02

Энергии появления фрагментов при диссоциативной ионизации молекулы гексафторида серы электронным ударом

© Ш.Ш. Демеш, А.Н. Завилопуло, О.Б. Шпеник, Е.Ю. Ремета

Институт электронной физики НАН Украины, 88017 Ужгород, Украина e-mail: demesh.shandor@gmail.com, remetov@inbox.ru

(Поступило в Редакцию 9 июля 2014 г.)

Представлен теоретический анализ энергий появления, соответствующих возможным каналам образования ионных фрагментов SF_k^+ при диссоциативной ионизации молекулы SF_6 электронным ударом. Для вычисления полных энергий нейтральных и ионных молекулярных и атомарных фрагментов использованы теоретические методы комплекса программ GAMESS. Сделан вывод о большой роли каналов возбуждения фрагментов SF_k^+ и молекул F_2 , что наряду с протеканием процесса диссоциативной ионизации через электронные автоионизационные отталкивательные термы молекулы SF_6 приводит к превышению величин наблюдаемых энергий появления над теоретическими. Рассмотрено поведение энергии появления фрагментов SF_k^+ от числа атомов фтора k.

Введение

Физический смысл энергии появления (ЭП) (далее обозначение $E_{\rm AP}$) ионного фрагмента при диссоциативной ионизации (ДИ) молекулы электронным ударом означает энергию, которая затрачивается на выход из молекулы соответствующего иона. Величина $E_{\rm AP}$ в случае многоатомной молекулы зависит от того, какие атомные и молекулярные продукты образуются в конечном состоянии. Для заданной конфигурации этих продуктов самой минимальной будет та энергия $E_{\rm AP}$, при которой эти продукты находятся в основных состояниях и имеют нулевые кинетические энергии. Иными словами, ДИ — это "химическая реакция", стимулированная налетающим электроном, которая протекает на пороге двух процессов — автоионизации и диссоциации. Поскольку энергия налетающего электрона превышает потенциал ионизации соответствующего молекулярного фрагмента, то процесс ДИ происходит через электронные термы, расположенные в непрерывном спектре, т.е. в автоионизационной области исходной молекулы. Исходя из принципа Франка-Кондона, наиболее вероятными переходами при электронном возбуждении являются те, которые происходят между максимумами волновых функций колебательных состояний исходной и возбужденной (конечной) молекул с одной и той же конфигурацией (геометрией) атомов. Таким образом, энергии вертикальных переходов при электронном возбуждении больше энергий между основными состояниями.

Одновременное эффективное протекание процессов автоионизации и диссоциации возможно, если имеется сильная связь электронного и атомного типов движения у возбужденной молекулы или, иначе говоря, в результате взаимодействия возбужденных электронных термов с колебательными. Эксперименты, подобные [1], на примере молекулы SF_6 дают информацию о высоковозбужденных электронных и колебательных состояниях

молекулы и механизмах протекания ДИ. Особенно это касается случаев, когда в результате реакции остается малое число атомов фтора k в ионном фрагменте, т.е. при взаимодействии с налетающим электроном отрывается большое число (6-k) атомов фтора.

Для надежного определения энергии появления следует измерять и анализировать состояния всех продуктов реакции. Если же в эксперименте регистрируется только ион молекулярного фрагмента, то это позволяет определить энергию, которая в целом определяется состояниями конечных продуктов, полученных в наиболее вероятных процессах. Так, атомарные и молекулярные продукты реакции могут находиться в возбужденных состояниях, а также связываться друг с другом. Анализируя измеренную ЭП, следует иметь в виду возможное возбуждение исследуемых ионных молекулярных фрагментов, возбуждение атомов и молекул, а также образование отрицательных ионов. Образование этих ионов — это пороговый процесс, и он может быть особенно эффективен в случаях, когда атомы в составе молекулы имеют большую величину энергии сродства к электрону.

При ДИ молекулы SF_6 электронным ударом ЭП иона $SF_{k=0-6}^+$ в основном состоянии будет равна энергии, затрачиваемой на его выход из молекулы по каналу, связанному с образованием соответствующего числа атомов или молекул фтора в основных состояниях и электрона. Это означает, что в данном случае величина ЭП иона SF_k^+ определяется наличием атомов и молекул фтора в конечных продуктах реакции для данного канала.

В работе [1] в масс-спектрометрических исследованиях ДИ молекулы гексафторида серы (SF₆) электронным ударом были определены абсолютные величины $E_{\rm AP}$ ионных фрагментов SF $_k^+$ ($k=0\div 5$). Было также рассмотрено немонотонное поведение зависимости $E_{\rm AP}(k)$. В работе [2] эта зависимость от количества атомов

фтора, или, другими словами, от массы фрагментов SF_k^+ , также была качественно исследована с привлечением данных о продуктах реакции.

Более ранние измерения выхода ионных фрагментов SF_k^+ в различных процессах диссоциации молекулы SF_6 представлены в работах [3-12]. В работе [3] также наблюдались ионы F^+ и F_2^+ с $Э\Pi$ $37.5\pm1.0\,\mathrm{eV}$ и $18.0\pm1.0\,\mathrm{eV}$. В работе [4] были измерены $Э\Pi$ ионов F^+ , SF_2^{2+} , SF_4^{2+} , которые оказались равны 35.8 ± 1.0 , 46.5 ± 0.5 и $40.6\pm0.5\,\mathrm{eV}$ соответственно. В работе [13] были исследованы выходы ионов SF_k^+ ($k=5\div1$) и S^+ , F^+ , SF_4^{2+} , SF_3^{2+} , SF_2^{2+} , S_2^+ , F_2^+ , SF_3^{3+} , S^3 при ДИ SF_6 электронами больших энергий — $10-20\,\mathrm{keV}$. В работе [14] было показано, что, наряду с прямым процессом ДИ, вклад в образование ионов SF_3^+ и F^+ при больших энергиях электронов (> $45\,\mathrm{eV}$) происходит вследствие распада иона SF_4^{2+} :

$$e + SF_6 \rightarrow SF_4^{2+} + 2F + 3e \rightarrow SF_3^{+} + F^{+} + 2F + 3e$$
.

