathrm{nm}$. Анализ показал, что в переходном слое преимущественно образуется соединение типа $\mathrm{Cu}_2\mathrm{Si}_3$.

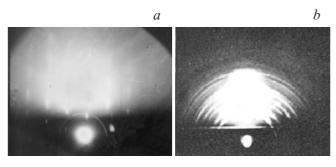

На рис. 3 приведены спектры прошедших ионов $(E_0 = 18 \, \mathrm{keV})$ для пленки меди с $d_{\mathrm{Cu}} = 45.0 \, \mathrm{nm}$ и для меди с пленками кремния $d_{Si} = 5.0 \,\mathrm{nm}$ и $d_{Si} = 20.0 \,\mathrm{nm}$. В случае чистой пленки меди в спектре обнаруживаются все три пика, характерных для монокристаллической пленки [9]. В случае системы Si/Cu с $d_{Si} = 5.0 \,\mathrm{nm}$ пик 1 (пик осевого каналирования) практически полностью исчезает и интенсивности пиков 2 (пик плоскостного каналирования) и 3 (пик неканалированных ионов) резко уменьшаются и их положение смещается в сторону больших потерь энергии. При $d_{\mathrm{Si}} = 20.0\,\mathrm{nm}$ пик 2 в спектре практически не обнаруживается, ширина пика 3 существенно увеличивается, а интенсивность резко падает. Смещение положения пиков 2 и 3 и неадекватное изменение их интенсивностей при напылении пленки Si объясняется как изменением состава и увеличением толщины пленок, так и формированием немонокристаллической пленки. Действительно, как видно из электронограммы, приведенной на рис. 4, пленка меди $(d = 45.0 \,\mathrm{nm})$ имеет монокристаллическую струк-

Рис. 2. Изменение интенсивности основных оже-пиков Si $(92\,\mathrm{eV})$ и Cu $(60\,\mathrm{eV})$ по глубине для системы Si/Cu: $d_\mathrm{Si}=400\,\mathrm{nm},\ d_\mathrm{Cu}=45.0\,\mathrm{nm}.$

Рис. 3. Энергетические распределения ионов Na^+ , прошедших пленку $\mathrm{Cu}\,(100)$ с нанопленкой Si толщиной d_{Si} : 1-0, 2-5.0, $3-20.0\,\mathrm{nm}$; $d_{\mathrm{Cu}}=45.0\,\mathrm{nm}$. Энергия первичных ионов $E_0=18\,\mathrm{keV}$.

Рис. 4. Электронограмма пленки Cu (a) и пленки Si c d=20.0 nm, выращенной на поверхности Cu (b).

туру (a), а пленка кремния с $d_{\rm Si}=20.0\,{\rm nm}$, выращенная на поверхности меди, имеет структуру, близкую к поликристаллической (b).

Отметим, что при увеличении температуры прогрева системы Si/Cu на PЭМ-картине резко уменьшается диффузный фон, однако концентрические кольца, характерные для поликристаллических образцов, сохраняются вплоть до $T=850\,\mathrm{K}$. По-видимому, из-за резкого отличия значений постоянных решеток Cu $(a=0.3615\,\mathrm{\AA})$ и Si $(a=0.0543\,\mathrm{\AA})$ в случае ультратонких пленок эпитаксиальный рост кремния на поверхности Cu (100) не происходит. Дальнейшее увеличение температуры приводит к увеличению диффузии Cu к поверхности и частичному испарению атомов меди и кремния.

Заключение

На основе результатов экспериментальных исследований, проведенных для нанопленочной гетероструктуры $Si-Cu\ (100)$ можно сделать следующие основные выводы.

- 1. При толщине кремниевой пленки примерно 5.0 nm атомы кремния, перемешиваясь с атомами меди, образуют соединение типа $\mathrm{Cu_xSi_y}$. С ростом толщины $(d_{\mathrm{Si}} > 5.0\,\mathrm{nm})$ на поверхности этого силицида формируется пленка кремния.
- 2. После прогрева системы Si/Cu $(d_{\rm Si}\approx 40.0\,{\rm nm})$ при $T=800-850\,{\rm K}$ вследствие взаимной диффузии атомов Si и Cu, на границе Si/Cu образуется переходной слой силицида Cu₂Si₃ толщиной $d=8.0-10.0\,{\rm nm}$.
- 3. Выяснено, что пленка меди $(d=45.0\,\mathrm{nm})$ имеет монокристаллическую структуру, а пленка кремния с $d_{\mathrm{Si}}=20.0\,\mathrm{nm}$, выращенная на поверхности меди, имеет структуру, близкую к поликристаллической.

Настоящая работа выполнена по гранту № Ф2-ФА-Ф161 и финансирована Академией наук Республики Узбекистан.

Список литературы

- [1] Домашевская Э.П., Терехов В.А. и др. // ФТТ. 2013. Т. 55. Вып. 3. С. 577–584.
- 2] Усейнов Н.Х. // ФТТ. 2013. Т. 55. Вып. 3. С. 602–609.
- [3] Алиев А.А., Исаханов З.А. // Изв. АН УзССР, сер. физ.-мат. наук. 1987. № 5. С. 82–85.
- [4] Исаханов З.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. № 11. С. 91.
- [5] Исаханов З.А. // ЖТФ. 2012. Т. 82. Вып. 9. С. 116-118.
- [6] Исаханов З.А., Умирзаков Б.Е., Рузибаева М.К., Курбанов Р. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011. № 8. С. 1–4.
- [7] Палатник Л.С., Фукс М.Я., Косевич В.М. Механизм образования и субструктура конденсированных пленок. Наука, 1972.
- [8] Wakashima K., Fukamachi M., Nagakura S. // J. Appl. Phys. 1969. № 8. P. 1167.
- [9] Алиев А.А., Арипов Х.А. // РиЭ. 1983. Вып. 10. С. 2014–2020.