В обзорной работе [15] рассмотрен достигнутый в настоящее время прогресс в изучении структуры молекулы SF_6 и различных процессов взаимодействия электрона с данной молекулой. Указано, что, начиная с энергий более $15 \, \mathrm{eV}$, происходит диссоциация молекулы на нейтральные фрагменты SF_k (k=1,2,3) и атомы F_k . Процесс ДИ электронным ударом становится значительным, начиная с энергий $\sim 16 \, \mathrm{eV}$, приводя к появлению ионных фрагментов SF_k^+ (k=1,3,4,5) и ионов F_k^+ . Однако в [15] данные по ЭП ионных фрагментов SF_k^+ не приведены и не анализируются — в основном представлено поведение парциальных сечений ионизации.

В настоящей работе представлены результаты наших вычислений *ab initio* величины ЭП ионных фрагментов при ДИ молекулы SF₆ электронным ударом. Проанализированы экспериментальные данные по ЭП, которые сопоставлены с вычисленными данными для возможных каналов протекания этого процесса.

Энергии появления

Энергия появления фрагмента SF_k^+ из молекулы SF_6 согласно реакции

$$e + SF_6 \rightarrow SF_k^+ + 2e + nF, \qquad n = 6 - k,$$
 (1)

определяется следующим образом:

$$E_{AP}[(SF_k^+ - nF)/SF_6] = E_t(SF_k^+) + nE_t(F) - E_t(SF_6)$$
$$= D[(SF_k - nF)/SF_6] + I(SF_k).$$
(2)

Величины $E_{\rm t},\,D,\,I$ в (2) — полная энергия минимума электронного терма с колебательной энергией молекулы, а также энергии диссоциации и ионизации соответственно. Таким образом, энергия появления фрагмента ${\rm SF}_k^+$ при ДИ молекулы ${\rm SF}_6$ равна сумме энергии связи n

атомов фтора в молекуле и потенциала ионизации фрагмента SF_k . При этом имеются два предельных случая: прямая ионизация молекулы SF_6 , k=6, т.е. когда не отрываются атомы фтора (n=0) и, наоборот, ионизация атома серы (k=0) в процессе ДИ, когда отрываются все атомы фтора (n=6).

Учет колебательной энергии $G_v>0$ основного состояния молекул SF_k (в расчетах она различна для нейтральных молекул SF_k и их ионов $\mathrm{SF}_k^+, \, \mathrm{SF}_k^-$) влияет на энергетические характеристики молекул. Так, ЭП без и с учетом G_v отличаются на величину $\Delta G_v = G_v(\mathrm{SF}_6) - G_v(\mathrm{SF}_k^+)$. С ростом k величина ΔG_v уменьшается (при $0~\mathrm{K}$) от значения $0.495~\mathrm{eV}$ (SF) до $0.084~\mathrm{eV}$ (SF₅) и $0.114~\mathrm{eV}$ (SF₆).

Энергия появления $E_{AP}\left[\left(\mathrm{SF}_k^+ - n\mathrm{F}\right)/\mathrm{SF}_6\right]$ (2) — это энергия, затрачиваемая на отрыв n атомов фтора и ионизацию фрагмента — частицы находятся в основных состояниях и имеют нулевые кинетические энергии. Если в процессе ДИ образуется молекула F_2 , то энергия появления уменьшается на величину энергии связи атомов фтора, например,

$$E_{AP} [(SF_3^+ - F - F_2) / SF_6]$$

= $E_{AP} [(SF_3^+ - 3F) / SF_6] - D(2F/F_2).$ (3)

Образование ионов F_2^- и F^- также уменьшает ЭП на величину энергий сродства F_2 и F к электрону:

$$E_{AP} [(SF_3^+ - F^- - F_2) / SF_6]$$

$$= E_{AP} [(SF_3^+ - F - F_2) / SF_6] - E_a(F)$$

$$= E_{AP} [(SF_3^+ - 3F) / SF_6] - D(2F/F_2) - E_a(F).$$
 (4)

Таким образом, ЭП фрагмента из исходной молекулы определяется для конкретной реакции. Поскольку каждый канал реакции характеризуется своей вероятностью протекания, основной вклад в общий выход ионного фрагмента будет определяться наиболее вероятным каналом (или каналами) соответствующего процесса.

Вычисление характеристик

Для определения полных энергий основных состояний молекул, атомов и ионов мы использовали те программы комплекса GAMESS [16], которые базируются на теории функционала плотности [17]. Для вычислений использовался Linux-кластер Института электронной физики НАН Украины с высоким уровнем параллелизации. Вычисления были проведены с двумя типами гибридных обменно-корреляционных функционалов в приближении обобщенного градиента — B3LYP [18] и B3PW91 [19]. Оба функционала включают обмен типа Хартри—Фока (на 20%) вместе с обменом типа Слетэра (на 80%), а корреляционное взаимодействие в B3LYP описывается функционалом Lee-Yang-Parr (LYP) [20] и в B3PW91 функционалом Perdew-Wang (PW) [21].

Начальную матрицу электронной плотности определяли методом неограниченного Хартри—Фока (см. ссылки в [16]). Граница сходимости итерационной процедуры по полной энергии при этом составляла $5\cdot 10^{-3}$ а. е. Дальнейшее уточнение полной энергии системы выполняли в приближениях теории функционала плотности. Полную энергию всех исследованных молекул определяли в двух мультиплетных состояниях, из которых выбирали состояние с наименьшей энергией. Применялся стандартный гауссиановский базисный набор Даннинг—Хей "double zeta", который состоит из (9s,5p)/[3s,2p] функций для фтора и (11s,7p)/[6s,4p] для серы, с дополнительными поляризационными функциями Даннинга типа (1d,1f) и с диффузионными функциями для s- и p-оболочек [22].

Структура молекулы SF_6 была оптимизирована по алгоритму квадратического приближения [23] без учета влияния симметрии. Для начальной геометрии задавали минимальные межатомные расстояния. После получения равновесной, оптимизированной геометрии молекулы SF_6 проводили расчеты двух типов: определяли вертикальные и адиабатические энергетические характеристики фрагментов SF_k .

Вертикальные энергетические характеристики рассчитывали следующим образом. Исходя из равновесной геометрии молекулы SF₆ находили геометрию всех ее фрагментов. В случае молекул SF₄, SF₃ и SF₂ атомы фтора из молекулы SF₆ были удалены так, чтобы каждый фрагмент оставался наиболее объемным, а не плоским. Пробные расчеты различных вариаций геометрии таких молекул показали, что наименьшей энергией обладает система именно с такой "объемной конфигурацией". Заметим, что в ионных фрагментах пространственное размещение их атомов было таким же, как и в нейтральных. Например, геометрия молекул SF₄, SF₄⁺ и SF_4^- была одинаковой. По этой схеме определяли вертикальные энергетические характеристики фрагментов $SF_k \ (k = 1 \div 6)$, молекул F_2 — потенциалы ионизации I, энергии сродства к электрону $E_{\rm a}$, энергии диссоциации D (табл. 1).

В случае вычисления адиабатических характеристик равновесную геометрию молекул SF_k и F_2 также определяли в процессе геометрической оптимизации по алгоритму квадратического приближения. Указанные выше характеристики находили как разность полных энергий между релаксированными состояниями нейтральных и ионизованных систем (табл. 1).

В табл. 1 сопоставлены экспериментальные и вычисленные нами (с учетом энергии колебаний) адиабатические значения некоторых констант атомов и молекул. Экспериментальное значение [24] для $G_v(\mathbf{F}_2) = \omega_e/2$, где ω_e — энергия колебания. В целом имеется неплохое согласие между указанными величинами. Энергию сродства $E_a(\mathbf{SF}_6)$ молекулы сравниваем с рекомендуемой в [15] величиной, где приведены несколько измеренных и вычисленных значений, достаточно сильно отличающихся друг от друга. В дальнейшем эти данные использованы для соответствующих оценок.

Таблица 1. Вычисленные адиабатические и экспериментальные энергетические характеристики атомов и молекул. Колебательная энергия $G_v(SF_k)$ при 0 K (zero point energy). GAMESS: 1 — B3LYP; 2 — B3PW91.

Энергии	Теоретические данные, eV		Экспериментальные					
	1	2	данные, eV					
F								
$E_{\rm a}$	3.355	3.317	3.4 [24]					
$E_{ m exc}$	_	_	$F(2p^5 {}^2P^0_{3/2}): 0.05[24] F(2p^4 3s^4 P, {}^2P): 12.70-13.03 [24]$					
I	17.65	17.61	17.423 [24]					
F ₂								
$E_{\rm a}$	3.609	3.498	2.96 [24]					
$E_{ m exc}$	_	_	≈ 2 (по Cl ₂ , Br ₂ , I ₂) [24]					
I	15.62	15.59	15.686 [24]					
D(2F/F ₂)	1.51	1.52	1.38 [24]; 1.63 [25]					
$G_v, 0 \mathrm{K}$	0	.067	~ 0.055 [24]; 0.0565 [26]					
		S						
$\overline{E_{\mathrm{a}}}$	2.129	2.157	2.077 [24]					
$E_{ m exc}({ m S}^+)$	_	_	$S^{+}(3p^{3}{}^{2}D^{0}, {}^{2}P^{0}):$ $1.84-3.05 [24]$ $S^{+}(3s3p^{4}{}^{4}P): \approx 9.9 [24]$					
I	10.49	10.51	10.36 [24]					
	- 41.17	SF	2 2					
$I(SF_6)$	14.78	14.84	15.7 [15,24]					
$\frac{F(SF_6)}{E_a(SF_6)}$	2.52	2.23	1.06 [15,27]; 0.65 [24]					
$\frac{\mathcal{L}_a(\mathrm{SF}_6)}{G_v(\mathrm{SF}_6)}$	0.558							
$\frac{J(SF_5)}{I(SF_5)}$	10.41 10.32		10.5 ± 0.1 [28]; 9.6 [29]					
$\frac{D(SF_5 - F/SF_6)}{D(SF_5 - F/SF_6)}$	3.69	3.84	$3.38 [8]; 3.9 \pm 0.15 [30];$ $4.1 \pm 0.13 [12]$					
$G_v(SF_5)$	0.400		_					
$I(SF_4)$	11.94	11.88	12.03 ± 0.05 [28]; 11.69 [29]					
$D(SF_4-2F/SF_6)$	5.08	5.37	_					
$G_v(SF_4)$.310	_					
$I(SF_3)$	8.88	8.01	11.0 ± 1.0 [31]; 8.18 [29]					
$D(SF_3-3F/SF_6)$	8.58	9.79	-					
$G_v(SF_3)$	0	.162	_					
$I(SF_2)$	10.16	10.17	10.08 [28]; 11.8 [32]					
$D(SF_2-4F/SF_6)$	10.95	11.38	_					
$G_v(SF_2)$	0.124		_					
I(SF)	10.23	10.26	10.09 [28]					
$D(SF-5F/SF_6)$	14.51	15.00	_					
$G_v(SF)$	0	.052	0.052 [26]					
$D(S-6F/SF_6)$	18.00	18.49	_					
D(S-F/SF)	3.49	3.49	3.5 [24]					

Ионные фрагменты	[1]	[3]	[4]	Другие данные	
SF ₆ ⁺	_	_	_	15.7 [24] (I(SF ₆))	
SF ₅ ⁺	15.5 ± 0.5	16.2 ± 0.2	15.9 ± 0.2	$\begin{array}{c} 15.29 \ [5] \\ 15.3 \pm 0.2 \ [6] \\ 15.32 \pm 0.04 \ [7] \\ 15.50 \pm 0.10 \ [8] \\ 15.75 \pm 0.05 \ [9] \\ 15.85 \pm 0.15 \ [10] \\ 13.97 \pm 0.04 \ [11] \\ 14.62 \pm 0.09 \ [12] \end{array}$	
SF ₄ ⁺	18.4 ± 0.5	19.6 ± 1.0 (2F)	18.9	$18.44 \pm 0.10 \text{ (2F) [8]}$ $18.50 \pm 0.10 \text{ (2F) [9]}$ $19.1 \pm 0.5 \text{ (2F) [6]}$	
SF ₃ ⁺	18.7 ± 0.5	19.8 ± 0.5 (?)	20.1	$18.79 \pm 0.14 \ (?) \ [7]$ $19.4 \pm 0.5 \ (?) \ [6]$ $19.80 \pm 0.10 \ (F_2 + F?) \ [9]$ $20.0 \pm 0.50 \ (?) \ [8]$ $21.5 \ (3F) \ [9]$	
SF_2^+	27.0 ± 0.5	27.0 ± 0.3 (?)	26.8 ± 0.3	27.5 ± 0.5 (?) [8]	
SF ⁺	30.4 ± 0.5	37.6 ± 3.0 (?)	31.3 ± 0.3	30.5 ± 0.5 (?) [8]	
S^+	36.4 ± 0.5	_	37.3 ± 1.0	_	

Таблица 2. Экспериментальные энергии появления E_{AP} фрагментов SF_k^+ . (В скобках приведен канал образования фрагмента)

Результаты и обсуждение

В табл. 2 приведены экспериментальные ЭП ионных фрагментов SF_k^+ из [1], в сравнении с более ранними измерениями, взятыми из работ [3–12]. Энергию появления иона SF_6^+ в экспериментах [1,3,4,9,14] не измеряли. По оценкам (см. [15]), интенсивность этого иона в массспектре примерно в 10⁴ раз меньше интенсивности иона SF_5^+ . Известно, что как основное, так и возбужденные электронные состояния иона SF₆⁺ являются нестабильными и быстро (в течение нескольких пикосекунд) диссоциируют по каналу: $SF_6^+ \to SF_5^+ + F$ (см. [3–5,14]) с ненулевыми кинетическими энергиями фрагментов SF₅⁺ и F. Иными словами, имеется связь между образованием ионов SF_6^+ и SF_5^+ . Поэтому измеренная в работе [1] ЭП $E_{AP}(SF_6^+/SF_6)$ близка к энергии $I(SF_6)$ и к данным работ [5-8], хотя она оказывается несколько меньше, чем значения из работ [3,4], и больше данных из [11,12]. В табл. 2 в качестве $E_{AP}(SF_6^+/SF_6)$ мы представили потенциал ионизации $I(SF_6)$. Для остальных ионов видно, что значения ЭП из [1] близки к другим данным или несколько меньше по величине.

Шесть особенностей — при энергиях 14.3, 15.9, 17.5, 18.7, 20.3 и 22.2 eV — получены в [33] прямым измерением полного сечения ионизации молекулы SF_6 . Три из них — при 15.9, 18.7, 20.3 eV — связывают с $Э\Pi$ ионов SF_5^+ , SF_4^+ и SF_3^+ соответственно (см. также [15]). Эти $Э\Pi$ с точностью до ± 0.2 eV совпадают с данными работы [4] и превышают значения из [1], в которой $Э\Pi$ ионов SF_4^+ и SF_3^+ почти равны. Отметим

также, что величина 14.3 eV близка к ЭП иона SF_5^+ , приведенной в [11,12] (табл. 2). Учет других каналов реакции позволяет объяснить оставшиеся особенности из работы [33]. Например, особенность при 17.5 eV может быть обязана каналу $\mathrm{SF}_4^+ + \mathrm{F}_2 + 2e$, для которого из ЭП 18.7 eV получаем ЭП 17.32 eV за счет энергии диссоциации $D(2\mathrm{F}/\mathrm{F}_2)=1.38$ eV. Возможно также, что канал $\mathrm{SF}_3^+ + \mathrm{F}^- + 2\mathrm{F} + e$ дает $E_{\mathrm{AP}}=16.9\,\mathrm{eV}$ (за счет $E_{\mathrm{a}}=3.4\,\mathrm{eV}$). Аналогично особенности при 15.9, 18.7 и 22.2 eV могут быть обязаны каналам $\mathrm{SF}_4^+ + \mathrm{F}^- + \mathrm{F}$ (ЭП 15.3 eV), $\mathrm{SF}_3^+ + \mathrm{F} + \mathrm{F}_2 + 2e$ (ЭП 18.92 eV) и протеканию реакции $\mathrm{SF}_3^+ + \mathrm{F} + \mathrm{F}_2^+ (2\mathrm{eV}) + 2e$ (ЭП 20.7 eV) соответственно. Понятно, что эффективность реакций определяется величинами сечений по каналам.

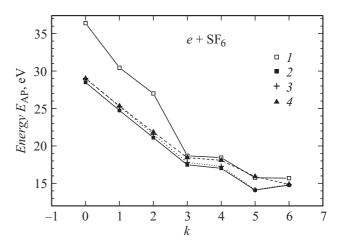
Для фрагмента SF_k^+ ЭП из молекулы SF_6 можно получить по формуле

$$E_{AP} \left[\left(SF_k^+ - (6-k)F \right) SF_6 \right]$$

$$= E_{AP} \left[\left(SF_k^+ - (m-k)F \right) / SF_m \right]$$

$$+ D \left[\left(SF_m - (6-m)F / SF_6 \right) \right]. \tag{5}$$

Здесь $6 > m \ge k$. В этом случае можно использовать ЭП этого ионного фрагмента из более простой молекулы и соответствующую энергию диссоциации. Так, используя экспериментальные значения $E_{\rm AP}[({\rm SF}_k^+ - (5-k){\rm F})/{\rm SF}_5]$ $(m=5,\ k=1\div 5)$ из [15] (см. ссылки там) и измеренную энергию диссоциации из данных табл. 1, получаем для $E_{\rm AP}^{\rm exp}({\rm SF}_k^+/{\rm SF}_6)$ следующие интервалы возможных значений (в eV) для k от 5 до 1: $13.88\div 15.3$,


 $17.88 \div 18.6$, $20.38 \div 21.1$, $25.18 \div 25.9$, $31.18 \div 31.9$. Видим, что эти значения согласуются с данными табл. 2.

Отметим, что способ определения ЭП ионных фрагментов по полному сечению ионизации молекулы во многих случаях является проблематичным. Значительно точно они определяются по измерению парциальных сечений выхода фрагментов SF_k^+ или атомарных ионов F^+ и S^+ , как это было проделано в работах [1,34,35]. Если появление данного иона обязано эффективному протеканию нескольких каналов, то каждый из них даст более отчетливые особенности на энергетической зависимости соответствующего сечения [36] на примере ДИ метана. Поэтому следует говорить об ЭП иона по конкретному каналу реакции.

В табл. 3 приведены значения вычисленных $E_{\rm AP}^{\rm th}$ ЭП ионов ${\rm SF}_k^+$ по некоторым каналам протекания реакций с учетом колебательных энергий $G_v({\rm SF}_6)$ и $G_v({\rm SF}_k^+)$. Видим систематическое превышение экспериментальных значений $E_{\rm AP}^{\rm exp}$ [1] над рассчитанными $E_{\rm AP}^{\rm th}$ — большее для малых k (отрыв большого числа атомов фтора) и меньшее — для больших k. Максимальные ЭП соответствуют реакции типа (1), т.е. отрыву несвязанных атомов фтора в основных состояниях. Однако даже эти

Таблица 3. Энергии появления фрагментов SF_k^+ по различным каналам протекания реакций. GAMESS: 1 — B3LYP, 2 — B3PW91

Ионные	A.C.	r.exp	reth .xz			
ионные	ΔG_v ,	$E_{\mathrm{AP}}^{\mathrm{exp}},$	$E_{\rm AP}^{\rm th}$, eV			
фрагменты	eV	eV [1]	канал	1	2	
SF_6^+	0.114	15.7 [24]	_	14.78	14.84	
SF_5^+	0.084	15.50 ± 0.5	F	14.10	14.16	
			F ⁻	10.75	10.84	
SF_4^+	0.232	18.44 ± 0.5	2F	17.02	17.27	
			F_2^*	17.51	17.75	
			F_2	15.51	15.75	
			$F-F^-$	13.67	13.95	
SF_3^+	0.300	18.70 ± 0.5	3F	17.47	17.80	
			$F-F_2^*$	17.96	18.28	
			$F-F_2$	15.96	16.28	
			$F^{-}-F_{2}^{*}$	14.61	14.96	
SF_2^+	0.411	27.0 ± 0.5	4F	21.11	21.55	
			$2F_{2}^{*}$	22.09	22.51	
			$2F-F_2^*$	21.60	22.03	
			$2F-F_2$	19.60	20.03	
SF ⁺	0.495	30.44 ± 0.5	5F	24.74	25.26	
			$F-2F_{2}^{*}$	25.72	26.22	
			$3F-F_2^*$	25.23	25.74	
			$3F-F_2$	23.23	23.74	
			$F^ 2F_2^*$	22.37	22.90	
S^+	0.558	36.40 ± 0.5	6F	28.49	29.00	
			$3F_2^*$	29.96	30.44	
			$2F - 2F_2^*$	29.47	29.96	
			$4F-F_2^*$	28.98	29.48	
			$4F-F_2$	26.98	27.48	
			$F-F-2F_{2}^{*}$	26.12	26.64	

Энергия появления $E_{\rm AP}$ фрагментов ${\rm SF}_k^+$ как функция числа k атомов фтора. Экспериментальные значения $E_{\rm AP}^{\rm exp}({\rm SF}_k^+/{\rm SF}_6)$: I=[1]. Вычисленные адиабатические значения $E_{\rm AP}^{\rm ft}({\rm SF}_k^+-(6-k){\rm F/SF}_6)$: $2={\rm B3LYP},\ 3={\rm B3PW91},\ 4={\rm B3PW91}$ (вертикальные). При k=6 экспериментальный и вычисленные потенциалы ионизации ${\rm SF}_6$.

максимальные ЭП меньше по величине экспериментальных данных [1] — на 11.86 и 11.51 eV (k=0) и на 2.39 и 2.35 eV (k=5) в зависимости от методов расчета 1 и 2. Вертикальные значения ЭП несколько превышают по величине адиабатические. Это превышение увеличивается с ростом k: от 0.07 eV (k=1) до 0.64 eV (k=3) и до значений 0.82 eV (k=4) и 1.75 eV (k=5) (см. рисунок).

Образование молекул фтора и отрицательных ионов атомов и молекул дает еще большее понижение величины $E_{\rm AP}$, а возбуждение конечных продуктов приводит к ее увеличению. Отметим, что полуэмпирические оценки ЭП, проведенные с использованием экспериментальных константам I, $E_{\rm a}$, D (табл. 1), в целом совпадают с вычисленными.

На рисунке показаны экспериментальные и вычисленные адиабатические ЭП $E_{\rm AP}$ фрагментов ${\rm SF}_k^+$ как функции числа атомов фтора k. Расчетные величины даны для реакции типа (1) — максимальная ЭП, когда продукты реакции в основных состояниях. Как видим, поведение указанных ЭП качественно совпадает, однако экспериментальные данные систематически превышают теоретические. Видим также, что для значений $k \leq 3$ и $k \geq 3$ имеется различное поведение с ростом k ЭП $E_{\rm AP}^{\rm exp}\left({\rm SF}_k^+/{\rm SF}_6\right)$ и $E_{\rm AP}^{\rm th}\left({\rm SF}_k^+-(6-k){\rm F/SF}_6\right)$.

Возможной причиной превышения экспериментальных величин ЭП над теоретическими может быть особенность возбуждения отталкивательного (без минимума) автоионизационного электронного терма молекулы SF_6 по сравнению с возбуждением терма, имеющего минимум. Эффективное образование ионного фрагмента происходит через те участки разлетного электронного терма электронно-возбужденной молекулы SF_6 , которые имеют большую энергию. Пространственная ширина такого участка определяется аналогичной шириной колебательного уровня в исходной молекуле SF_6 , а перепад энергий на нем — крутизной терма (скоростью

спадания). Большему числу отрываемых атомов F при ДИ соответствует более крутой терм и, соответственно, больший перепад энергий. Это приводит к увеличению превышения наблюдаемой ЭП над теоретической (см. табл. 3). Этот избыток энергии идет на возбуждение продуктов реакции и на их кинетическую энергию.

О возбуждении ридберговских состояний F_2 , F, S при диссоциации SF_6 указано в работе [15]. Эффективное возбуждение молекул F_2 , SF_k^+ и атомарных частиц F, S^+ при ДИ может сильно увеличить значение ЭП.

Энергия возбуждения метастабильного уровня $2p^5\,^2P^0_{3/2}$ атома фтора мала и составляет $0.05\,\mathrm{eV}$. Наоборот, энергии возбуждения уровней $2p^43s\,^4P,\,^2P$ большие — $12.70-13.03\,\mathrm{eV}$ [25], и на пороге ДИ (1) этого возбуждения фтора не происходит.

Энергии возбуждения нижних электронных уровней $A^3\Pi_u(1_u)$ и $B^3\Pi_u(0_u^+)$ молекул Cl_2 , Br_2 , I_2 , химически близких молекуле F_2 , составляют 2.21, 1.96 и 1.96 eV [24]. Таким образом, можно принять, что и для молекулы F_2 энергия электронного возбуждения составляет примерно 2 eV (при этом колебательная энергия невелика ~ 0.055 eV). Эти значения мы использовали в табл. 3 для оценок (обозначение F_2^*). При отрыве трех молекул колебательная энергия составит ~ 0.165 eV, что мало влияет на величину ЭП.

Ионы SF_6^+ и SF_5^+ . На рисунке приведены вычисленные нами потенциалы ионизации SF_6 (табл. 1). Потенциал ионизации SF_6 соответствует энергии появления иона SF_6^+ (k=6) в процессе прямой ионизации.

В обоих расчетах 1 и 2 основное состояние электронного терма иона SF_6^+ расположено выше основного электронного терма иона SF_5^+ . Энергии $E_{AP}(SF_5^+)$ меньше потенциала ионизации $I(SF_6)$ и составляют 14.10 и 14.16 eV. Видим, что эти значения ЭП близки к данным 13.97 ± 0.04 [11] и 14.62 ± 0.09 [12] (табл. 2). Используя из [15] следующие крайние экспериментальные значения $D[(SF_5-F)/SF_6]=3.38$ или $4.1\,\mathrm{eV}$ и $I(SF_5)=10.5\,\mathrm{eV}$ [28] (табл. 1), получаем для $E_{AP}[(SF_5^+-F)/SF_6]$ — 13.88 или $14.60\,\mathrm{eV}$. Эти величины хорошо совпадают с данными работ [11] и [12] (табл. 2).

Большая вероятность протекания реакции по каналу прямой ионизации SF_6 с последующим распадом на SF_5^+ превышает вероятность канала ДИ. По-видимому, это и дает экспериментальное значение ЭП иона SF_5^+ , примерно равное потенциалу ионизации молекулы SF_6 .

Ион SF_4^+ . Отличие между измеренными ЭП достигает 0.5 и 1.2 eV (см. табл. 2). Вычисленные (по методу 1) $E_{AP}[(SF_4^+-2F)/SF_6]$ на 1.42 eV, а по методу 2 на 1.17 eV меньше экспериментального значения [1]. Образование одной возбужденной молекулы F_2 увеличивает эти ЭП примерно на 0.5 eV и отличие от измеренной ЭП уменьшается. Энергии электронного возбуждения этого иона достаточно большие и составляют (в eV): 3.17 (A, B уровни) и 3.90 (C, D) [37].

Ион SF $_3^+$. ЭП этого иона, измеренная в [7], хорошо совпадает с данными [1] (табл. 2). Измеренные в [3,4,6,8,9] значения превышают ЭП из [1] от 0.7 до

 $2.8\,\mathrm{eV}.$ Вычисленная по методу 1 $E_{\mathrm{AP}}[(\mathrm{SF}_3^+ - 3\mathrm{F})/\mathrm{SF}_6]$ на $1.23\,\mathrm{eV},$ а по методу 2 на $0.9\,\mathrm{eV}$ меньше экспериментального значения [1], что похоже на отличие в случае иона $\mathrm{SF}_4^+.$ Образование молекулы F_2^* также на $\sim 0.5\,\mathrm{eV}$ увеличивает ЭП.

Ион SF_2^+ . ЭП этого иона, измеренные в [1,3,4,8], хорошо совпадают между собой (табл. 2). Отрыв четырех атомов фтора приводит к увеличению превышения измеренных ЭП над вычисленными значениями — на 5.89 eV (по методу 1) и на 5.45 eV (по методу 2). Энергии электронного возбуждения этого иона составляют (в eV): 5.32 (A уровень), 6.12 (B, C), 8.22 (D) и 9.22 (E) [37]. Для канала образования $2F_2^*$ ЭП, вычисленные по методам 1, 2, увеличиваются только на \sim 1 eV и равны 22.09 и 22.51 eV. Таким образом, могут возбуждаться или A уровень иона SF_2^+ или две молекулы фтора.

Ион SF $^+$. Для этого иона $E_{\rm AP}({\rm SF}^+)$ из [1] хорошо согласуется с данными [8], но она меньше по величине данных из [3,4] (табл. 2). Превышение измеренных ЭП [1] над значениями, вычисленными по методам 1 и 2 по каналу SF $^+$ -5F, составляет 5.7 и 5.18 eV, что похоже на отличие в случае иона SF $_2^+$. Энергии возбуждения электронных уровней ионов превышают энергию нейтральных фрагментов SF $_k$. Так, например, энергии уровней иона SF $_2^+$, по-видимому, несколько превышают значения 3.07 и 3.14 eV уровней $A^2\Pi_{3/2}$ и $A^2\Pi_{1/2}$ молекулы SF [24]. Образование двух возбужденных по каналу SF $_2^+$ -F $_2$ -2 $_2^+$ молекул F $_2$ увеличивает ЭП до значений 25.72 и 26.22 eV.

Ион S^+ . ЭП этого иона, связанная с отрывом всех 6 атомов фтора, измеренная в [1], на 0.9 eV меньше энергии, взятой из [4]. Превышение измеренных ЭП [1] над значениями, вычисленными по методам 1 и 2, по этому каналу составляет 7.91 и 7.4 eV. Образование трех возбужденных по каналу S^+ — $3F_2^*$ молекул F_2 уменьшает эту разницу до значений 6.44 и 5.96 eV. Эти величины меньше энергии возбуждения (9.9 eV) субвалентной 3*s*-подоболочки иона S^+ , но больше энергий (от 1.84 до 3.05 eV) метастабильных термов $2D^0$, $2P^0$ конфигурации $3p^3$ основного состояния S^+ [24] (табл. 1).

Отметим, что энергии ионизации валентных орбиталей конфигурации основного состояния SF_6

$$(\text{core})^{22} (4a_{1g})^2 (3t_{1u})^6 (2e_g)^4 (5a_{1g})^2 (4t_{1u})^6$$

$$\times (1t_{2g})^6 (3e_g)^4 [(1t_{2u})^6 (5t_{1u})^6] (1t_{1g})^6 A_{1g},$$

приведенные в [15], близки к порогам процессов, которые приводят к образованию соответствующих фрагментов SF_k^+ . Так, ионизация внешней орбитали $1t_{1g}$ (энергии от 15.29 до 16.0 eV) приводит к выходу SF_5^+ , орбиталей $2e_g$, $3e_g$, t_{2u} (18.0—19.1 eV) — к образованию SF_4^+ , орбитали $1t_{2g}$ (19.0—20.3 eV) — к выходу SF_3^+ , а орбитали a_1 (26.0—26.8 eV) — к образованию SF_2^+ , в то время как при энергиях 31.0 и 31.3 eV к образованию SF_2^+ , а при энергиях 37.0 и 37.3 eV — S_2^+ . Ионизация орбитали $2e_g$ (энергии от 39.3 до 40.6 eV) приводит к

появлению двукратных ионных фрагментов, а орбитали $3t_u$ (более $41.2\,\mathrm{eV})$ — к выходу пары положительных ионов SF_k^+ и F^+ или F_2^+ . По-видимому, также одним из эффективных механизмов ДИ молекулы SF_6 может быть ионизация указанных орбиталей электронным ударом.

Заключение

Проведен теоретический анализ энергий появления положительных ионных фрагментов при диссоциативной ионизации электронным ударом молекулы гексафторида серы, который базируется на вычислениях по комплексу программ GAMESS.

Качественное поведение вычисленных и измеренных энергий появления ионных фрагментов SF_k^+ от числа оставшихся атомов фтора совпадает. Превышение экспериментальных энергий появления над теоретическими объясняется эффективным возбуждением высокоэнергетичных участков отталкивательных автоионизационных электронных термов электронно-возбужденной молекулы SF_6 . Такой механизм процесса диссоциативной ионизации приводит к тому, что конечные атомарные и молекулярные продукты реакций могут находиться в возбужденных состояниях и иметь значительные кинетические энергии.

Более точная интерпретация энергий появления ионных фрагментов требует определения характеристик конечных продуктов, соответствующих различным каналам процесса: кинетических энергий, возбужденных и зарядовых состояний.

Авторы благодарны А.В. Снегурскому за плодотворные обсуждения и В.В. Маслюку за интерес и помощь при вычислениях. Один из авторов (Д.Ш.) благодарен Collegium Talentum institution за частичную финансовую и профессиональную поддержку его научной работы.

Это исследование было реализовано в рамках TÁMOP 4.2.4.A/2-11-1-2012-0001 "National Excellence Program — Elaborating and operating an inland student and researcher personal support system". Проект субсидирован Европейским союзом при совместном финансировании European Social Fund.

Список литературы

- [1] Завилопуло А.Н., Шпеник О.Б., Снегурский А.В., Чипев Ф.Ф., Вукстич В.С. // Письма в ЖТФ. 2005. Т. 31. С. 44–49.
- [2] Ремета Є.Ю., Снігурський О.В., Завілопуло А.М., Шпеник О.Б. // Науковий вісник УжНУ. 2006. Вып. 19. С. 95—99.
- [3] Pullen B.P., Stockdale J.A.D. // Intern. J. Mass Spectr. Ion Physics. 1976. V. 19. P. 35–42.
- [4] Dibeler V.H., Mohler F.L. // J. Res. Nat. Bur. Std. 1948. Vol. 40. P. 25–30.
- [5] Dibeler V.H., Walker J.A. // J. Chem. Phys. 1966. Vol. 44.N 12. P. 4405.

- [6] Sasanuma M., Ishiguro E., Hayaishi T., Masuko H., Morioka Y., Nakajima T., Nakamura M. // J. Phys. B. 1979. Vol. 12. P. 4057–4064.
- [7] Mitsuke K., Suzuki S., Imamura T., Koyano I. // J. Chem. Phys. 1990. Vol. 93. P. 8717—8724.
- [8] Hildenbrand D.L. // J. Phys. Chem. 1973. Vol. 77. P. 897-902.
- [9] Delwiche J. // Bull. Cl. Sci., Acad. Roy. Belg. 1969. Vol. 55. P. 215.
- [10] Fox R.E., Curran R.K. // J. Chem. Phys. 1961. Vol. 34. P. 1595–1601.
- [11] Tichy M., Javahery G., Twiddy N.D., Ferguson E.E. // Int. J. Mass Spectrom. Ion Processes. 1987. Vol. 79. P. 231–235.
- [12] Babcock L.M., Streit G.E. // J. Chem. Phys. 1981. Vol. 74. P. 5700-5706.
- [13] Singh R.K., Hipper R., Shanker R. // Phys. Rev. A. 2003. Vol. 67. P. 022 704.
- [14] Snegursky A.V., Chipev F.F., Zavilopulo A.N., Shpenik O.B. // Radiation Phys. Chem. 2007. Vol. 76. N 3. P. 604–606.
- [15] Christophorou L.G., Olthoff J.K. // J. Phys. Chem. Ref. Data. 2002. Vol. 29. P. 267–330.
- [16] Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.J., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993. Vol. 14. P. 1347—1363.
- [17] Kohn W., Sham L.J. // Phys. Rev. 1965. Vol. 140. P. A1133—A1138.
- [18] Hertwig R.H., Koch W. // Chem. Phys. Lett.1997. Vol. 268. P. 345-351.
- [19] Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648-5642.
- [20] Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. Vol. 37. P. 785-789.
- [21] Perdew J.P., Wang Y. // Phys. Rev. B. 1992. Vol. 45. P. 13 244—13 249.
- [22] Dunning T.H. (jr.), Hay P.J. Methods of Electronic Structure Theory. Chapter 1. H.F. Schaefer III. Ed. N.Y.: Plenum Press, 1977. P. 1–27.
- [23] Helgaker T. // Chem. Phys. Lett. 1991. Vol. 182. P. 503-510.
- [24] Радииг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. 240 с.
- [25] Cottrell T.L. The Strengths of Chemical Bonds. 2d ed.. Butterworth. London. 1958; B. de B. Darwent. National Standard Reference Data Ser. NBS. N 31. Washington, 1970.
- [26] Irikura K.K. // J. Phys. Chem. Ref. Data. 2007. Vol. 36. N 2. P. 389–397.
- [27] *Miyoshi E., Sakai Y., Miyoshi S.* // J. Chem. Phys. 1988. Vol. 88. P. 1470–1471.
- [28] Lias S.G., Barmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G. // J. Phys. Chem. Ref. Data. Suppl. 1988. Vol. 17. 861 p.
- [29] Lias S.G., Liebman J.F. "Ion Energetics Data" in NIST Chem. WebBook. NIST Standard Reference Database N 69. Eds P.J. Linstrom and W.G. Mallard. NIST. Gaithersburg MD. 20899. http://webbook.nist.gov. (retrieved January 31. 2014).
- [30] Kiang T., Estler R.C., Zare R.N. // J. Chem. Phys. 1979. Vol. 70. P. 5925–5927.
- [31] Tarnovsky V., Deutsch H., Martus K.I., Becker K. // J. Chem. Phys. 1998. Vol. 109. P. 6596–6600.
- [32] Ito M., Goto M., Toyoda H., Sugai H. // Contrib. Plasma Phys. 1995. Vol. 35. P. 405–413.
- [33] Asundi R.K., Craggs J.D. // Proc. Phys. Soc. 1964. Vol. 83. P. 611–618.

- [34] *Stanski T., Adamczyk B. //* Int. J. Mass Spectrom. Ion Phys. 1983. Vol. 46. P. 31–34.
- [35] Margreiter D., Walder G., Deutsch H., Poll H.U., Winkler C., Stephan K., Märk T.D. // Int. J. Mass Spectrom. Ion Processes. 1990. Vol. 100. P. 143–156.
- [36] Завилопуло А.Н., Микита М.И., Мылымко А.Н., Шпеник О.Б. // ЖТФ. 2013. Т. 83. Вып. 9. С. 8–14.
- [37] Jacox M.E. "Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules" in NIST Chem. WebBook, NIST Standard Reference Database N 69, Eds P.J. Linstrom and W.G. Mallard, NIST, Gaithersburg MD, 20899. http://webbook.nist.gov (retrieved April 14, 2014).